m cyklotronová frekvence

Rozměr: px
Začít zobrazení ze stránky:

Download "m cyklotronová frekvence"

Transkript

1 Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q dt = = zˆ m = q m = q m = z q = m q = m ω q m lotronoá freene = ep( ± iω t+ δ ),, = ep( iω t) PČ 1

2 m iω = = ± i e q i e ω i t i t = =± e ω ω ω Larmorů poloměr t r L ω m q = = při T = T = m 1 r L µ = J S = ( mt ) q 1/ (,,z) grační střed DIAMAGNETIKUM b) E d m q( E ) dt = + d dt z q = E m z E = ( E,, E ) z d = q E ± ω dt m d dt =± ω PČ

3 = ω q E =± ω E ± m ω = ω + d E E + = ω + dt i t e ω iωt E = =± i e gs - sta. E+ = E gs = E gs grační střed drift E poli obená síla 1 F f = q graitační síla mg g = q j n( M m) g = + graitační drift graitační proud PČ 3

4 ) Nehomogenní drift zařiení m m F ˆ od = r = R R R F m R 1 od R = = q q R di = rot = a) grad- drift ( ) z z ( )... ( ) = z = = + lineární aproimae pole při pohbu částie po Larmoroě ružnii F = q z( ) = q osωt ± rl osωt = + r + ( ) ( ) os ω 1 t = 1 m F =± q rl = 1 =± rl často se drift zařiení a grad- drift doplňují R m R + R = + R qr z 1 PČ 4

5 b) Magnetiá zradla lindriá smetrie z r z di = r => oolí os 1 z ( rr ) + = r r z r z r = z θ rl m Fz = q r = q = µ F µ µ je magnetiý moment m µ? µ = I S S = πr L = π q 1 m q qω q µ = I = = = T π π m Inariantnost µ (s dráha podél siločár) d d 1 d m = µ m = µ = µ dt s dt s dt d 1 1 d 1 m + m = m + µ = dt dt d d dµ µ + ( µ ) = = dt dt dt adiabatiý inariant r PČ 5

6 Kde se odrazí částie z oblasti s? 1 1 m m = = = = = sin sin 1 m R m m θ θ = =, de R je zradloý poloměr, m definuje únioý užel pro nezahtí. θ < θm se částie Adiabatiý inariant eličina, terá se při pomalýh prostoroýh a časoýh změnáh sstému zahoáá. Klasiá mehania při periodiém pohbu se ae J = pdq zahoáá. Grační pohb p = m; q = r ω J = md= m sin ( ωt) dt m m π π = = µ µ = onst. ω q PČ 6

7 Kd se adiabatiý inariant nezahoáá? a) lotronoý ohře ω ω, E, osiluje ω << ω neplatí µ onst. b) magnetié čerpání se sinusoě mění čase, srážami se inariantnost µ poruší Poud e sráže dojde při ompresi (zětšení pole), ta při epanzi se ale nezmění ) stříná zradla uprostřed = ω = µ onst. Druhý adiabatiý inariant a,b bod obratu b J = ds podélný inariant a Třetí adiabatiý inariant, R R, - drift e směru úhlu ϕ J = dl 3. adiabat. inariant 3 d PČ 7

8 C) Nehomogenní E E = ˆ os E = z ˆ d m = q E + dt ( ( ) ) = ± r osω t L E = = ω ω os ( ± rlos ωt) 1 os 1 r 4 L E 1 1 E E = 1 r 1 L = + rl 4 4 Polarizační drift (časoě proměnné E) E E t = zˆ Et () = Et ˆ m = qe+ q = + ˆ+ ˆ předpolad p onst. m + = qet ˆ+ q q ˆ+ q ˆ ( ) E E E p m = q p m ˆ E = q p = qet ˆ q ˆ E s s E lotronoá rotae p = polarizační drift drift PČ 8

9 E ˆ Et ˆ E E = = E = me 1 m p = = E q q m d p = E q dt M i 1 de Jp = nee(pi pe) = me + z dt PONDEROMOTORICKÁ SÍLA = nízofreenční síla, terá působí na nabité částie nehomogenním soofreenčním poli. Energie osilaí nabitýh části e soofreenčním poli je dána polohou částie je ted jaousi poteniální energií U a eistuje síla F = U, terá hání nabité částie z oblasti silného pole. Ponderomotoriá síla působí na aždé dieletrium, jehož permitiita záisí na hustotě (eletrostrie)!! Nejpre ododíme pro podélné pole E s freení ω : E = E ˆ ( )osωt m = qe = qe ( )osωt = = + 1 Proedeme linearizai změn pole na zdálenosti 1 a napíšeme pohboé ronie de m ( + 1) = q E + 1 osωt d PČ 9

