Teoretické základy vakuové techniky

Rozměr: px
Začít zobrazení ze stránky:

Download "Teoretické základy vakuové techniky"

Transkript

1 Vakuová technika Teoretické základy vakuové techniky tlak plynu tepeln! pohyb molekul st"ední volná dráha molekul proud#ní plynu vakuová vodivost $erpání plyn% ze systém%

2 S klesajícím tlakem se chování plyn% stále více blí&í chování ideálního plynu. Platí tedy stavová rovnice, ze které po úprav# získáme $asto pou&ívan! vzorec pro tlak p p= n kt V n V... prostorová hustota molekul k... Boltzmannova konstanta T... termodynamická teplota

3 Je-li plyn tvo"en sm#sí plyn%, je celkov! tlak (totální tlak p tot ) dán sou$tem parciálních tlak% p p jednotliv!ch slo&ek p= p =! p tot p

4 Nej$ast#ji je $erpán vzduch. Parciální tlaky hlavních slo&ek p"i atmosférickém tlaku p b = 10 5 Pa: dusík... 77,2 kpa kyslík... 21,0 kpa vodní pára... 1,2 kpa argon... 0,9 kpa CO ,03 kpa neon... 0,002 kpa

5 Rychlost tepelného pohybu molekul I v ustáleném stavu se rychlosti jednotliv!ch molekul li"í a jejich statistické zastoupení je dáno Maxwellov!m rozd#lením. Z n#j plyne, $e st%ední aritmetická rychlost v a molekul je dána vztahem v a 1 n 8kT = " vi = n i! m kde m je hmotnost molekuly. Závislost na teplot# není p%íli" silná jde o odmocninu termodynamické teploty

6 Rozd#lení rychlostí atom& helia, argonu a neonu p%i teplot# 300 K

7 Rozd#lení rychlostí molekul O 2 v závislosti na teplot#

8 S rostoucí hmotností molekul klesá jejich st%ední aritmetická rychlost v a : plyn mol.hmotnost (g/mol) v a (m.s -1 ) Machovo $íslo vodík ,3 helium ,7 vodní pára ,8 dusík ,4 argon ,2

9 Rozdílná hmotnost molekul jednotliv!ch plyn& ovliv'uje chování t#chto plyn& ve vakuov!ch soustavách. Nap%íklad (erpací rychlost r&zn!ch druh& v!v#v se li"í podle druhu plynu. Obecn# proto platí, $e s klesajícím tlakem se li"í pom#rné slo$ení zbytkové atmosféry ve vakuové soustav# od slo$ení vzduchu p%i atmosférickém tlaku. Nejv#t"í obtí$e v#t"inou vykazuje (erpání vodních par, p%ípadn# olejov!ch par, které se do soustavy dostávají zp#tn!m tokem z v!v#vy. Slo$ení zbytkové atmosféry lze ovlivnit konstrukcí v!v#vy a v!b#rem materiál& pro stavbu vakuové soustavy.

10 Chování plyn& za nízk!ch tlak& v!znamn# ovliv'uje st%ední volná dráha molekul mezi dv#mi po sob# následujícími srá$kami l =! kt 2 d m kde d m je charakteristick! rozm#r ( pr%m#r ) molekuly l

11 Pro praxi vysta(íme s p%ibli$n!m vztahem pro st%ední volnou dráhu ve vzduchu l =! 3 [ ] [ ] 7.10 m p Pa

12 Pro praxi vysta(íme s p%ibli$n!m vztahem pro st%ední volnou dráhu ve vzduchu l =! 3 [ ] [ ] 7.10 m p Pa To znamená, $e p%i tlaku 1Pa je st%ední volná dráha p%ibli$n# 7 mm. Pom#r mezi vnit%ními rozm#ry soustavy a st%ední volnou dráhou v!znamn# ovliv'uje proud#ní plyn& ve vakuov!ch soustavách

13 Zavádí se podobnostní Knudsenovo (íslo Kn = l d d! charakteristick! rozm#r soustavy, kterou plyn proudí (pr&m#r trubky, pr&m#r komory apod.) Jestli$e p%i vy""ích tlacích p%eva$uje vzájemná interakce molekul mezi sebou, p%i ni$"ích tlacích v!znamn# ovliv'uje proud#ní interakce molekul se st#nami.

