MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI

Rozměr: px
Začít zobrazení ze stránky:

Download "MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI"

Transkript

1 ROBUST 2000, c JČMF 2001 MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI ARNOŠT KOMÁREK Abstrakt. If somebody wants to distinguish objects from two groups,he can use a statistical model to achieve this target. Three possible statistical models are discussed a bit in this paper. Models are as follows: normal discriminant analysis (NDA),logistic regression (LR) and mixture of normal distributions (MND). The sense of this article is to reveal for another author s paper where those models are discussed many more. One of the supposed models (MND) is used for analyzis of the entrance examination at the Faculty of Law of the Charles University in Prague in We try to distinguish between honest and fraudulent candidates of studying at this college. Abstrakt. Vto state izuqaets diskriminacionny analiz dl statistixeskogo obsudeni prinimate nyh ekzamenov v Universitet Karla. Cílem příspěvku je upozornit na práci [1], jež se zabývá některými modely, pomocí nichž lze provádět diskriminaci. Konkrétně se jedná o modely normální diskriminační analýzy (NDA), logistické regrese (LR) a směsi normálníchrozdělení (MND). Vždy máme za úkol zařadit dané objekty do jedné za dvou skupin na základě hodnot jistýchznaků na nichnaměřených. Znaky naměřené na daném objektu můžeme reprezentovat pomocí hodnoty náhodného vektoru X a zařazení tohoto objektu pomocí hodnoty náhodné veličiny Y, jež nabývá hodnot 0 a 1, jelikož v naší práci rozlišujeme pouze mezi dvěma skupinami. Jednotlivé modely jsou potom definovány následovně. (LR): P (Y =1 X = x) =[1+exp( β 0 β x)] 1, P (Y =0 X = x) =[1+exp(β 0 + β x)] 1, kde β 0 a β jsou parametry modelu (β 0 R, β R p ). (NDA): P (Y =1)=λ (0, 1), L(X Y =0)=N p (µ 0, Σ), L(X Y =1)=N p (µ 1, Σ) Mathematics Subject Classification. Primary 62H30; Secondary 62P25. Klíčová slova. Diskriminační analýza. Tato práce vznikla za podpory grantu GAČR č. 201/00/0769 a grantu MSM

2 120 Arnošt Komárek Parametry jsou tentokrát λ, µ 1 µ 0 aσ. (MND): X má hustotu f(x) =λf 1 (x)+(1 λ)f 0 (x), kde f 1 je hustota N p (µ 1, Σ) a f 0 hustota N p (µ 0, Σ). Parametry jsou opět λ (0, 1), µ 1 µ 0 aσ. V práci [1] jsou jednotlivé modely podrobně popsány a porovnány. Jsou zde též uvedeny postupy pro odhadování neznámýchparametrů v jednotlivýchmodelechv praktickýchsituacích. Součástí je samozřejmě též odvození diskriminačníchpravidel. Na přiložené disketě je možno nalézt procedury v Matlabu pro výpočet odhadů. Na tomto místě poznamenejme, že modely (LR) a (NDA) vyžadují k sestavení diskriminační procedury učící skupinu objektů, zatímco model (MND) nikoliv. část práce [1] je věnována následujícímu příkladu, který se pokouší analyzovat výsledky přijímacíchzkoušek na Právnické fakultě UK v Praze v roce Tyto přijímací zkoušky jsou nechvalně známy možností, že někteří uchazeči o studium na zmíněné fakultě znali znění přijímacíchtestů před vlastní přijímací zkouškou. Pomocí studovanýchmodelů se pokusíme rozlišit studenty, kteří neznali zadání přijímacíchtestů (běžní studenti), a studenty, kteří mohli znát předem znění těchto testů (zvýhodnění studenti). K dispozici jsou výsledky jednotlivýchuchazečů v následující podobě: počet bodů za test z cizího jazyka (proměnná jazyk), z historie a všeobecného přehledu (proměnná historie) a za test z logiky (proměnná logika). Dále je u každého uchazeče uvedeno pořadové číslo termínu zkoušky, kterého se zúčastnil. Termínů bylo dohromady třináct, přitom ten třináctý byl náhradní za termín číslo dvanáct, který byl anulován kvůli podezření na podvodné jednání některýchuchazečů. V analýze nebudeme tedy pracovat s daty z třináctého termínu, neboť se ho zúčastnili studenti, kteří již přijímací zkoušku absolvovali v termínu dvanáctém. Přidání dat ze třináctého termínu do celého souboru by mohlo způsobit porušení nezávislosti jednotlivých pozorování. Každého z prvních dvanácti termínů se zúčastnil přibližně stejný počet uchazečů v rozmezí od 426 do 488. Za test z jazyka bylo přitom možné získat maximálně patnáct bodů, za test z historie a všeobecného přehledu maximálně čtyřicet pět bodů a za test z logiky maximálně čtyřicet bodů. Veličina Y, jež indikuje zařazení jednotlivých uchazečů, bude nabývat hodnoty jedna pro zvýhodněné a hodnoty nula pro běžné uchazeče. Diskriminaci budeme provádět na základě vektoru X, jehož složky budou odpovídat po řadě proměnným jazyk, historie, logika. Skupinu pro výpočet odhadů tvoří v tomto případě všichni uchazeči, kteří se zúčastnili jednoho z prvních dvanácti termínů. U žádného z nich nevíme, zda ho zařadit mezi běžné nebo zvýhodněné studenty. K sestavení diskriminační funkce tedy musíme nyní použít model směsi normálníchrozdělení. Pro podpoření domněnky, že zkoumaná data jsou skutečně směsí dvou normálníchrozdělení, jsou v [1] uvedeny histogramy dosažených bodů u jednotlivých testů zvlášť pro první a dvanáctý termín. Výsledky uchazečů z prvního termínu by směs tvořit neměly, naopak výsledky dvanáctého termínu by měly tvořit směs z rozdělení, z něhož pocházejí data u ostatních termínů a rozdělení, z něhož pocházejí data zvýhodněných uchazečů. Histogramy pro druhý až jedenáctý termín se od toho pro termín číslo jedna příliš neliší a proto nejsou uvedeny. My zařazujeme histogramy