10 qe m 1 = qeosωt 1 = osωt mω q de q E de = 1osωt = m d m ω d Na částii ted působí nízofreenční síla F p q d = E 4mω d 1 1 qe 1 q Wos = m = m t = E m ω 4 mω F p = W os ω os síla roná grad poteniální energie Pro příčnou eletromagnetiou lnu je odození jiné rot E + = E = E ˆ ( z)osωt t = ˆ ( z)sinωt Eosωt+ ωosωt = z ale síla je dána úplně stejným zorem qe 1 q F = q = zˆ sin ωt = zˆ E mω mω 1 = E ω z 1 q F = zˆ E E mω z 1 q F = zˆ E 4 mω Eistuje též soofreenční síla s freení ω. Pro pole s freenemi síl se součtem a rozdílem ω. PČ 1

qb m cyklotronová frekvence

qb m cyklotronová frekvence Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q = =

Více

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1 Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní

Více

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Plazma v kosmickém prostoru

Plazma v kosmickém prostoru Plazma v kosmickém prostoru Literatura F. F. Chen, Úvod do fyziky plazmatu Academia, Praha, 1984 D. A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications

Více

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2. Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ

Více

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3. Vlny 3. Úod Vlnění můžeme pozoroat například na odní hladině, hodíme-li do ody kámen. Mechanické lnění je děj, při kterém se kmitání šíří látkoým prostředím. To znamená, že například zuk, který je mechanickým

Více

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné. Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

QUADROTORY. Ing. Vlastimil Kříž

QUADROTORY. Ing. Vlastimil Kříž QUADROTORY ng. Vlastiil Kříž Obsah 2 Mateatický odel, říení transforace ei báei (rotace) staoý popis říení Eistující projekt unieritní hobb koerční Quadrotor 3 ožnost isu iniu pohbliých součástek dobrý

Více

MATEMATIKA III. Program - Křivkový integrál

MATEMATIKA III. Program - Křivkový integrál Matematia III MATEMATIKA III Program - Křivový integrál 1. Vypočítejte řivové integrály po rovinných řivách : a) ds, : úseča, spojující body O=(0, 0), B = (1, ), b) ( + y ) ds, : ružnice = acos t, y= a

Více

γ α β E k r r ρ ρ 0 θ θ G Θ G U( r, t) w(z) w 0 ω z R z U( r, t) 1 c 2 2 U( r, t) t 2 = 0, U( r, t) U( r, t) = E( r, t) U( r, t) = u( r)e iωt. u( r) + k 2 u( r) = 0, k = ω/c u( r) = A exp( i k r), k

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3 lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

ť Ť Ť Ť Š Á ň É ť Š ň ÍÍ ň ť ň Ť Ť Ť Í Í Ó Ť Ť Í ň ň Ť Ť Ť Í ň ť Ť ň ň ň Ť ň ň ň Ť ň Í ř Ť ť ň Ť Ž ň Ť Ó Ť ť ň ň ř Í Í Ť ň Ť ň Í ř Ť Í ň ň ň ň ť Ť ť ť ň ť ť ň Ť ť Í Ť Í Í ň Í Í ň Ý Ě ň Ť Í Ť ň É Ť Í Í

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

7. SEMINÁŘ Z MECHANIKY

7. SEMINÁŘ Z MECHANIKY - 4-7 SEINÁŘ Z ECHANIKY 4 7 Prázdný železniční agón o hotnosti kgse pohbuje rchlostí,9 s po 4 odoroné trati a srazí se s naložený agóne o hotnosti kgstojící klidu s uolněnýi brzdai Jsou-li oba oz při nárazu

Více

Napětí indukované v jednom závitu

Napětí indukované v jednom závitu Naětí induoané jednom záitu Naětí induoané jednom záitu = τ m z x x l B l B l B u u u sin sin. Naětí induoané jednom záitu Relatiní rchlost záitu ůči oli: de ω relatiní úhloá rchlost ole zhledem cíce f

