Metoda konečných prvků Základní veličiny, rovnice a vztahy (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Rozměr: px
Začít zobrazení ze stránky:

Download "Metoda konečných prvků Základní veličiny, rovnice a vztahy (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)"

Transkript

1 Inovace tudijního oboru Geotechnika Reg. č. CZ..7/../8.9 Metoda konečných prvků Základní veličin, rovnice a vztah (výuková prezentace pro. ročník navazujícího tudijního oboru Geotechnika) Doc. RNDr. Eva Hrubešová, Ph.D.

2 Metoda konečných prvků Základní veličin, rovnice a vztah Napjatot v tělee Síl půobící na těleo: íl vnější povrchové (tlak, tah, tření), objemové (např. gravitační) íl vnitřní vvolané vzájemným půobením čátic tělea, tvoří reakci vůči vnějším ilám Pojem napětí: lim A P A P je íla půobící na element ploch

3 Metoda konečných prvků Základní veličin, rovnice a vztah Základní ložk napětí: normálová ložka napětí ložka kolmá k ploše A mková ložka napětí ložka ležící v ploše A Obecně lze definovat v obecném bodě tělea celkem 9 ložek napětí ( ložk normálové a 6 ložek mkových napětí).

4 Metoda konečných prvků Základní veličin, rovnice a vztah ložk normálového napětí:,, z ložk mkového napětí:,, z, z, z, z z rovnic momentové rovnováh od mkových il plne: =, z = z, z = z, ted počet mkových napětí e redukuje na (věta ovzájemnoti tečných napětí). Celkově ted dotáváme 6 neznámých ložek napětí. Značení mkových napětí: první inde značí měr o kolmé k ploše, v níž napětí půobí, druhý inde označuje měr tohoto napětí

5 Metoda konečných prvků Základní veličin, rovnice a vztah Tenzor napětí: T z z z z z Střední normálové napětí: Objemový tenzor napětí: z Deviátor napětí: T o D z z z z z Obecně platí: T=To+D

6 Metoda konečných prvků Základní veličin, rovnice a vztah Hlavní napětí Složk tenzoru napětí závií na volbě outav ouřadnic, při změně outav ouřadnic e změní velikoti ložek napětí. V obecném bodě zatíženého tělea eitují na obě kolmé ploch, na nichž jou tečná (mková) napětí nulová a normálová napětí nenulová. Tato normálová napětí e nazývají hlavní napětí, rovin, na nichž tato normálová napětí půobí e nazývají rovin hlavní.

7 Metoda konečných prvků Základní veličin, rovnice a vztah Základní tp napjatoti Jednooá napjatot:, Dvouoá napjatot: Trojoá napjatot:,, (např. tč namáhaná tahem) Např. těleo rovinného tvaru, u kterého jou rozměr větší než rozměr třetí (např. tenká deka) Obecný tav napjatoti

8 Metoda konečných prvků Základní veličin, rovnice a vztah Invariant kalární veličin, které e nemění e změnou outavou ouřadnic.. invariant:. invariant:. invariant: z z z z z T I I I det Invariant vjádřené v hlavních napětích,, : I I I

9 Metoda konečných prvků Základní veličin, rovnice a vztah Oktaedrické napětí - napětí, přílušející k oktaedrické ploše Oktaedrická plocha - plocha ve tejném klonu ke každé hlavní oe co, Oktaedrické napětí:.., okt okt n Tto rovin vmezují v ouřadném tému hlavních napětí,, omitěn napjatoti.

10 Metoda konečných prvků Základní veličin, rovnice a vztah Deviátorová rovina Deviátorová rovina rovina kolmá k přímce = =. Tato přímka e nazývá hdrotatická oa. Deviátorová rovina je určena podmínkou + + =kont. V této rovině e obvkle zobrazují obálk porušení.