3 Matematika mezi... aneb něco málo o diskriminaci 121 pro test z historie, jelikož zde se směs projevuje nejvíce a histogramy pro bodový součet. Směs dvou rozdělení lze odhalit v podstatě na všech histogramech odpovídajících dvanáctému termínu, přitom nejvíce se promíchání dat ze dvou výběrů projevuje právě u testu z historie a všeobecného přehledu. Naproti tomu histogramy prvního termínu poměrně dobře odpovídají hustotě normálního rozdělení. Na závěr ještě uvádíme tabulku s průměry výsledků jednotlivých testů a celkového bodového součtu zvlášť pro prvníchjedenáct termínů a pro termín dvanáctý. Průměry získaných bodů termín 12. termín (5110 studentů) (440 studentů) jazyk 10,11 10,95 historie 27,51 34,11 logika 28,64 32,05 bodový součet 66,27 77,11

4 122 Arnošt Komárek Z tabulky vidíme, že průměry dosaženýchbodů jsou u dvanáctého termínu vždy vyšší. Přitom rozdíl je věcně zanedbatelný pro jazyk a nejvyšší pro historii. Avšak statistické testy indikují významný rozdíl u všechuvažovanýchveličin. Jednostranný Wilcoxonův (Mannův-Whitneyův) test (s alternativou vyšších hodnot u dvanáctého termínu než u zbylých jedenácti termínů) dosahoval pro všechny uvažované veličiny hladiny nižší než 0,0001. Také tato zjištění nás utvrzují v domněnce, že máme co do činění se směsí dvou rozdělení. Podrobněji se lze s důvody, jež vedou k předpokladu, že data jsou směsí dvou rozdělení, seznámit na síti Internet na adrese kde je zveřejněn Komentář ke statistickému zpracování výsledků přijímacích zkoušek na Právnické fakultě UK v Praze v roce Pro vlastní sestavení diskriminační funkce použijeme výsledky všechuchazečů, kteří se zúčastnili prvníchdvanácti termínů. Takto získáme náhodný výběr ze směsi dvou rozdělení, přičemž nyní již promíchanost nevynikne tolik, jako v případě dvanáctého termínu. Prvních dvanácti termínů se zúčastnilo 5550 uchazečů. Odhady budeme počítat pomocí Matlabu. Po provedení výpočtů získáme následující výsledky: λ =0,062, µ 1 = 11,57 38,84, µ 0 = 10,09 27,32, Σ = 33,61 28,60 7,07 2,48 2,31 2,48 20,84 3,61 2,31 3,61 15,70 Vidíme, že odhad střední hodnoty bodových zisků běžných uchazečů je téměř shodný s průměry bodovýchzisků studentů, kteří se zúčastnili prvníchjedenácti termínů. Odhad střední hodnoty bodových zisků zvýhodněných uchazečů je o něco vyšší než průměr bodovýchzisků dosaženýchv rámci dvanáctého termínu. Tento fakt je způsoben skutečností, že dvanáctého termínu se zúčastnili též běžní studenti. Vzhledem k uvedenému se zdá, že data odpovídají domněnce, že prvníchjedenácti termínů se patrně nezúčastnil žádný zvýhodněný student. Z uvedených odhadů spočítáme odhady koeficientů v diskriminační funkci: β 0 = 25,92, β = 0,04 0,52. 0,20 Tedy uchazeče, který u přijímací zkoušky dosáhl bodového zisku reprezentovaného vektorem X =(jazyk, historie, logika), zařadíme mezi zvýhodněné, pokud 0,04 jazyk +0,52 historie +0,20 logika > 25,92. Pokud aplikujeme toto rozhodovací pravidlo na výsledky uvažovaných uchazečů, získáme následující odhady počtu běžných a zvýhodněných uchazečů na jednotlivýchtermínechpřijímací zkoušky. Odhady počtu běžnýchuchazečů jsou ve sloupci označeném nulou, počtu zvýhodněných uchazečů ve sloupci označeném jedničkou..