14 Kn!0,1 0,1! Kn! 0,5 Kn!0,5 '. kontinuální (viskózní) proud#ní p"echodové (Knudsenovo) proud#ní '. molekulární proud#ní

15 Závislost re$imu proud#ní na pr&m#ru potrubí a tlaku

16 Pro kvantitativní popis proud#ní plynu pou$ijeme objemov! proud plynu q V q V = pv t [ W ], kde V je objem plynu pro(l! zvolen!m pr%"ezem potrubí p"i tlaku p za $as t. Tato veli$ina také udává v!kon p"ená(en! vedením.

17 Schopnost proud#ní plynu (ástmi vakuov!ch systém& (otvory, spojovací potrubí, ventily) charakterizuje veli(ina vakuová vodivost G. Je-li na vstupu vakuového systému tlak p 1 a na v!stupu tlak p 2 < p 1, je objemov! proud plynu q V tekoucí tímto systémem ur(en vztahem q = G p! p V ( ) 1 2 Hlavní zásadou p%i konstrukci vakuov!ch systém& je dosa$ení maximální vakuové vodivosti.

18 Celkovou vakuovou vodivost G soustavy slo$ené z jednotliv!ch (ástí o vodivostech G i (potrubí, ventily, kolena apod.) po(ítáme podobn# jako vodivost elektrick!ch obvod&. Nej(ast#j"ím p%ípadem je sériové zapojení (nap%. od v!v#vy vede potrubí p%es ventily a kolena k pracovní komo%e). Pak pro celkovou vodivost platí 1 n 1 =! G i= 1 G i kde G i jsou vakuové vodivosti jednotliv!ch (ástí soustavy

19 D&le$ité : P%i poklesu tlaku a p%echodu od viskózního proud#ní k molekulárnímu vakuová vodivost té$e sou(ásti %ádov# klesá. P%íklad : vakuová vodivost válcové trubky o pr&m#ru d a délce l : viskózní proud#ní ) G = konst.. l 4 d p1+ p2 2 molekulární proud#ní ) G = const. d l 3

20 Porovnejte vakuovou vodivost potrubí DN 40 o délce 100 cm v re$imu viskózního proud#ní (nomogram vlevo : G = 400 l/s) a molekulárního proud#ní (nomogram vpravo : G = 8 l/s)

21 Pro vysv#tlení pr&b#hu (erpání vakuov!ch systém& v!v#vami je t%eba zavést je"t# vztah, jeho$ pomocí lze ur(it po(et µ molekul plynu, které dopadají p%i tlaku p a teplot# T za jednu sekundu na plochu 1 m 2 : 1 va µ = vn a V = 4 4kT p v a!.. st%ední aritmetická rychlost molekul n V... prostorová hustota molekul

22 Charakteristika (erpacího procesu Pou$ijeme zjednodu"en! model v!v#vy: nádoba o objemu V obsahuje plyn o tlaku p a hustot# molekul n V, vn# nádoby ve velmi velkém prostoru je tent!$ plyn o tlaku p m < p. V (ase t = 0, kdy je v nádob# tlak p 0, je odstran#na (ást bo(ní st#ny o plo"e A. Úkol : Stanovte "asov# pr$b%h tlaku p(t) v nádob% Na ka$d! m 2 plochy A dopadá ze vnit%ku nádoby µ molekul a zevn# µ m molekul. Za (as dt poklesne po(et molekul v nádob# o Av! dn =! Vdn = A µ! µ dt = n! n 4 ( ) a ( ) V m V Vm

23 Rovnici p%enásobíme sou(initelem kt a s pou$itím vztahu dostáváme rovnici pro p(t): Jejím %e"ením je funkce p = n kt dp dt Tlak v nádob# klesá exponenciáln# v (ase k hodnot# p m, která se naz!vá mezní tlak V Ava =!! 4V ( p p ) Ava t ( ) 4V pt = pe 0 + p m! m

24 Konstanta S Ava A 8kT = = 4 4! m se naz!vá (erpací rychlost v!v#vy *erpací rychlost závisí na konstrukci v!v#vy (plocha A), na teplot# T a na druhu plynu (hmotnost molekuly m). *asov! pr&b#h tlaku v tomto ideálním p%ípad# ur(uje funkce S! t ( ) V pt = pe 0 + p m Tlak v soustav# klesá v (ase exponenciáln# k hodnot# mezního tlaku p m!