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

4.1 Řešení základních typů diferenciálních rovnic 1.řádu

4.1 Řešení základních typů diferenciálních rovnic 1.řádu 4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po

Více

Úloha IV.5... vrhač nožů

Úloha IV.5... vrhač nožů Fyziální orespondenční seminář MFF UK Úloha IV5 rhač nožů 4 body; průměr 1,41; řešilo 37 studentů Vrhací nůž opustí ruu e chíli, dy je jeho těžiště e ýšce h a má pouze horizontální složu rychlosti 0 Jaou

Více

KMS cvičení 5. Ondřej Marek

KMS cvičení 5. Ondřej Marek KMS cvičení 5 Ondřej Marek Ondřej Marek KMS 5 KINEMAICKÉ BUZENÍ ABSOLUNÍ SOUŘADNICE Pohybová rovnice: mx + b x x + k x x = mx + bx + kx = bx + kx Partikulární řešení: x = X e iωt x = iωx e iωt k m b x(t)

Více

Fyzika laserů. 7. března Katedra fyzikální elektroniky.

Fyzika laserů. 7. března Katedra fyzikální elektroniky. Fyzika laserů Poloklasický popis šíření elmg. záření v rezonančním prostředí. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 7. března 2013 Program přednášek

Více

y ds, z T = 1 z ds, kde S = S

y ds, z T = 1 z ds, kde S = S Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných

Více

Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy

Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných

Více

Fyzika IV. 1) orbitální magnetický moment (... moment proudové smyčky) gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment

Fyzika IV. 1) orbitální magnetický moment (... moment proudové smyčky) gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment λ=21 cm 1) orbitální magnetický moment (... moment proudové smyčky) μ I S gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment 2 Zeemanův jev - rozštěpení spektrálních čar v

Více

TECHNIKA VYSOKÝCH NAPĚŤÍ. #4 Elektrické výboje v elektroenergetice

TECHNIKA VYSOKÝCH NAPĚŤÍ. #4 Elektrické výboje v elektroenergetice TECHNIKA VYSOKÝCH NAPĚŤÍ #4 Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál. E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

a) formulujte Weierstrassovo kritérium stejnoměrné konvergence b) pomocí tohoto kritéria ukažte, že funkční řada konverguje stejnoměrně na celé R

a) formulujte Weierstrassovo kritérium stejnoměrné konvergence b) pomocí tohoto kritéria ukažte, že funkční řada konverguje stejnoměrně na celé R ) ČÍSELNÉ A FUNKČNÍ ŘADY (5b) a) formulujte Leibnitzovo ritérium včetně absolutní onvergence b) apliujte toto ritérium na řadu a) formulujte podílové ritérium b) posuďte onvergenci řad c) oli členů této

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

Student(ka): Písemná část státní závěrečné zkoušky Fyzika (učitelství) červen Bodové hodnocení: Hodnotil(a): Celkové hodnocení testu:

Student(ka): Písemná část státní závěrečné zkoušky Fyzika (učitelství) červen Bodové hodnocení: Hodnotil(a): Celkové hodnocení testu: Spránou odpoěď zaroužujte. Celoé hodnocení testu: Úloha 1 (3 body) Mějme ýtah o hmotnosti m, terý je poěšen na laně přes penou ladu. Za druhý onec lana tahá silou F čloě, terý stojí onom ýtahu. Jeho hmotnost

Více

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m. Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

Technika vysokých napětí. Elektrické výboje v elektroenergetice

Technika vysokých napětí. Elektrické výboje v elektroenergetice Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází k optickým a akustickým projevům

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Poznámky k Fourierově transformaci

Poznámky k Fourierově transformaci Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené

Více

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1,

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1, Určete Křivkový integrál příklad 4 x ds, kde {x, y ; y ln x, x 3}. Řešení: Nejprve musíme napsat parametrické rovnice křivky. Asi nejjednodušší parametrizace je Tedy daný integrál je x ds x t, y ln t,

Více

Příklady k přednášce 1. Úvod

Příklady k přednášce 1. Úvod Příklady k řednáše. Úvod Mihael Šebek Automatiké řízení 06 Evroský soiální fond Praha & EU: Investujeme do vaší budounosti --6 Kyvadlo řízené momentem Automatiké řízení - Kybernetika a robotika Pohybová

