Měření povrchového napětí kapalin a kontaktních úhlů
|
|
- Vladislav Svoboda
- před 6 lety
- Počet zobrazení:
Transkript
1 2. Přednáška Interakce mezi kapalinou a vlákenným materiálem Měření povrchového napětí kapalin a kontaktních úhlů Eva Kuželová Košťáková KCH, FP, TUL 2019
2 ADHEZE KAPALIN K PEVNÝM LÁTKÁM Povrchové napětí a povrchová energie Důležitým pojmem i prostředkem pro popis adhezní vazby mezi kapalinou a pevnou látkou je povrchové napětí kapalin (gama). Co by se stalo, kdyby se snížilo povrchové napětí vody? Fyzikální význam vysvětluje Maxwellův pokus.
3 Povrchové napětí - vysvětlení Maxwellův pokus:pevný kovový rámeček, pohyblivé raménko na které působí síla F. Délka pohyblivého raménka je L. Do rámečku se umístí tenká vrstva kapaliny, kterou je nutno udržovat v rovnováze působením síly F na pohyblivé raménko délky L. Síla působící na jednotkovou délku raménka dělená dvěma je rovna povrchovému napětí Platí pro nulový kontaktní úhel mezi raménkem a kapalinou blanky.
4 Povrchové napětí - vysvětlení Maxwellův pokus:pevný kovový rámeček, pohyblivé raménko na které působí síla F. Délka pohyblivého raménka je L. Platí pro nulový kontaktní úhel mezi raménkem a kapalinou blanky. = 0 OBECNĚ PLATÍ PRO 0 = F 2L cos
5 Povrchové napětí - vysvětlení Maxwellův pokus:pevný kovový rámeček, pohyblivé raménko na které působí síla F. Délka pohyblivého raménka je L. Co se stane, když se raménko držené silou F pustí? = 0
6 Povrchové napětí: Koeficient 2 = dva vznikající povrchy = 0 Povrchové napětí je vektorová veličina, jejíž velikost je číselně rovna povrchové energii W. Pojem povrchové energie W je objasňován při sledování práce A dodané k posunutí pohyblivého raménka o malou vzdálenost ds ve směru působící síly. Dodaná práce A se přemění na energii vázanou na povrchu kapaliny. Velikost nově vytvořeného povrchu kapaliny je 2L ds nebo obecně l ds l ds = S (plocha nově vzniklého povrchu) A = E = *S (práce se přemění na přírůstek celkové energie systému tento přírůstek je právě povrchová energie). Odtud plyne, že pro povrchovou energii připadající na jednotkový povrch W platí JEDNOTKY? Povrchové napětí N/m; povrchová energie J/m 2
7 Sféra molekulárního působení je pak sférická oblast o poloměru rovném dosahu sekundárních sil. Z hlediska vzájemné polohy sledované molekuly a povrchu kapaliny mohou nastat dva případy. Sféra molekulárního působení je kulovitá oblast, v jejímž středu leží vybraná molekula kapaliny a jejíž poloměr je roven dosahu sekundární sil mezi molekulami této kapaliny. V prvém z nich je molekula od nejbližší oblasti povrchu kapaliny vzdálena více než je poloměr sféry molekulárního působení. Potom můžeme předpokládat, že rozmístění okolních molekul je v prostoru rovnoměrně náhodné a výsledná působící síla na molekulu ve středu sféry je nulová. Druhý případ znázorňuje molekulu v blízkosti povrchu kapaliny. Nesouměrné rozmístění okolních molekul pak vyvolá výslednou sílu ve směru kolmém k povrchu kapaliny.
8 Povrchové napětí se často vysvětluje přes tzv. Sféru molekulárního působení, kde se může zdát, že povrchové napětí působí kolmo k hladině kapaliny, ale TAK TO NENÍ. Povrchové napětí působí vždy tečně k hladině. V té ploše povrchu je pak to působení všesměrné, směrem do kapaliny je působení povrchového napětí nulové. Povrchové napětí má rovinný charakter. Povrchové napětí a energie jsou vázány na vrstvu kapaliny v blízkém okolí povrchu kapaliny díky krátkému dosahu sekundárních (molekulárních) sil, které jsou podstatou těchto jevů. Představme si molekulu kapaliny, která je obklopena ostatními molekulami téže látky. Je ale zajímavé, že hodnota (velikost) povrchového napětí se dá pomocí sféry molekulárního působení skutečně odhadnout.