Základy vakuové techniky

Základy vakuové techniky Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní

Více

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova

Více

III. STRUKTURA A VLASTNOSTI PLYNŮ

III. STRUKTURA A VLASTNOSTI PLYNŮ III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo

Více

Kryogenní technika v elektrovakuové technice

Kryogenní technika v elektrovakuové technice Kryogenní technika v elektrovakuové technice V elektrovakuové technice má kryogenní technika velký význam. Používá se nap. k vymrazování, ale i k zajištní tepelného pomru u speciálních pístroj. Nejvtší

Více

Přednáška 5. Martin Kormunda

Přednáška 5. Martin Kormunda Přednáška 5 Metody získávání nízkých tlaků : čerpací rychlost, časový průběh čerpacího procesu, mezní tlak, zbytková atmosféra, rozdělení tlaku v systému při čerpání. Zásady návrhu vakuových systémů. Metody

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

2 Odb!rové charakteristiky p"ípravy teplé vody

2 Odb!rové charakteristiky pípravy teplé vody 2 Odb!rové charakteristiky p"ípravy teplé vody Pro kombinované soustavy s obnoviteln!mi zdroji tepla, kde akumula!ní nádoba zaji""uje jak otopnou vodu pro vytáp#ní a tak pr$to!nou p%ípravu teplé vody (TV)

Více

Seminární práce 1. ZADÁNÍ - KOLENO ZADÁNÍ - KÍŽ ZADÁNÍ T KUS ZADÁNÍ T KUS ZADÁNÍ - CLONA ZADÁNÍ - DIFUZOR...

Seminární práce 1. ZADÁNÍ - KOLENO ZADÁNÍ - KÍŽ ZADÁNÍ T KUS ZADÁNÍ T KUS ZADÁNÍ - CLONA ZADÁNÍ - DIFUZOR... Seminární práce Obsah 1. ZADÁNÍ - KOLENO...2 2. ZADÁNÍ - KÍŽ...6 3. ZADÁNÍ T KUS...9 4. ZADÁNÍ T KUS 2...13 5. ZADÁNÍ - CLONA...17 6. ZADÁNÍ - DIFUZOR...19 7. ZADÁNÍ MEZIKRUŽÍ I...21 8. ZADÁNÍ - ZPTNÉ

Více

2. M ení t ecích ztrát na vodní trati

2. M ení t ecích ztrát na vodní trati 2. M ení t ecích ztrát na vodní trati 2. M ení t ecích ztrát na vodní trati 2.1. Úvod P i proud ní skute ných tekutin vznikají následkem viskozity t ecí odpory, tj. síly, které p sobí proti pohybu ástic

Více

RADIÁLNÍ VYPÍNÁNÍ ZADÁNÍ: VUT - FSI, ÚST Odbor technologie tváení kov a plast

RADIÁLNÍ VYPÍNÁNÍ ZADÁNÍ: VUT - FSI, ÚST Odbor technologie tváení kov a plast Cviení. Jméno/skupina Speciální technologie tváení ZADÁNÍ: Vypoítejte energosilové parametry vyskytující se pi tváení souásti metodami radiálního vypínání. Pro tváení souásti byl použit elastický nástroj

Více

Píprava teplé vody. Zabezpeovací zaízení tepelných (otopných) soustav

Píprava teplé vody. Zabezpeovací zaízení tepelných (otopných) soustav Pednáška 7 Píprava teplé vody Zabezpeovací zaízení tepelných (otopných) soustav Ohev Píprava teplé vody pímý (ohev s pemnou energie v zaízení ohívae) nepímý (ohev s pedáváním tepla z teplonosné látky)

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

Dimenzování potrubních rozvod

Dimenzování potrubních rozvod Pednáška 6 Dimenzování potrubních rozvod Cílem je navrhnout profily potrubí, jmenovité svtlosti armatur a nastavení regulaních orgán tak, aby pi požadovaném prtoku byla celková tlaková ztráta okruhu stejn