5 Matematika mezi... aneb něco málo o diskriminaci 123 Odhady počtu běžných a zvýhodněných uchazečů zařazení podíl termín 0 1 součet zvýhodněných (%) , , , , , , , , , , ,6 součet ,0 Samozřejmě, že ne každý uchazeč, který je podle našeho diskriminačního pravidla označen za zvýhodněného, jím skutečně je. Diskriminační funkce musí totiž pomocí roviny rozdělit jednoznačně trojrozměrný eukleidovský prostor na dvě části. Takto se do části se zvýhodněnými uchazeči může dostat i ten, který přirozeným způsobem (vlastními vědomostmi) dosáhl vyššího bodového zisku. Proto se mezi zvýhodněnými uchazeči objevují též studenti, kteří se zúčastnili jednoho z prvních jedenácti termínů, nikdy jichvšak není mnoho (maximálně 2,7 %). Naproti tomu v případě dvanáctého termínu bylo za zvýhodněné označeno 161 studentů, tj. 36,6 %, což podporuje domněnku, že někteří uchazeči, kteří se zúčastnili tohoto termínu přijímacích zkoušek, znali zadání testů předem. Pro srovnání ještě spočítáme odhady neznámých parametrů pouze s využitím dat z kritického dvanáctého termínu. Po provedení výpočtů dostaneme následující odhady: λ 12 =0,431, µ 12 1 = Σ 12 = 12,09 41,19 35,18, µ 12 0 = 6,83 1,47 1,64 1,47 12,12 2,74 1,64 2,74 14,92 10,08 28,75 29,68 Odhady µ 12 1, µ 12 0 a Σ 12 jsou poměrně blízké odhadům µ 1, µ 0, Σ. Odhad λ 12 sodhadem λ srovnávat nemůžeme, neboť se vztahuje k podílu zvýhodněných uchazečů v rámci dvanáctého termínu, který byl podstatně vyšší než v rámci celého přijímacího řízení. Odhady koeficientů v diskriminační funkci jsou následující: β 12 0 = 40,94, β12 =. 0,04 0,98 0,18 Pokud pomocí této diskriminační procedury zařadíme uchazeče, kteří se zúčastnili dvanáctého termínu, bude jich 185 označeno za zvýhodněné, což je o 24 více, než při diskriminaci prováděné pomocí původní procedury. Přitom žádný z uchazečů, který byl původní procedurou označen za zvýhodněného, nebude nyní nezvýhodněný. Nová procedura tedy pouze k původním zvýhodněným studentům přidala.,