9 Při tvorbě nového povrchu kapaliny, například deformováním tvaru kapky, musíme silově působit na ty molekuly, jejichž sféry molekulárního působení přesouváme do blízkosti povrchu kapaliny. Při těchto posunech se mění práce vnějších sil na povrchovou energii. Jev povrchové energie a napětí je vázán na tenké vrstvy povrchu kapaliny. Charakteristická tloušťka těchto vrstev se odhaduje z dosahu sekundárních sil a činí několik nm. Jaké mezimolekulární sekundární síly znáte? Vodíkové můstky, dipólové síly, indukované síly, disperzní síly, Van der Waalsovy síly,
10 Laplaceův tlak Kapilární tlak odvození
11 Laplaceův tlak Při zakřivení povrchu působí povrchová vrstva na kapalinu tlakem, který se přičítá k tlaku, jímž by vrstva na kapalinu působila při rovinném povrchu. V literatuře je tlak při rovinném povrchu kapaliny nazýván tlakem kohezním a přídavný tlak, který vzniká zakřivením povrchu je nazýván tlakem kapilárním. Kapilární tlak je ale také často označován jako tlak Laplaceův Vypočtení Laplaceova tlaku vychází z povrchového napětí. Předpokládejme nejprve, že povrch je válcový a uvažujeme o silách, které působí na plošný prvek omezený dvěma površkami délky dl 1 a dvěma křivkami délky dl 2 df= dl 1 d Zavedeme-li poloměr křivosti plochy R, pak dl 2 =R d PRO VÁLEC
12 Při obecně zakřiveném povrchu můžeme v každém jeho bodě vést dva k sobě kolmé normálové řezy (viz Stereologie), v nichž má plocha největší a nejmenší poloměr křivosti R 1 a R 2. Platí pak pro každou dvojici rovnoběžných stran plošného prvku stejná úvaha jako u válcové plochy p=/r. Tlak p 1, způsobený zakřivením o poloměru křivosti R 1, je p 1 =/R 1, a tlak p 2, vzbuzený zakřivením o poloměru křivosti R 2, je p 2 = /R 2. Kapilární tlak p, který vzniká u obecně zakřiveného povrchu, je pak součtem obou tlaků p 1 a p 2 p 1 R Pozn.: Válec: R 1 = R; R 2 = Koule: R 1 =R; R 2 =R Pro sférické kapky či bubliny jsou si oba poloměry křivosti rovny R 1 = R 2; p=2/r 1 1 R 2.
13 Tvarové změny přecházející do povrchových charakteristik je možné ukázat na Laplaceově tlaku (Laplace pressure), kde tlak v kapce (či bublince) je úměrný její charakteristické křivosti.
14 MĚŘENÍ POVRCHOVÉHO NAPĚTÍ KAPALIN
15 Odtrhávací metody Plate method - Wilhelmy Mezipovrchové napětí (1:50)
16 Odtrhávací metody Ring method du Noüy Při maximální síle jsou vektory určující kontaktní úhel paralelní = kontaktní úhel je nulový.
