Časopis pro pěstování mathematiky a fysiky
|
|
- Ivo Kučera
- před 6 lety
- Počet zobrazení:
Transkript
1 Časopis pro pěstování mathematiky a fysiky Václav Láska Grafické řešení rovnic Časopis pro pěstování mathematiky a fysiky, Vol. 40 (1911), No. 5, Persistent URL: Terms of use: Union of Czech Mathematicians and Physicists, 1911 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library
2 Graficko řešení rovnic. Podává Y. Láska. Dnes řešíme rovnice, jedná-li se jen o hodnoty přibližné, nomograficky. Nomogram dá nám ihned, bez vypočtu, pouhým přiložením pravítka nejen kořeny reálné, leč i imaginárné s přesností, jež závisí jen na měřítku nomogramu. V jednom z nejbližších pojednání o tom promluvíme. Zde podáváme nékteré konstrukce zajímavé bud jednoduchostí aneb provedením. Při tom přihlížíme jen ku kořenům reálným. Sestrojme (viz obr. 1.) tři přímky тs = P = +4-0, I. У _ - RQ = p<~ - + -^- - 1 = 0, y V UP=p"= yx г> 2 = 0 36
3 554 procházejíc! bodem P. aneb D = Bude ß a aß v y vy y 0 V 2 = 0 D = v 3 + -^ v* + vy\ /3y 2 = 0, co srovnáno s všeobecnou rovnicí dá vztahy v 3 + av 2 + bv c = O a = «W' ^ ' ľ = v^ (i) eličině b předpokládáme, že jest kladná. Grafické řeření rovnic třetího stupně tvaru (1) vyžaduje tudíž určení průsečíku přímky s geometrickým místem průsečíků přímek p f K r =y 2 -j r (x + y)* = 0, a p", t. j. s křivkou kterou snadno sestrojíme. Budiž (viz obr. 1.) OR = y. Bodem R rýsujme kružnici o libovolném poloměru větším než \y, která protne osu X v bodě D a osu Y v bodě Q. Sestrojme dále UP _L OX a protněme UP přímkou, jež spojuje body R a Q. Průsečík P jest hledaným bodem křivky K r. Rovnici (1) řešíme tudíž, jak následuje: Sestrojíme křivku K r a protneme ji přímkou TS = p. Tím obdržíme bod P, jenž spojen s bodem R protne osu Y v bodě Q. Jeden kořen rovnice. (1) jest v = OQ. Narýsováním celého souboru křivek K r obdržíme nomogram řešící rovnici (1) pouhým přiložením prayítka. Methoda zde uvedená má tu výhodu, že lze prakticky jednotlivé části křivky K r nahraditi přímkami.
4 665 K řešení rovnic třetího stupně v případu, kdy veličina b jest záporná, užijeme vztahů podaných v článku o sestrojování vzorců empirických*). Budiž (viz obr. 2.) dána přímka v = V U V 0. Sestrojme nomografické souřadnice libovolného bodu P této přímky a sice On A. = w, 0 V B = v a dále kružnici s poloměrem AD = \A z bodu D na kolmici O w W ve středu bodu Ou. Kružnice ať protne onu kolmici v bodě C. Položme dále OuO w = O w = y, O W O = w. Dle konstrukce platí rovnice w=o w D + DC=±u + VT+ y * *) Viz Cas. XL., *
5 656 a tudíž w У1 wu = y 2 aneb w u w 2 y 2 Rovnice (3) zamění se tím na (4) z které pro v = w obdržíme w * _ ( a + P)w* yho +!V = 0. (4') Řešení rovnice (4) vyžaduje vyhledání takové polohy přímky CB, aby CB\\O u. K tomu cíli sestrojíme nomografickou křivku veličin 0 W C =w, OB = v a vytyčíme ve středu přímky 0 W 0 V kolmici. Průsečík obou určuje nomografický bod, jehož souřadnice vyhovují rovnici w = v. Rovnice (4) dá nám zároveň zajímavé řešení rovnic druhého stupně, které ponecháváme čtenáři. Jak zevšeobecniti methody svrchu uvedené, jest na bíle dni. Položme na př. v obr. 1. bude aneb OH = f 2 (v), OQ =f 2 (v), OU = f 3 (v) fi a a p DEEE -f 2 (v) fm AW f 2 (v) =0 i o /,(*) Z) = /-» \af 2 (v) + #» - ap) + «/, (t>)/,(!>)= O (5) Funkce / volíme tak, aby se daly snadno sestrojiti. Je li na př. obdržíme /io) = y, /a(«o = /a(«o = 0. av 2 + vy (a + (t) afiy = 0. (6)