11 Metoda konečných prvků Základní veličin, rovnice a vztah Střední napětí (hdrotatické napětí) p: zvšováním p dochází k objemovým změnám p I z Deviátorové napětí q: vpovídá o mkovém namáhání q Za předpokladu oově metrické napjatoti (např. v triaiálním přítroji, kde = ) platí: q

12 Stav napětí v daném bodě tělea je určen Mohrovou kružnicí (O.Mohr, 88): Střed Mohrov kružnice: ; S Poloměr Mohrov kružnice: r Metoda konečných prvků Základní veličin, rovnice a vztah (Wikipedia)

13 , tg Hodnot hlavních napětí: Směr hlavních napětí: Metoda konečných prvků Základní veličin, rovnice a vztah

14 Metoda konečných prvků Základní veličin, rovnice a vztah Mohrov kružnice odpovídající pecifickým tavům napjatoti Obecný tah Jednooý tah Kombinace tah+tlak Čitý mk Jednooý tlak Obecný tlak

15 Metoda konečných prvků Základní veličin, rovnice a vztah Deformace tělea Protorový tav deformace je obecně definován 9 ložkami deformace třemi ložkami poměrného přetvoření z a šeti ložkami zkoení (úhlových deformací), z,, z, z, z. Tenzor přetvoření z z z z z

16 Metoda konečných prvků Základní veličin, rovnice a vztah Přetvoření tělea e kládá ze změn objemu a ze změn tvaru.

17 , z z z z z z Změnu objemu vjadřujeme ložkami objemového tenzoru přetvoření: Změnu tvaru vjadřujeme ložkami tzv. deviátoru přetvoření: Metoda konečných prvků Základní veličin, rovnice a vztah

18 Metoda konečných prvků Základní veličin, rovnice a vztah Smkové napětí nezpůobuje změnu objemu, ale pouze změnu tvaru tělea. Rovinná napjatot: nenulové jou pouze t ložk napětí, které jou rovnoběžné určitou rovinou. tj např. z = z = z = v případě, že uvažujeme nulová napětí ve měru o z. Relativní deformace ve měru o z při rovinné napjatoti ale nulová není! z z z z z Rovinná napjatot (těna) Brožovký, Materna ()

19 Metoda konečných prvků Základní veličin, rovnice a vztah Rovinná deformace: nenulové jou pouze t ložk pounů, které vznikají v určité rovině. tj např. z = z = z =. Normálové napětí z při rovinné deformaci ale nulové není! Případ rovinné deformace je nejčatější případ v geotechnických úlohách (tunel, náp, vah, hráze, opěrné kontrukce apod.) z z z z z z Pott, Zdravkovič (999)

20 Metoda konečných prvků Základní veličin, rovnice a vztah Rotačně metrická napjatot předpoklad tohoto tavu napjatoti lze uvažovat za objektivní, jetliže je v geotechnických úlohách plněno náledující: Rotačně metrická geometrie (kruhový základ, pilota, vzorek v triaiálu apod. ) Smetrické zatížení Rotačně metrické geologické protředí v okolí kontrukce

21 Metoda konečných prvků Základní veličin, rovnice a vztah Formulace úloh pružnoti: Pro těleo e známou geometrií, materiálem, zatížením a vazbami k okolí e určuje deformace a napjatot za předpokladu repektování tří základních tpů rovnic teorie pružnoti. Základní rovnice teorie pružnoti: ) tatické rovnice - vjadřují rovnováhu il v tělee (ilové podmínk) a rovnováhu momentovou (z této momentové podmínk vplývá redukce počtu mkových ložek napětí z 9 na 6). ) geometrické rovnice- vjadřují vztah mezi ložkami deformace rep a pounutím u ) fzikální rovnice (kontitutivní vztah) vjadřují vztah mezi napětím a přetvořením

22 Metoda konečných prvků Základní veličin, rovnice a vztah Statické rovnice rovnováh v rovině X X kde X, X jou ložk vektoru objemových il X. Zavedeme-li vektorové značení : T,, Operátorová matice ˆ ˆ ˆ Maticový tvar tatické rovnice rovnováh: X

23 Geometrické rovnice : u T ˆ kde v u u T,,, Ted u v v u,, Metoda konečných prvků Základní veličin, rovnice a vztah ˆ Tto rovnice však nezajišťují kontinuální přetváření tělea, nutno uvažovat dále rovnice kompatibilit.