17 Odtrhávací metody Ring method du Noüy Mezipovrchové napětí kapalin
18 Odtrhávací metody Ring method du Noüy Mezipovrchové napětí
19 Kapková metoda Stalagmometrická Necháme-li kapalinu volně vytékat z tlustostěnné zabroušené kapiláry, zůstává kapalina lpět na jejím spodním okraji ve tvaru kapky, která se odtrhne v okamžiku, kdy tíha kapky je právě rovna síle povrchového napětí. mg=2r kde r je vnější poloměr kapiláry, m hmotnost kapky. Přesnější postup Takto určená hodnota povrchového napětí by však byla velmi nepřesná, protože neodkápne celá kapka, ale asi jen 2/3 objemu, zbytek zůstává lpět na spodním okraji kapiláry. Před ukápnutím se kapka zaškrtí, a tím se odtrhne na menším obvodu, než je obvod kapiláry. Platí však, že při použití stejné kapiláry, je zúžení i poměrná část kapky, která zůstane lpět na kapiláře, u různých kapalin, které smáčejí stěny kapiláry, stejná. Neznámé povrchové napětí lze určit pomocí hmotností kapek jedné a druhé kapaliny. 1 2 = m 1 m 2
20 metoda maximálního přetlaku v bublině maximum bubble pressure method Ve studované kapalině se za působení zvyšujícího se přetlaku p vytváří na konci kapiláry, ponořené pod hladinu, bublina plynu. Přetlak v bublině je roven součtu hydrostatického tlaku a tlaku potřebného k překonání povrchového napětí γ r se v průběhu měření mění! h je hloubka ponoření, ρ hustota kapaliny a r je poloměr bubliny. S růstem bubliny se zmenšuje poloměr jejího zakřivení. V okamžiku, kdy bublina dosáhne polokulovitého tvaru, je r minimální a je rovno poloměru kapiláry R. Tlak v bublině v tomto okamžiku dosahuje maximální hodnoty: Při dalším, i nepatrném, zvýšení tlaku se objem bubliny zvětší (její poloměr roste), takže člen 2γ/r se zmenšuje, bublina ztrácí stabilitu a odtrhne se. Tato metoda se často se používá jako srovnávací.
21 metoda kapilární elevace Povrchové napětí je určováno z výšky vzestupu kapaliny v kapiláře = hgr 2 kde γ je povrchové, h je výška sloupce kapaliny měřená od roviny, v níž je Laplaceův tlak nulový, po nejnižší bod menisku v kapiláře, ρ A a ρ B jsou hustoty spodní a horní fáze (při měření povrchového napětí obvykle hustotu plynné fáze zanedbáme), úhel smáčení, R vnitřní poloměr kapiláry. Při měření se používají kapiláry pokud možno z materiálů, které jsou dokonale smáčeny kapalinou ( = 0, cos = 1); nejčastěji používaným materiálem je sklo. Při konstrukci aparatury je třeba si uvědomit, že kapilára má být umístěna v přesně vertikální poloze a že je třeba, aby byl znám poloměr kapiláry po celé její délce. Prakticky bývá h měřena relativně k povrchu kapaliny v širší trubici nebo nádobě.? Do jaké výšky vystoupá destilovaná voda při 20 C v kapiláře o průměru 1mm? =72,75mN/m = 0,07275N/m g= 10m/s 2 r(r)=1mm=0,001m = 1000kg/m 3 == h=14mm???rozměrová analýza
22 Kapilární tlak p vzniká u obecně zakřiveného povrchu p 1 R 1 1 R 2. Pro sférické kapky či bubliny jsou si oba poloměry křivosti rovny R 1 = R 2 ==== p=2/r p = rozdíl tlaků v sousedních fázích rozdělených zakřiveným povrchem a nazývá se kapilárním tlakem. nemusí být vždy u vzorků zapisována! Čím menší je poloměr sférické kapky na vzduchu či bubliny v kapalině, tím je kapilární tlak v ní větší. Pro válec je pak R 1 = R (poloměr válce); R 2 = nekonečno ==== p=/r
1. přednáška. ÚVOD k předmětu TNT
1. přednáška ÚVOD k předmětu TNT Doc. Ing. Eva Kuželová Košťáková, Ph.D. Katedra netkaných textilií a nanovlákenných materiálů, FT, TUL Eva.kostakova@tul.cz Tel.: 48 535 3233 Budova B, 4. patro https://nanoed.tul.cz/course/vie