6 124 Arnošt Komárek dalších24 uchazečů. Tato skutečnost může být způsobena faktem, že nyní byl podíl zvýhodněných uchazečů v učícím souboru podstatně vyšší, než při sestavování původní procedury. Zařazovat uchazeče z ostatních termínů pomocí procedury určené 12 koeficienty β 0 a β 12 nebude mít příliš velký smysl kvůli chybnému odhadu podílu zvýhodněných uchazečů v souboru všech studentů, kteří se zúčastnili přijímacích zkoušek. Upravíme-li tento odhad do tvaru λ 12,all = λ 12 počet uchazečů v 12. termínu 0, = =0,034 počet všechuchazečů 5550 a spočítáme pomocí µ 12 1, µ 12 0, Σ 12 a λ 12,all 12,all koeficienty β 0, β 12,all, jež vyjdou β 12,all 0 = 44,00, β12,all = 0,04 0,98 0,18 získáme diskriminační proceduru, pomocí níž již můžeme zařazovat též studenty z ostatních termínů. Tato procedura označí studenta za zvýhodněného, pokud 0,04 jazyk +0,98 historie +0,18 logika > 44,00. Toto rozhodovací pravidlo se na první pohled poměrně liší od původního pravidla založeného na β 0, β, ale pokud porovnáme rozhodnutí učiněná na základě těchto dvou procedur, zjistíme, že odlišnost není příliš velká, jak je možné se přesvědčit v následující tabulce, která obě procedury porovnává. Ve sloupci označeném 0 1 je počet uchazečů označených novou procedurou za zvýhodněné, ale starou za běžné, sloupec označený 1 0 obsahuje naopak počet uchazečů označených za zvýhodněné pouze původní procedurou. Sloupce původní a nová procedura přinášejí počty uchazečů, kteří byli označeni za zvýhodněné užitím příslušné diskriminační funkce. Porovnání dvou procedur původní nová počet odlišně termín procedura procedura zařazených součet Literatura. [1] Komárek A., Porovnání tří modelů, Diplomová práce MFF UK Praha, 2000 UK MFF, KPMS, Sokolovská 83, Praha

katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol

katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol STATISTICKÁ ANALÝZA PŘIJÍMACÍHO ŘÍZENÍ NA PEF PRO AKADEMICKÝ ROK 1994/1995 Bohumil Kába, Libuše Svatošová katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol Anotace: Příspěvek pojednává

Více

STATISTICKÁ EVALUACE INDIKÁTORŮ PŘIJÍMACÍHO ŘÍZENÍ STATISTICAL EVALUATION OF THE ADMISSION PROCEDURE INDICATORS

STATISTICKÁ EVALUACE INDIKÁTORŮ PŘIJÍMACÍHO ŘÍZENÍ STATISTICAL EVALUATION OF THE ADMISSION PROCEDURE INDICATORS STATISTICKÁ EVALUACE INDIKÁTORŮ PŘIJÍMACÍHO ŘÍZENÍ STATISTICAL EVALUATION OF THE ADMISSION PROCEDURE INDICATORS Libuše Svatošová, Bohumil Kába Anotace: Příspěvek shrnuje a prezentuje výsledky statistické

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Řešení úloh z TSP MU SADY S 1

Řešení úloh z TSP MU SADY S 1 Řešení úloh z TSP MU SADY S 1 projekt RESENI-TSP.CZ úlohy jsou vybírány z dříve použitých TSP MU autoři řešení jsou zkušení lektoři vzdělávací agentury Kurzy-Fido.cz Masarykova univerzita nabízí uchazečům

Více

8. Posloupnosti, vektory a matice

8. Posloupnosti, vektory a matice . jsou užitečné matematické nástroje. V Mathcadu je často používáme například k rychlému zápisu velkého počtu vztahů s proměnnými parametry, ke zpracování naměřených hodnot, k výpočtům lineárních soustav

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Finanční modely v oblasti Consultingu

Finanční modely v oblasti Consultingu Finanční modely v oblasti Consultingu Jan Cimický 1 Abstrakt Ve své disertační práci se zabývám finančním modelováním. Práce je koncipována jako soubor vzájemně často propojených nebo na sebe navazujících

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/00 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 76/004 Sb. kterou se mění vyhláška č. 343/00 Sb., o postupu a podmínkách

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Přijímací řízení ke vzdělávání ve středních školách Pardubického kraje pro školní rok 2012/2013

Přijímací řízení ke vzdělávání ve středních školách Pardubického kraje pro školní rok 2012/2013 Přijímací řízení ke vzdělávání ve středních školách Pardubického kraje pro školní rok 2012/2013 Úvod Všem středním školám zřizovaným Pardubickým krajem bylo doporučeno v rámci přijímacího řízení do oborů