24 Metoda konečných prvků Základní veličin, rovnice a vztah Rovnice ouviloti přetvoření (kompatibilit) Zajišťují ouvilé přetváření tělea bez vzniku trhlin. Ve ložkách přetvoření: Ve ložkách napětí (Lévho rovnice):

25 Metoda konečných prvků Základní veličin, rovnice a vztah Fzikální rovnice (kontitutivní rovnice) udávají vztah mezi napětím a deformací, prvk matice D jou v nejjednodušším případě (Hookův zákon) závilé na materiálových charakteritikách, obecně ale mohou dále záviet i na hitorii napětí a přetváření. D D C,,, z,,, z,, z z,, T D... matice tuhoti, D - =C.. matice poddajnoti T

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechnik a podzemního taviteltví Modelování v geotechnice Základní veličin, rovnice a vztah (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace tudijního

Více

Mechanika kontinua - napětí

Mechanika kontinua - napětí Mechanika kontinua - napětí pojité protředí kontinuum objemové íl půobí oučaně na všechn čátice kontinua (např. tíhová íla) plošné íl půobí na povrch tudované čáti kontinua a půobují jeho deformaci napětí

Více

Systém vztahů obecné pružnosti Zobecněný Hookeův zákon

Systém vztahů obecné pružnosti Zobecněný Hookeův zákon Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení

Více

Výpočet tenkostěnných nosníků. Magdaléna Doleželová

Výpočet tenkostěnných nosníků. Magdaléna Doleželová Výpočet tenkotěnných noníků agdaléna Doleželová Výpočet tenkotěnných noníků. Úvod. Deplanace průřeu. Normálové namáhání V. Tečná napětí V. Deformace V. Příklad V. Přehled použité literatur . Úvod Dělení

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

4. Práce, výkon, energie

4. Práce, výkon, energie 4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy

Více

Skořepinové konstrukce. tloušťka stěny h a, b, c

Skořepinové konstrukce. tloušťka stěny h a, b, c Skořepinové konstrukce skořepina střední plocha a b tloušťka stěny h a, b, c c Různorodé technické aplikace skořepinových konstrukcí Mezní stavy skořepinových konstrukcí Ztráta stability zhroucení konstrukce

Více

ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI

ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY 1. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mezi napětím a přetvořením je lineární závislost.. Látka hmotného

Více

16. Matematický popis napjatosti

16. Matematický popis napjatosti p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti

Více

Prvky betonových konstrukcí BL01 9 přednáška

Prvky betonových konstrukcí BL01 9 přednáška Prvky betonových kontrukcí BL01 9 přednáška Prvky namáhané momentem a normálovou ilou základní předpoklady interakční diagram poouzení, návrh namáhání mimo oy ouměrnoti kontrukční záady Způoby porušení

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4

ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4 ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mei napětím a přetvořením je lineární ávislost.. Látka hmotného tělesa

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

středové (perspektivní) promítání vytváří obrazy podobné těm, které vidí lidské oko

středové (perspektivní) promítání vytváří obrazy podobné těm, které vidí lidské oko tředové promítaní všechn promítací paprk procháejí jedním bodem (vlatní) třed promítání neachovává e rovnoběžnot vdálenot objektů od tředu promítání ovlivňuje velikot jejich průmětů vdálenější objekt mají

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Rovinná a prostorová napjatost

Rovinná a prostorová napjatost Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových

Více

5. cvičení z Matematické analýzy 2

5. cvičení z Matematické analýzy 2 5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v

Více

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je

Více

Betonové a zděné konstrukce Přednáška 4 Spojité desky Mezní stavy použitelnosti

Betonové a zděné konstrukce Přednáška 4 Spojité desky Mezní stavy použitelnosti Betonové a zděné kontrukce Přednáška 4 Spojité deky Mezní tavy použitelnoti Ing Pavlína Matečková, PhD 2016 Spojitá deka: deka o více polích, zpravidla jako oučát rámové kontrukce Řeší e MKP Zjednodušené

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více

Teorie plasticity PLASTICITA

Teorie plasticity PLASTICITA Teore platcty PLASTICITA TEORIE PLASTICKÉHO TEČENÍ IDEÁLNĚ PRUŽNĚ-PLASTICKÝ MATERIÁL BEZ ZPEVNĚNÍ V platcém tavu nelze jednoznačně přřadt danému napětí jedné přetvoření a naopa, ja tomu bylo ve tavu elatcém.