Více

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli FYZIKA II Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli Osnova přednášky Stacionární magnetické pole Lorentzova síla Hallův jev Pohyb a urychlování nabitých částic (cyklotron,

Více

12. Prostý krut Definice

12. Prostý krut Definice p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí

Více

Základní pasivní a aktivní obvodové prvky

Základní pasivní a aktivní obvodové prvky OBSAH Strana 1 / 21 Přednáška č. 2: Základní pasivní a aktivní obvodové prvky Obsah 1 Klasifikace obvodových prvků 2 2 Rezistor o odporu R 4 3 Induktor o indukčnosti L 8 5 Nezávislý zdroj napětí u 16 6

Více

2 ab. ), (ii) (1, 2, 3), (iii) ( 3α+8,α+12,6α 16

2 ab. ), (ii) (1, 2, 3), (iii) ( 3α+8,α+12,6α 16 Řešení úloh... Hroch dostane 80 mg prvního a 80 mg druhého přípravku.. V hospodě je 0 čtyřmístných šestimístných a osmimístné stoly.. i) pro ab právě jedno řešení: x = 5b ab y = a+5 ab pro a = 5 ab = nekonečně

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Využití komplementarity (duality) štěrbiny a páskového dipólu M

Využití komplementarity (duality) štěrbiny a páskového dipólu M Přechodné typy antén a) štěrbinové antény - buzení el. polem napříč štěrbinou (vlnovod) z - galvanicky generátor mezi hranami - zdrojem záření - pole ve štěrbině (plošná a.) nebo magnetický proud (lineární

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

KMS cvičení 6. Ondřej Marek

KMS cvičení 6. Ondřej Marek KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž FAKULTA ELEKTROTECHNKY A KOMUNKAČNÍCH TECHNOLOGÍ VYSOKÉ UČENÍ TECHNCKÉ V BRNĚ MULTKOPTÉRY ng. Vlastiil Kříž Koplení inoace studijních prograů a šoání kalit ýuk na FEKT VUT Brně OP VK CZ.1.07/2.2.00/28.0193

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Řízené LRC Obvody

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Řízené LRC Obvody ELEKTŘNA A MAGNETZMUS Řešené úlohy a postupy: Řízené L Obvody Peter Dourmashkin MT 6, překlad: Jan Pacák (7) Obsah 9. ŘÍZENÉ L OBODY 3 9. ÚKOLY 3 9. OBENÉ LASTNOST ŘÍZENÝH L OBODŮ 3 ÚLOHA : ŘÍZENÉ OSLAE

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 7

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 7 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 7 Peter Dourmashkin MIT 6, překlad: Vítězslav Kříha (7) Obsah SADA 7 ÚLOHA 1: HMOTNOSTNÍ SPEKTROMETR ÚLOHA : LEVITACE CÍVKY ÚLOHA : STŘELKA KOMPASU ŘEŠENÍ ÚLOH 4 ÚLOHA

Více

frekvence f (Hz) perioda T = 1/f (s)

frekvence f (Hz) perioda T = 1/f (s) 1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu

Více

V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E.

V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E. MAGNETICKÉ POLE V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E. Podobně i magnety vytvářejí pole v každém bodě prostoru.

Více

TELMG Modul 03: Maxwellovy rovnice. I. a II. MR: aplikací plošného integrálu a Stokesovy věty integrálního počtu

TELMG Modul 03: Maxwellovy rovnice. I. a II. MR: aplikací plošného integrálu a Stokesovy věty integrálního počtu Difereniální a integrální tvar Maxwellovýh rovni kot James Clerk Maxwell (1831-1879) Integrální tvar Difereniální tvar d I Hdl = I + d dt D D rot H = j+ d II Edl = d dt B B rot E = III D d = Q div D =

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ

Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ URČEN ENÍ PRÁCE KLIKOVÉHO LISU URČEN ENÍ SETRVAČNÍKU KLIKOVÉHO LISU KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÁ HŘÍDEL OJNICE KLIKOVÁ HŘÍDEL BERAN LOŽISKOVÁ TĚLESA