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

Přednáška 2. Martin Kormunda

Přednáška 2. Martin Kormunda Přednáška 2 Objemové procesy Difuze Tepelná transpirace (efuze) Přenos energie Proudění plynů : proud plynu, vakuová vodivost, vodivost otvoru, potrubí. Proudění plynu netěsnostmi Difuze plynu Veškeré

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Fyzikální základy moderních technologií

Fyzikální základy moderních technologií Fyzikální základy moderních technologií Obsah přednášky : I. Vakuová technika II. Plazma a aplikace plazmových technologií III. Moderní lasery a jejich aplikace IV. Piezoelektrické jevy a jejich aplikace

Více

LEMOVÁNÍ I ZADÁNÍ: VUT - FSI, ÚST Odbor technologie tváení kov a plast

LEMOVÁNÍ I ZADÁNÍ: VUT - FSI, ÚST Odbor technologie tváení kov a plast Cviení. Jméno/skupina Speciální technologie tváení ZADÁNÍ: Vypoítejte energosilové parametry vyskytující se pi tváení souástí z plechu metodou lemování. Pro tváení souástí byl v pípad lemování otvor použit

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování

Více

Konstrukce vakuových zařízení

Konstrukce vakuových zařízení Konstrukce vakuových zařízení Základní parametry vývěv Mezní tlak vývěvy p mez Tlak na výstupu vývěvy, od kterého je schopná funkce p 0 (je schopná pracovat od atmosférického tlaku?) Čerpací schopnost

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x)

Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x) NÁHODNÁ VELIINA Náhodná veliina je veliina, jejíž hodnota je jednoznan urena výsledkem náhodného pokusu (je-li tento výsledek dán reálným íslem). Jde o reálnou funkci definovanou na základním prostoru

Více

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný

Více

Hydrochemie koncentrace látek (výpočty)

Hydrochemie koncentrace látek (výpočty) 1 Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) 1 mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve

Více

Jak v R využíváme slunení energii. Doc.Ing. Karel Brož, CSc.

Jak v R využíváme slunení energii. Doc.Ing. Karel Brož, CSc. Jak v R využíváme slunení energii Doc.Ing. Karel Brož, CSc. Dnes tžíme na našem území pouze uhlí a zásoby tohoto fosilního paliva byly vymezeny na následujících 30 rok. Potom budeme nuceni veškerá paliva

Více

9. Struktura a vlastnosti plynů

9. Struktura a vlastnosti plynů 9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

Atom a molekula - maturitní otázka z chemie

Atom a molekula - maturitní otázka z chemie Atom a molekula - maturitní otázka z chemie by jx.mail@centrum.cz - Pond?lí, Únor 09, 2015 http://biologie-chemie.cz/atom-a-molekula-maturitni-otazka-z-chemie/ Otázka: Atom a molekula P?edm?t: Chemie P?idal(a):

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

První v!sledky z hodnocení adresného zvaní do programu screeningu karcinomu prsu v "R

První v!sledky z hodnocení adresného zvaní do programu screeningu karcinomu prsu v R První v!sledky z hodnocení adresného zvaní do programu screeningu karcinomu prsu v "R O. Májek, O. Ngo, M. Blaha, L. Du!ek Odborná garance projektu: J. Dane!, M. Zavoral, V. Dvo"ák, B. Seifert, #. Suchánek

Více

RÁMCOVÉ OTÁZKY pro pedmt Mechanika zemin pro 2. roník

RÁMCOVÉ OTÁZKY pro pedmt Mechanika zemin pro 2. roník RÁMCOVÉ OTÁZKY pro pedmt Mechanika zemin pro 2. roník Zemina jako trojfázové prostedí Pevná fáze zeminy 1. Vznik zemin (zvtrávání, transport, sedimentace) 2. Zeminy normáln konsolidované a pekonsolidované

Více

ešené píklady z fyzikální chemie III

ešené píklady z fyzikální chemie III Masarykova univerzita v Brn Pedagogická fakulta Pírodovdecká fakulta ešené píklady z fyzikální chemie III Molekulární transport Teorie reakní rychlosti Hana Cídlová, Libuše Trnková Brno 2005 Skripta vznikla