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

Více

středové (perspektivní) promítání vytváří obrazy podobné těm, které vidí lidské oko

středové (perspektivní) promítání vytváří obrazy podobné těm, které vidí lidské oko tředové promítaní všechn promítací paprk procháejí jedním bodem (vlatní) třed promítání neachovává e rovnoběžnot vdálenot objektů od tředu promítání ovlivňuje velikot jejich průmětů vdálenější objekt mají

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

Smyková pevnost zemin

Smyková pevnost zemin Smyková pevnost zemin 30. března 2017 Vymezení pojmů Smyková pevnost zemin - maximální vnitřní únosnost zeminy proti působícímu smykovému napětí Efektivní úhel vnitřního tření - část smykové pevnosti zeminy

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

Mechanika hmotného bodu

Mechanika hmotného bodu Mechanika hmotného bodu Pohybové zákony klaické fyziky Volný hmotný bod = hmotný bod (HB), na kteý nepůobí žádné íly (je to abtaktní objekt). Ineciální vztažná (ouřadná) outava = vztažná (ouřadná) outava,

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Modelování zatížení tunelů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Analytická

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.7/2.2./28.9 Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc.

Více

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3. obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

Z hlediska pružnosti a pevnosti si lze stav napjatosti

Z hlediska pružnosti a pevnosti si lze stav napjatosti S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 1 7/4.1 T Y P Y N A P J A T O S T I A T R A N S F O R M A C E N A P J A T O S T I Pojmem napjatost roumíme stav určitého bodu tělesa, který

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu

přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu 7..0 přednáška TLAK - TAH Prvky namáhané kombinací normálové íly a ohybového momentu Namáhání kombinací tlakové (tahové) íly a momentu tlak Namáhání kombinací tlakové (tahové) íly a momentu Namáhání kombinací

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009. Tento

Více

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

5. ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI

5. ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI 5. ÚVOD DO TOR MATMATCKÉ PRUŽNOST 5..Základní předpoklad a pojm. Látka která táří přílušné těleo je dokonale lineárně pružné mei napětím a přetořením je lineární áilot.. Látka hmotného tělea je homogenní

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

2.5.8 Šetříme si svaly II (nakloněná rovina)

2.5.8 Šetříme si svaly II (nakloněná rovina) 258 Šetříme i valy II (nakloněná rovina) Předpoklady: 020507 Pomůcky: nakloněná rovina, šroub, motatelná nakloněná rovina Př 1: Jakým způobem i lidé ulehčují dopravu nákladů do trmého kopce (třeba nakládání

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Vícerozměrné úlohy pružnosti

Vícerozměrné úlohy pružnosti Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical

Více

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentká, 6 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOUŠKY Z FYZIKY Akademický rok: 0/0 Fakulta mechatroniky Studijní obor: Nanomateriály Tématické okruhy. Kinematika

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927) Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ07/500/34080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím ICT

Více

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Ktedr geotechniky podzemního stvitelství Modelování v geotechnice Princip metody mezní rovnováhy (prezentce pro výuku předmětu Modelování v geotechnice) doc. RNDr. Ev Hrubešová, Ph.D. Inovce studijního

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální

Více

Napěťový vektor 3d. Díky Wikipedia za obrázek. n n n

Napěťový vektor 3d. Díky Wikipedia za obrázek. n n n Míry napětí Napěťový vektor 3d n n2 2 n,. n n n Zatížené těleso rozdělíme myšleným řezem na dvě části. Na malou plošku v okolí materiálového bodu P působí napěťový vektor (n) (n, x, t), který je spojitou