Interakce mezi kapalinou a vlákenným materiálem
3. přednáška Interakce mezi kapalinou a vlákenným materiálem Jedním ze základních parametrů, které řídí interakci mezi kapalinou a pevnou látkou je GEOMETIE PEVNÉ LÁTKY (tvar strukturní komponenty a relativní
LOGO. Struktura a vlastnosti kapalin
Struktura a vlastnosti kapalin Povrchová vrstva kapaliny V přírodě velmi často pozorujeme, že se povrch kapaliny, např. vody, chová jako pružná blána, která unese např. hmyz Vysvětlení: Molekuly kapaliny
Interakce mezi kapalinou a vlákenným materiálem
3. přednáška Interakce mezi kapalinou a vlákenným materiálem OPAKOVÁNÍ Soudržnost dvou spojovaných ploch, tedy vazba mezi pevným povrchem vláken a adhezivem (pojivem) je chápána jako ADHEZE. Primární i
KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Kapaliny Krátkodosahové uspořádání molekul. Molekuly kmitají okolo rovnovážných poloh. Při zvýšení teploty se zmenšuje doba setrvání v rovnovážné
Adheze - pokračování
2. přednáška Adheze - pokračování Doc. Ing. Eva Kuželová Košťáková, Ph.D. Katedra netkaných textilií a nanovlákenných materiálů, FT, TUL Eva.kostakova@tul.cz Tel.: 48 535 3233 Budova B, 4. patro Podmínky
Vlastnosti kapalin. Povrchová vrstva kapaliny
Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří
2 Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost kapalin 7
Obsah Obsah 1 Povrchová vrstva 1 2 Jevy na rozhraní 3 2.1 Kapilární tlak........................... 4 2.2 Kapilární jevy........................... 5 3 Objemová roztažnost kapalin 7 1 Povrchová vrstva
STRUKTURA A VLASTNOSTI KAPALIN
STRUKTURA A VLASTNOSTI KAPALIN Struktura kapalin je něco mezi plynem a pevnou látkou Částice kmitají ale mohou se také přemísťovat Zvýšením teploty se a tím se zvýší tekutost kapaliny Malé vzdálenosti
Struktura a vlastnosti kapalin
Struktura a vlastnosti kapalin (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Povrchová vrstva Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost
KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin
1. Molekulová stavba kapalin
1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá
4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako
1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti
Povrchové napětí KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI
KATEDRA EXPERIMETÁLÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UIVERZITY PALACKÉHO V OLOMOUCI Fyzikální praktikum z molekulové fyziky a termodynamiky Povrchové napětí Úvod Molekuly kapaliny se vzájemně přitahují kohezními
Měření povrchového napětí
Měření povrchového napětí Úkol : 1. Změřte pomocí kapilární elevace povrchové napětí daných kapalin při dané teplotě. 2. Změřte pomocí kapkové metody povrchové napětí daných kapalin při dané teplotě. Pomůcky
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
STRUKTURA PEVNÝCH LÁTEK A KAPALIN
STRUKTURA PEVNÝCH LÁTEK A KAPALIN 18. POVRCHOVÁ VRSTVA KAPALIN, KAPILÁRNÍ ELEVACE, DEPRESE Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. POVRCHOVÉ NAPĚTÍ - Povrchové napětí je efekt, při kterém
Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid
Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,
1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.
1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou
a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.
Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako
Adhezní síly v kompozitech
Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní
Adhezní síly v kompozitních materiálech
Adhezní síly v kompozitních materiálech Obsah přednášky Adhezní síly, jejich původ a velikost. Adheze a smáčivost. Metoty určování adhezních sil. Adhezní síly na rozhraní Mezi fázemi v kompozitu jsou rozhraní
Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika
Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia
projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály
Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008
Adhezní síly Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Vazby na rozhraní Mezi fázemi v kompozitu jsou rozhraní mezifázové povrchy. Možné vazby na rozhraní
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIV Název: Studium teplotní závislosti povrchového napětí Pracoval: Matyáš Řehák
Skořepinové konstrukce. tloušťka stěny h a, b, c
Skořepinové konstrukce skořepina střední plocha a b tloušťka stěny h a, b, c c Různorodé technické aplikace skořepinových konstrukcí Mezní stavy skořepinových konstrukcí Ztráta stability zhroucení konstrukce
Struktura a vlastnosti kapalin
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 7 Struktura a vlastnosti kapalin
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
4.1.7 Rozložení náboje na vodiči
4.1.7 Rozložení náboje na vodiči Předpoklady: 4101, 4102, 4104, 4105, 4106 Opakování: vodič látka, ve které se mohou volně pohybovat nosiče náboje (většinou elektrony), nemohou ji však opustit (bez doteku
MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
Laboratorní práce č. 2: Určení povrchového napětí kapaliny
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice
7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro
7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná
Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická
VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad
6. Mechanika kapalin a plynů
6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 06_5_ Struktura a vlastnosti kapalin
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 06_5_ Struktura a vlastnosti kapalin Ing. Jakub Ulmann 5 Struktura a vlastnosti kapalin 5.1 Povrchové napětí
Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole Siločáry
Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole iločáry elektrického pole Intenzita elektrického pole buzená bodovým elektrickým
Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)
Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas 1,, ), V. Vícha 4) 1.a) Mezi spodní destičkou a podložkou působí proti vzájemnému pohybu síla tření o velikosti
Příklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.
Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny
6. Stavy hmoty - Plyny
skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu
MOLEKULOVÁ FYZIKA KAPALIN
MOLEKULOVÁ FYZIKA KAPALIN Struktura kapalin Povrchová vrstva kapaliny Povrchová energie, povrchová síla, povrchové napětí Kapilární tlak Kapilarita Prof. RNDr. Emanuel Svoboda, CSc. STRUKTURA KAPALIN Tvoří
Mechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
Integrovaná střední škola, Sokolnice 496
Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných
JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika
Rozumíme dobře Archimedovu zákonu?
Rozumíme dobře Archimedovu zákonu? BOHUMIL VYBÍRAL Přírodovědecká fakulta Univerzity Hradec Králové K formulaci Archimedova zákona Archimedův zákon platí za podmínek, pro které byl odvozen, tj. že hydrostatické
Speciální aplikace poznatků ze smáčení. Vzlínání do vlákenných materiálů TNT. Eva Kuželová Košťáková KCH, FP, TUL
Speciální aplikace poznatků ze smáčení Vzlínání do vlákenných materiálů TNT Eva Kuželová Košťáková KCH, FP, TUL -Určování (odhad) kontaktního úhlu u porézních (vlákenných) materiálů -Určování (odhad) kontaktního
GAUSSŮV ZÁKON ELEKTROSTATIKY
GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
TEORIE NETKANÝCH TEXTILIÍ. 2. přednáška. TNT smáčení úvod. Eva Kuželová Košťáková Katedra netkaných textilií a nanovlákenných materiálů, FT, TUL
2. přednáška TNT smáčení úvod Eva Kuželová Košťáková Katedra netkaných textilií a nanovlákenných materiálů, FT, TUL OPAKOVÁNÍ z 1.přednášky Cíl předmětu Teorie netkaných textilií: Ukázat, jak struktura
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
Rovinná harmonická elektromagnetická vlna
Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25
4. Měření některých fyzikálně-chemických charakteristik fázového rozhraní Equation Section 4 R (4.1)