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

6.3. Technické údaje Hotjet s

6.3. Technické údaje Hotjet s 6.3. Technické údaje Hotjet s 6.3.3. Místo instalace vnit#ní jednotka kdekoliv uvnit# objektu - technická místnost, sklep, gará"... Venkovní 'ást instalace: zem$, st$na, st#echa 6.3.. Vlastnosti: Nové

Více

Efektivní hodnota proudu a nap tí

Efektivní hodnota proudu a nap tí Peter Žilavý: Efektivní hodnota proudu a naptí Efektivní hodnota proudu a naptí Peter Žilavý Katedra didaktiky fyziky MFF K Praha Abstrakt Píspvek experimentáln objasuje pojem efektivní hodnota stídavého

Více

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W = Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv

Více

14. Základy elektrostatiky

14. Základy elektrostatiky 4. Základy elektostatiky lektostatické pole existuje kolem všech elekticky nabitých tles. Tato tlesa na sebe vzájemn jeho postednictvím psobí. lektický náboj dva významy: a) vyjaduje stav elekticky nabitých

Více

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m 1. Vypočítejte šířku jezera, když zvuk šířící se ve vodě se dostane k druhému břehu o 1 s dříve než ve vzduchu. Rychlost zvuku ve vodě je 1 400 m s -1. Rychlost zvuku ve vzduchu je 340 m s -1. 1) 449 m

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

LOGO. Struktura a vlastnosti plynů Ideální plyn

LOGO. Struktura a vlastnosti plynů Ideální plyn Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu

Více

Hydrochemie koncentrace látek (výpočty)

Hydrochemie koncentrace látek (výpočty) Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve 2

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

DIPLOMOVÁ PRÁCE PÍLOHA. 10. eské vysoké uení technické v Praze. Fakulta strojní NÁVRH TLUMIE HLUKU. Ústav techniky prostedí PAVE L LIŠKA

DIPLOMOVÁ PRÁCE PÍLOHA. 10. eské vysoké uení technické v Praze. Fakulta strojní NÁVRH TLUMIE HLUKU. Ústav techniky prostedí PAVE L LIŠKA eské vysoké uení technické v Praze Fakulta strojní Ústav techniky prostedí 12116 DIPLOMOVÁ PRÁCE PÍLOHA. 10 NÁVRH TLUMIE HLUKU PAVE L LIŠKA ERVEN 2015 PAVEL LIŠKA ERVEN 2015 Kubíkova 12, 182 00 Praha 8,

Více

III. STRUKTURA A VLASTNOSTI PLYNŮ

III. STRUKTURA A VLASTNOSTI PLYNŮ III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo

Více

Příklady k zápočtu molekulová fyzika a termodynamika

Příklady k zápočtu molekulová fyzika a termodynamika Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další

Více

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové ymnázium Přírodní vědy moderně

Více

DOPRAVNÍ INŽENÝRSTVÍ

DOPRAVNÍ INŽENÝRSTVÍ VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ ING. MARTIN SMLÝ DOPRAVNÍ INŽENÝRSTVÍ MODUL 4 ÍZENÉ ÚROVOVÉ KIŽOVATKY ÁST 1 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Dopravní inženýrství

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Dimenzování komín ABSOLUT Výchozí hodnoty

Dimenzování komín ABSOLUT Výchozí hodnoty Výchozí hodnoty Správný návrh prezu - bezvadná funkce Výchozí hodnoty pro diagramy Správná dimenze komínového prduchu je základním pedpokladem bezvadné funkce pipojeného spotebie paliv. Je také zárukou

Více

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci TRANSPORTNÍ MECHANISMY Transport látek z vnějšího prostředí do buňky a naopak se může uskutečňovat dvěma cestami - aktivním a pasivním transportem. Pasivním transportem rozumíme přenos látek ve směru energetického

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Molekulová fyzika a termodynamika

Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a

Více

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),

Více

a) Jaká je hodnota polytropického exponentu? ( 1,5257 )

a) Jaká je hodnota polytropického exponentu? ( 1,5257 ) Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.