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

CZ.1.07/1.5.00/

CZ.1.07/1.5.00/ Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.7/1.5./34.527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 6 České Budějovice Název

Více

BETONOVÉ KONSTRUKCE B03C +B03K. Betonové konstrukce - B03C +B03K

BETONOVÉ KONSTRUKCE B03C +B03K. Betonové konstrukce - B03C +B03K BETONOVÉ KONSTRUKCE B03C +B03K Betonové konstrukce - B03C +B03K SKOŘEPINOVÉ KONSTRUKCE Skořepiny Konstrukční prvky plošnéo carakteru dva převládající rozměry konstrukčnío prvku (

Více

geometrická (trigonometrická, nebo goniometrická) metoda (podstata, vhodnost)

geometrická (trigonometrická, nebo goniometrická) metoda (podstata, vhodnost) 1. Nalezení pólu pohybu u mechanismu dle obrázku. 3 body 2. Mechanismy metoda řešení 2 body Vektorová metoda (podstata, vhodnost) - P:mech. se popíše vektor rovnicí suma.ri=0 a následně provede sestavení

Více

Reologické modely technických materiálů při prostém tahu a tlaku

Reologické modely technických materiálů při prostém tahu a tlaku . lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu

Více

Primární a sekundární napjatost

Primární a sekundární napjatost Primární a sekundární napjatost Horninový tlak = síly, které vznikají v horninovém prostředí vlivem umělého porušení rovnovážného stavu napjatosti. Toto porušení se projevuje deformací nevystrojeného výrubu

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T APLIKOVANÁ MECHANIKA. Teorie pružnosti

OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T APLIKOVANÁ MECHANIKA. Teorie pružnosti OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T003-00 APLIKOVANÁ MECHANIKA Teorie pružnosti 1. Geometrie polohových změn a deformace tělesa. Tenzor přetvoření Green-Lagrangeův, Cauchyho.

Více

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model

Více

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak. 00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Téma 10 Úvod do rovinné napjatosti

Téma 10 Úvod do rovinné napjatosti Pružnost a plasticita,.ročník bakalářského studia Téma 0 Úvod do rovinné napjatosti Složk napětí v šikmém řezu při rovinné napjatosti Hlavní napětí a největší smkové napětí Trajektorie hlavního napětí

Více

Stavební mechanika 3. 9. přednáška, 2. května 2016

Stavební mechanika 3. 9. přednáška, 2. května 2016 Stavební mechanika 3 9. přednáška,. května 06 Stavební mechanika 3 9. přednáška,. května 06 Silová metoda ) opakování použití principu virtuálních il ) vliv mykové deormace 3) motivační příklad 4) zobecnění

Více

17 Kuželosečky a přímky

17 Kuželosečky a přímky 17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x

Více

3. Obecný rovinný pohyb tělesa

3. Obecný rovinný pohyb tělesa . Obecný rovinný pohyb tělesa Při obecném rovinném pohybu tělesa leží dráhy jeho jednotlivých bodů v navzájem rovnoběžných rovinách. Těmito dráhami jsou obecné rovinné křivky. Všechny body ležící na téže

Více

Konstruktivní geometrie

Konstruktivní geometrie Mgr. Miroslava Tihlaříková, Ph.D. Konstruktivní geometrie & technické kreslení Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

8. Parametrické vyjádření a. Repetitorium z matematiky

8. Parametrické vyjádření a. Repetitorium z matematiky 8. Parametrické vyjádření a obecná rovnice přímky a roviny Repetitorium z matematiky Podzim 2012 Ivana Medková Osnova: 1 Geometrie v rovině 1. 1 Parametrické vyjádření přímky 1. 2 Obecná rovnice přímky

Více

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1). III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce

Více

Obsah a průběh zkoušky 1PG

Obsah a průběh zkoušky 1PG Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna

Více

volitelný předmět ročník zodpovídá CVIČENÍ Z MATEMATIKY 8. MACASOVÁ Učivo obsah

volitelný předmět ročník zodpovídá CVIČENÍ Z MATEMATIKY 8. MACASOVÁ Učivo obsah Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout

Více