4. Měření některých fyzikálně-chemických charakteristik fázového rozhraní Equation Section 4 4.1 Povrchové a mezifázové napětí Mezi nejpoužívanější metody pro stanovení povrchového a mezifázového napětí
Přípravný kurz - příklady
Přípravný kurz - příklady 1. Cyklista ujel první čtvrtinu cesty rychlostí v 1, další tři čtvrtiny pak rychlostí 20 km/hod, průměrná rychlost na celé dráze byla16 km/hod, jaká byla průměrná rychlost v první
Úvod. K141 HYAR Úvod 0
Úvod K141 HYAR Úvod 0 FYZIKA MECHANIKA MECH. TEKUTIN HYDRAULIKA HYDROSTATIKA HYDRODYNAMIKA Mechanika tekutin zabývá se mechanickými vlastnostmi tekutin (tj. silami v tekutinách a prouděním tekutin) poskytuje
Interakce mezi kapalinou a vlákenným materiálem
7. přednáška Interakce mezi kapalinou a vlákenným materiálem Plateau-Rayleighova nestabilita - kapalinový film na vlákně Morfologické přechody Lucas Washburnův vztah dynamika průniku kapalin do kruhové
Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce
Fázové rozhraní Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce Homogenní - kapalina/plyn - povrch;kapalina/kapalina Nehomogenní - tuhá látka/plyn - povrch;
Kapka kapaliny na hladině kapaliny
JEVY NA ROZHRANÍ TŘÍ PROSTŘEDÍ Kapka kapaliny na hladině kapaliny Na hladinu (viz obr. 11) kapaliny (1), nad níž je plynné prostředí (3), kápneme kapku jiné kapaliny (2). Vzniklé tři povrchové vrstvy (kapalina
ZMĚNY SKUPENSTVÍ LÁTEK
ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
Hlavní body - elektromagnetismus
Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
Mechanika - kinematika
Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb
Elektrostatické pole. Vznik a zobrazení elektrostatického pole
Elektrostatické pole Vznik a zobrazení elektrostatického pole Elektrostatické pole vzniká kolem nepohyblivých těles, které mají elektrický náboj. Tento náboj mohl vzniknout například přivedením elektrického
Interakce mezi kapalinou a vlákenným materiálem
4. přednáška Interakce mezi kapalinou a vlákenným materiálem Eva Kuželová Košťáková TUL, T KNT Jedním ze základních parametrů, které řídí interakci mezi kapalinou a pevnou látkou je GEOMETRIE PEVNÉ LÁTKY
Povrch a objem těles
Povrch a objem těles ) Kvádr: a.b.c S =.(ab+bc+ac) ) Krychle: a S = 6.a ) Válec: π r.v S = π r.(r+v) Obecně: S podstavy. výška S =. S podstavy + S pláště Vypočtěte objem a povrch kvádru, jehož tělesová
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
7. MECHANIKA TEKUTIN - statika
7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné
FYZIKA I cvičení, FMT 2. POHYB LÁTKY
FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného
Elementární plochy-základní pojmy
-základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),
Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K141) Přednáškové slidy předmětu 1141 HYA (Hydraulika) verze: 09/2008 K141 FSv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu
TEORIE NETKANÝCH TEXTILIÍ. 2. přednáška ÚVOD
2. přednáška ÚVOD https://moodle.fp.tul.cz/nano/ Přihlásit jako host (není možné zkoušet testy) nebo se plnohodnotně přihlásit = vytvořit nový účet. https://moodle.fp.tul.cz/nano/course/view.php?id=63
5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY
Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22
Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI Jaroslav Krucký, PMB 22 SYMBOLY Řecká písmena θ: kontaktní úhel. σ: napětí. ε: zatížení. ν: Poissonův koeficient. λ: vlnová délka. γ: povrchová
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:
Archimédův zákon I
3.1.11 Archimédův zákon I Předpoklady: 030110 Pomůcky: pingpongový míček, měděná kulička, skleněný válec s víčkem od skleničky, vajíčko, sůl, tři kádinky, barvy na duhu, průhledná brčka Př. 1: Do vody
3.3 Částicová stavba látky
3.3 Částicová stavba látky Malé (nejmenší) částice látky očekávali nejprve filozofové (atomisté) a nazvali je atomy (z řeckého atomos = nedělitelný) starověké Řecko a Řím. Mnohem později chemici zjistili,
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. IV Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky
3.1 Magnetické pole ve vakuu a v látkovén prostředí
3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká
Kinetická teorie ideálního plynu
Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na
Mechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
Příklady z hydrostatiky
Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
Měření povrchového napětí kapaliny z kapilární elevace
Měření povrchového napětí kapaliny z kapilární elevace Problém A. Změřit povrchové napětí destilované vody. B. Změřit povrchové napětí lihu. C. Stanovení nejistot změřených veličin. Předpokládané znalosti