Více

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme. Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Cvičení z termodynamiky a statistické fyziky

Cvičení z termodynamiky a statistické fyziky Cvičení termodynamiky a statistické fyiky 1Nechť F(x, y=xe y Spočtěte F/ x, F/, 2 F/ x 2, 2 F/ x, 2 F/ x, 2 F/ x 2 2 Bud dω = A(x, ydx+b(x, ydy libovolná diferenciální forma(pfaffián Ukažte, ževpřípadě,žedωjeúplnýdiferenciál(existujefunkce

Více

Únik plynu plným průřezem potrubí

Únik plynu plným průřezem potrubí Únik plynu plným průřezem potrubí Studentská vědecká konference 22. 11. 13 Autorka: Angela Mendoza Miranda Vedoucí práce: doc. Ing. Václav Koza, CSc. Roztržení, ocelové potrubí DN 300 http://sana.sy/servers/gallery/201201/20120130-154715_h.jpg

Více

Tepelně vlhkostní mikroklima. Vlhkost v budovách

Tepelně vlhkostní mikroklima. Vlhkost v budovách Tepelně vlhkostní mikroklima Vlhkost v budovách Zdroje vodní páry stavební vlhkost - vodní pára vázaná v materiálech v důsledku mokrých technologických procesů (chemicky nebo fyzikálně vázaná) zemní vlhkost

Více

Teoretické základy vakuové techniky

Teoretické základy vakuové techniky Procesy při čerpání soustavy Předpokládejme, že vývěvou čerpáme vakuovou soustavu od počátečního atmosférického tlaku až do vysokého vakua. Zpočátku jde o objemový proces, čerpané plyny vykazují viskózní

Více

Potrubí slouží zejména k doprav kapalin, plyn a par, mén pro dopravu sypkých hmot.

Potrubí slouží zejména k doprav kapalin, plyn a par, mén pro dopravu sypkých hmot. 3. POTRUBÍ Potrubí slouží zejména k doprav kapalin, plyn a par, mén pro dopravu sypkých hmot. Hlavní ásti potrubí jsou: trubky spoje trubek armatury tvarovky pro zmnu toku a prtoného prezu (oblouky, kolena,

Více

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,

Více

Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná.

Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Popisuje chování tekutin makroskopickými veličinami, které jsou definovány

Více

- zabývá se í ením zvuku v uzav ených prostorech. - p edstavuje oblast zájmu v dy, um ní, architektury i psychologie

- zabývá se í ením zvuku v uzav ených prostorech. - p edstavuje oblast zájmu v dy, um ní, architektury i psychologie Prostorová akustika Prostorová akustika - zabývá se íením zvuku v uzavených prostorech - pedstavuje oblast zájmu vdy, umní, architektury i psychologie zásadní problém: vlnová délka me být jak mení, srovnatelná

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

N A = 6,023 10 23 mol -1

N A = 6,023 10 23 mol -1 Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,

Více

Ocelov# drát, pr$m%rná vrstva pozinkování 50 mikron$ (ca 350 g/m2) s izolací pro skryté svody a spojení v p!echodech zdivo/beton-vzduch a zem%-vzduch.

Ocelov# drát, pr$m%rná vrstva pozinkování 50 mikron$ (ca 350 g/m2) s izolací pro skryté svody a spojení v p!echodech zdivo/beton-vzduch a zem%-vzduch. Ochrana p!ed bleskem Vedení Dráty Rd Dráty, vodi"e s kruhov#m pr$!ezem, pro jímací vedení, svody, vedení potenciálového vyrovnání a uzemn%ní. DEHNALU Vedení z Al a slitiny AlMgSi nesmí b#t ulo&ena p!ímo

Více

4;# $74 1# '%7,-83, /"4753.%',-3,%& 3.%' 24;#34%' 3 /"4753.(+ / -(4(+,%6'3(# 24;#34 1, 3,-#39 /, 24;#34 ;'3* E-,$,,-3& =>)% H /, -4