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

ω JY je moment setrvačnosti k ose otáčení y

ω JY je moment setrvačnosti k ose otáčení y ZÁKLADNÍ USPOŘÁDÁNÍ MECHANICKÝCH GYROSKOPŮ POUŽITÝCH NA LETADLE 3 2 1 ω 3 2 1 ω 3 ω Kardanův ávěs ω a) 4 Groskop se dvěma stupni volnosti 3 b) Groskop se třemi stupni volnosti Groskop se otáčí úhlovou

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Jednokapalinové přiblížení (MHD-magnetohydrodynamika)

Jednokapalinové přiblížení (MHD-magnetohydrodynamika) Jenokapalinové přiblížení (HD-magnetohyroynamika) Zákon zachování hmoty zákony zachování počtu elektronů a iontů násobeny hmotnostmi a sečteny n e + iv = ( nu ) ni + iv( nu i i) = e e iv ( u ) (1) t ρ

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Vlnění druhá sada Equation Chapter 1 Section 1

Vlnění druhá sada Equation Chapter 1 Section 1 Vlnění druhá sada Equation Chapter 1 Setion 1 1. Ladička Zadání: Zdroj zuku se pohybuje na ozíku ryhlostí = 5 m s 1 směrem ke stěně. Na opačné straně slyší pozoroatel rázy na frekeni f R = 3 Hz. Jaká byla

Více

Diferenciáln. lní geometrie ploch

Diferenciáln. lní geometrie ploch Diferenciáln lní geometrie ploch Vjádřen ení ploch Eplicitní: z = f(,) ; [,] Ω z Implicitní: F(,,z)=0 + + z = r z = sin 0, π ; 0,1 Implicitní ploch bloob objects,, meta balls Izoploch: F(,,z)=konst. Implicitní

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan

Více

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2 Odození zorců pro ýpočet objemů porchů některých těles užitím integrálního počtu Objem rotčního těles, které znikne rotcí funkce y f(x) n interlu, b kolem osy x, lze spočítt podle zorce b V f (x) dx Porch

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu

Více

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN PŘÍKLAD VÝPOČTU RÁU PODLE ČS E 99-- Jaub Dolejš*), Zdeně Sool**).Zadání avrhněte sloup plnostěnného dvouloubového rámu, jehož roměr jsou patrné obráu. Horní pásnice příčle je po celé délce ajištěna proti

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

0 r < a 2. Pro náš příklad je ale důležité, že pohybující se nábojová hustota vytváří plošnou nábojovou hustotu

0 r < a 2. Pro náš příklad je ale důležité, že pohybující se nábojová hustota vytváří plošnou nábojovou hustotu Nabitá sféra s klikou (Májový příklad z klasické elektrodynamiky) V následujícím textu budeme hledat řešení Maxwellových rovnic pro jednoduchý problém rozlehlého zdroje. Povšimněte si, které rovnice a

Více

Zadání bakalářské práce

Zadání bakalářské práce Zadání bakalářské práce Ústav: Ústav fyzikálního inženýrství Student: Ondřej Wojewoda Studijní program: Aplikované vědy v inženýrství Studijní obor: Fyzikální inženýrství a nanotechnologie Vedoucí práce:

Více

Sestavení diferenciální a diferenční rovnice. Petr Hušek

Sestavení diferenciální a diferenční rovnice. Petr Hušek Sestavení diferenciální a diferenční rovnice Petr Hušek Sestavení diferenciální a diferenční rovnice Petr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVU v Praze MAS 1/13 ČVU

Více

Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž

Více

úř ř Á Ř Í É Á Í é ď ž é Í ř ďé ř ů é ý ř ů ů Íé ý ý ú Í éý ý ů ď ý ý ř é ú ž ř ř ň é ý ň é ý ř ř ř ř ř ř ř é Ž ó é é ř é ů ž ů ž ú Á Ú Ú É ť Ť Ř ÁÉ Ť ň Ý úř Ú Ťř ó ú ú ž ř ý ý Á ú ý ř úť Ě Ě Ť Ť Ý ŘÁ

Více

VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE

VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je

Více

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

III.4. Fubiniova (Fubiniho) věta pro trojný integrál E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Transformátory. Mění napětí, frekvence zůstává

Transformátory. Mění napětí, frekvence zůstává Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Inverzní Laplaceova transformace

Inverzní Laplaceova transformace Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března

Více

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

Derivace goniometrických funkcí

Derivace goniometrických funkcí Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více