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Protokol č. 8. Stanovení zásoby relaskopickou metodou

Protokol č. 8. Stanovení zásoby relaskopickou metodou Protokol č. 8 Stanovení zásoby relaskopickou metodou Zadání: Pro zadané dřeviny stanovte zásobu pomocí relaskopické metody. Součástí protokolu bude vyplněný protokol podle relaskopického formuláře (provedení

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech:

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Příklad 1 V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Skupina Počet ženichů Počet nevěst 15-19 let 11 30 20-24 let 166 272 25-29 let 191

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Citation Statistics. zpráva společné komise. Int. Mathematical Union. Int. Council of Industrial and Applied Mathematics. Institute of Statistics

Citation Statistics. zpráva společné komise. Int. Mathematical Union. Int. Council of Industrial and Applied Mathematics. Institute of Statistics Citation Statistics zpráva společné komise Int. Mathematical Union Int. Council of Industrial and Applied Mathematics Institute of Statistics Citace ze zadání: The drive towards more transparency and accountability

Více

Přijímací řízení ke vzdělávání ve středních školách Pardubického kraje pro školní rok 2012/2013

Přijímací řízení ke vzdělávání ve středních školách Pardubického kraje pro školní rok 2012/2013 PARDUBICKÝ KRAJ Jana Pernicová členka Rady Pardubického kraje Přijímací řízení ke vzdělávání ve středních školách Pardubického kraje pro školní rok 2012/2013 PARDUBICE, ŘÍJEN 2011 Úvod Všem středním školám

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Staroegyptská matematika. Hieratické matematické texty

Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika. Hieratické matematické texty Výpočet objemu tělesa In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1 GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU Veronika Berková 1 1 Katedra mapování a kartografie, Fakulta stavební, ČVUT, Thákurova 7, 166 29, Praha, ČR veronika.berkova@fsv.cvut.cz Abstrakt. Metody

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Výsledky vstupních testů z matematiky a úspěšnost studia

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Výsledky vstupních testů z matematiky a úspěšnost studia Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Bakalářská práce Výsledky vstupních testů z matematiky a úspěšnost studia Plzeň, 2014 Zuzana Rábová Prohlášení Prohlašuji, že

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV

GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV Mgr. Jitka Nováková SPŠ strojní a stavební Tábor Abstrakt: Grafické řešení rovnic a jejich soustav je účinná metoda, jak vysvětlit, kolik různých řešení může daný

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Rozpoznávání izolovaných slov (malý slovník, např. číslovky, povely).

Rozpoznávání izolovaných slov (malý slovník, např. číslovky, povely). Rozpoznávání řeči Každý člověk má originální hlasové ústrojí a odlišný způsob artikulace, to se projevuje rozdílnou barvou hlasu, přízvukem, rychlostí řeči atd. I hlas jednoho řečníka je variabilní a závislý

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

343/2002 Sb. VYHLÁŠKA. Ministerstva školství, mládeže a tělovýchovy

343/2002 Sb. VYHLÁŠKA. Ministerstva školství, mládeže a tělovýchovy 343/2002 Sb. VYHLÁŠKA Ministerstva školství, mládeže a tělovýchovy ze dne 11. července 2002 o postupu a podmínkách při zveřejnění průběhu přijímacího řízení na vysokých školách Změna: 276/2004 Sb. Ministerstvo

Více

Matematické metody rozhodování

Matematické metody rozhodování Matematické metody rozhodování Roman Hájek, Klára Hrůzová, Tomáš Konečný, Markéta Krmelová, Martin Trnečka 20. března 2010 Rozhodovacíproblém: Výběrideálníhonotebooku. ID Notebook Váha Design Baterie Procesor

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

PISA 2012. SPŠ stavební J. Gočára, Družstevní ochoz 3, Praha 4. Kód vaší školy: M 2 VÝSLEDKY ŠETŘENÍ ŠKOLNÍ ZPRÁVA

PISA 2012. SPŠ stavební J. Gočára, Družstevní ochoz 3, Praha 4. Kód vaší školy: M 2 VÝSLEDKY ŠETŘENÍ ŠKOLNÍ ZPRÁVA VÝSLEDKY ŠETŘENÍ PISA 1 ŠKOLNÍ ZPRÁVA SPŠ stavební J. Gočára, Družstevní ochoz 3, Praha Kód vaší školy: M Tato zpráva je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře)

Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře) Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře) Následující analýza výhodnosti vstupu do II. pilíři vychází ze stejné metodologie, která je popsána v Pojistněmatematické zprávě

Více

ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ

ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ RELATIONAL AND OBJECT DATABASES DESIGN DIFFERENCES AND IT S IMPLICATIONS TO MODEL TRANSFORMATION Vít Holub

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

POROVNÁNÍ NĚKTERÝCH SW PRO ZOBRAZENÍ GRAFU FUNKCE DVOU PROMĚNNÝCH

POROVNÁNÍ NĚKTERÝCH SW PRO ZOBRAZENÍ GRAFU FUNKCE DVOU PROMĚNNÝCH POROVNÁNÍ NĚKTERÝCH SW PRO ZOBRAZENÍ GRAFU FUNKCE DVOU PROMĚNNÝCH Martin Fajkus Univerzita Tomáše Bati ve Zlíně, Fakulta aplikované informatiky, Ústav matematiky, Nad Stráněmi 4511, 760 05 Zlín, Česká

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent

Více

Vyhlášení prvního kola přijímacího řízení do prvního ročníku vzdělávání ve střední škole pro školní rok 2014/2015

Vyhlášení prvního kola přijímacího řízení do prvního ročníku vzdělávání ve střední škole pro školní rok 2014/2015 Vyhlášení prvního kola přijímacího řízení do prvního ročníku vzdělávání ve střední škole pro školní rok 2014/2015 V souladu s 60, odst. 2 zákona č. 561/2004 Sb., o předškolním, základním, středním, vyšším

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Ředitel Střední průmyslové školy Ostrov vyhlašuje 3. kolo přijímacího řízení pro školní rok 2015/2016 na následující obory.

Ředitel Střední průmyslové školy Ostrov vyhlašuje 3. kolo přijímacího řízení pro školní rok 2015/2016 na následující obory. Ředitel Střední průmyslové školy Ostrov vyhlašuje 3. kolo přijímacího řízení pro školní rok 2015/2016 na následující obory. Obory zakončené maturitní zkouškou: Denní studium: Autotronik Elektrotechnika

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

DETEKCE LINEÁRNÍHO TRENDU V ROZPTYLU NORMÁLNÍHO ROZDĚLENÍ

DETEKCE LINEÁRNÍHO TRENDU V ROZPTYLU NORMÁLNÍHO ROZDĚLENÍ ROBUST 2004 c JČMF 2004 DETEKCE LINEÁRNÍHO TRENDU V ROZPTYLU NORMÁLNÍHO ROZDĚLENÍ Luboš Prchal Klíčováslova:Detekcezměnyvrozptylu,regresev a L 2 normě,radioaktivní záření. Abstrakt: Tento příspěvek je

Více

Přijímací řízení pro školní rok 2014/2015. Přijímací řízení ke vzdělávání ve středních školách Pardubického kraje pro školní rok 2014/2015

Přijímací řízení pro školní rok 2014/2015. Přijímací řízení ke vzdělávání ve středních školách Pardubického kraje pro školní rok 2014/2015 Přijímací řízení ke vzdělávání ve středních školách Pardubického kraje pro školní rok 2014/2015 Úvod Všem středním školám zřizovaným Pardubickým krajem bylo doporučeno v rámci přijímacího řízení do oborů

Více

ARITMETICKÉ OPERACE V BINÁRNÍ SOUSTAVĚ

ARITMETICKÉ OPERACE V BINÁRNÍ SOUSTAVĚ Sčítání binárních čísel Binární čísla je možné sčítat stejným způsobem, jakým sčítáme čísla desítková. Příklad je uveden v tabulce níže. K přenosu jedničky do vyššího řádu dojde tehdy, jeli výsledkem součtu

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Základní jednotky používané ve výpočetní technice

Základní jednotky používané ve výpočetní technice Základní jednotky používané ve výpočetní technice Nejmenší jednotkou informace je bit [b], který může nabývat pouze dvou hodnot 1/0 (ano/ne, true/false). Tato jednotka není dostatečná pro praktické použití,

Více

Příklad síťového adresování

Příklad síťového adresování Příklad síťového adresování Pro rozadresování podsítí je potřebné stanovit kolik bitů bude potřeba pro každou podsíť. Je nutné k počtu stanic v síti připočíst rozhraní připojeného routeru a adresu sítě

Více