4;# $74 1# '%7,-83, /4753.%',-3,%& 3.%' 24;#34%' 3 /4753.(+ / -(4(+,%6'3(# 24;#34 1, 3,-#39 /, 24;#34 ;'3* E-,$,,-3& =>)% H /, -4 !"#$%&#% '()*+, -./,0 1# /,,2#34 5,6,-3*+, +7'34),-*+, 286 $74 86 $74 1# 0#3, /,,693* 6$,-9 $, -.5)9 :% 3$ # *3#% 86 $74 1# /,;4-83, /"' #),3 )(' /3#7,-.(+,693.(+ $,%< 86 $74 1# $'%#32,-83, 3 24;#34,$

Více

obr. 3.1 Pohled na mící tra

obr. 3.1 Pohled na mící tra 3. Mení tecích ztrát na vzduchové trati 3.1. Úvod Problematika urení tecích ztrát je hodná pro vodu nebo vzduch jako proudící médium (viz kap..1). Micí tra e liší použitými hydraulickými prvky a midly.

Více

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.

Více

technologická ást - rozvody laboratorních plyn (stlaený vzduch, vakuum podtlak,n 2,, CO 2, O 2, Ar a He )

technologická ást - rozvody laboratorních plyn (stlaený vzduch, vakuum podtlak,n 2,, CO 2, O 2, Ar a He ) T E C H N I C K Á Z P R Á V A IDENTIFIKANÍ ÚDAJE STAVBY Druh stavby : Místo stavby : Investor : Projektant : technologická ást - rozvody laboratorních plyn (stlaený vzduch, vakuum podtlak,n 2,, CO 2, O

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

Oficiální v!sledky Národního programu mamografického screeningu v roce 2012

Oficiální v!sledky Národního programu mamografického screeningu v roce 2012 Oficiální v!sledky Národního programu mamografického screeningu v roce 2012 Jan Dane!, Helena Barto"ková, Miroslava Skovajsová Anal!za dat: Ond#ej Májek, Daniel Klime!, Ladislav Du!ek Úvod!! V!eské republice

Více

Otopné soustavy. Otopné plochy

Otopné soustavy. Otopné plochy Pednáška 3 Otopné soustavy Otopné plochy Otopné soustavy Otopné soustavy otevené s pirozeným obhem vody Obvykle ve stávajících starších objektech. Soustava s pirozeným obhem pracuje na principu rozdílné

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

1. M ení místních ztrát na vodní trati

1. M ení místních ztrát na vodní trati 1. M ení místních ztrát na odní trati 1. M ení místních ztrát na odní trati 1.1. Úod P i proud ní tekutiny potrubí dochází liem její iskozity ke ztrátám energie. Na roných úsecích potrubních systém jsou

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

Prostedky automatického ízení

Prostedky automatického ízení VŠB-TU Ostrava / Prostedky automatického ízení Úloha. Dvoupolohová regulace teploty Meno dne:.. Vypracoval: Petr Osadník Spolupracoval: Petr Ševík Zadání. Zapojte laboratorní úlohu dle schématu.. Zjistte

Více

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU. Cíl práce: Roštový kotel o jmenovitém výkonu 00 kw, vybavený automatickým podáváním paliva, je určen pro spalování dřevní štěpky. Teplo z topného okruhu je předáváno

Více

PROCESY V TECHNICE BUDOV 8

PROCESY V TECHNICE BUDOV 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

2. PÍKLAD DÍLÍ ÁSTI SOUSTAVY - DÍLÍ ÁST SDÍLENÍ TEPLA

2. PÍKLAD DÍLÍ ÁSTI SOUSTAVY - DÍLÍ ÁST SDÍLENÍ TEPLA 2. PÍKLAD DÍLÍ ÁSTI SOUSTAVY - DÍLÍ ÁST SDÍLENÍ TEPLA 2.1. OBECN Tepelné požadavky na dílí ást sdílení tepla zahrnují mimoádné ztráty pláštm budovy zpsobené: nerovnomrnou vnitní teplotou v každé tepelné

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

Primární etalon pro měření vysokého a velmi vysokého vakua

Primární etalon pro měření vysokého a velmi vysokého vakua VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

OBECNÁ CHEMIE. Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO.

OBECNÁ CHEMIE. Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO. OBECNÁ CHEMIE Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO burda@karlov.mff.cuni.cz HMOTA, JEJÍ VLASTNOSTI A FORMY Definice: Každý hmotný objekt je charakterizován dvěmi vlastnostmi

Více