6 Další vhodné tvary dá nám následující konstrukce (viz obr. 3.). Rýsujme v soustavě pravoúhelných souřadnic OXY při libovolně volených bodech A na ose Y a B na ose X, BC J. AB, CD ±CB a položme bude: bude i Jeli dále OA = y, < OAB <?, OB = y tang <p OC = y tang 2 <p OD = y tang 3 qp. y tang <p = v, /. (V) = V, f % (V) =-, f 3 (V) = y Determinant D zamění se tím na v* + -- v y - y 3 /5 == 0. Řešení úplných rovnic stupně čtvrtého x 4 -f Ax 3 -f JSa 2 + Ca; = Z) jest již složitější. Budiž dána křivka*) x A 9 *+-^ = 1 *) O této křivce viz: G. Loria, Spez. alg. und trans, ebene Kurven, II. vydání, str. 226 a 328. (7) (8) (9)
7 558 v souřadnicích pravoúhelných a = mu -f- nv = 1 (10) v souřadnicích nomografických. Převedením rovnice (10) v soustavu souřadnic pravoúhelných pomocí vztahů obdržíme: PУ p X 1 _ 1 У ~ V v - -p JL X x(p --X) np x + a vložením této hodnoty do rovnice (9) po krátké redukci #4 _ 2^3 _ _ ( p2 _ a * _ ^«p«) x % _j_ 2 p ( a a np *b*)x = p* (a 2 -f b Vp 2 ). Srovnáme-li rovnici poslední s rovnicí (8), bude A = -2p, B = p* a 2 b 2 p 2, (7 = 2p (a* np 2 b 2 ), D = p* (a 2 + b%v). Ze kterých rovnic snadno vypočteme veličiny a, b, p, n. Řešení rovnice (8) redukováno tím na sestrojení průsečíků křivek (9) a (10). Sestrojení křivky 4+4-i=o x 2 ' y 2 provedeme, jak následuje (obr. 4.). Rýsujme O u = a, vytyčme v bodech O M, kolmice O u U, V a podobně ve středu O bodů O UJ kolmici OY. Na O u U a V nanesme délky O u A = B=\b. Přímka AB ať protne přímku OY v bodě C. Bod ten považujme za střed soustavy pravoúhelných souřadnic, v které přímka AB jest osou X.
8 559 Vedeme-li libovolným bodem P přímky AB spojky O u P, P, obdržíme na osách U u V průsečíky E y D, které opět protnou osy X, Y v bodech M, JN. Rýsujeme-li konečně MSUAB, NS\\CY, bude průsečík S bodem křivky (9). Obr. 4. Důkaz této konstrukce ponecháváme čtenáři. Poněvadž křivka (9) jest všestranně symmetrická, stačí narýsovati jen jednu čtvrtku. Druhou křivku obdržíme kruhovou Steinerovou trasformací nomografické přímky. Píšeme-li ji ve tvaru obdržíme následující sestrojení. mp 2 u -f- np 2 v = jp 2, Na ose X (viz obr. 5.) vytyčme ve vzdálenosti O u = p kolmici OvV, jež bude nomografickou osou V. Nad poloměrem OuOv opišme kružnici. Dále rýsujme přímku AB určenou úsečkami O u A = np L a B = mp*. Na přímce AB volíme libovolně bod Q, rýsujeme spojky OuQ a OvQ, jež protnou kružnici v bodech M a Ň. Průsečík P přímek O u M ao/ jest bod křivky definované rovnicí (10),
9 660 vzory Jsou-li totiž u a v nomografické souřadnice bodu Q } platí uv x =.u л v = p, np*, шp 2 T ~T 17~ -^» ze kterých eliminujíce veličiny u x a v 1 obdržíme rovnici (10). Obr. 5. II. Grafická konstrukce podává hodnoty přibližné. Jak sestrojiti přesnější, ukáže příklad: Budiž v hodnota nalezená při grafickém sestrojení rovnice (1). Jí odpovídá určitý bod x 0 y 0 křivky K r, jenž dán jest rovnicemi x *"o + ľ <>=y> y* v 0 (15) a jehož tečna určena jest poměrem fy_ Y + 3ff 0 đx 2v n Poněvadž v 0 nevyhovuje přesně rovnici (1), bude i kolmá vzdálenost d bodu x 0 y 0 od přímky t. j. f=4+í-i=o. d _ x oß + Уo«" <*ß určitá, ač velmi malá hodnota. (17)
10 661 Nahradíme-li malou část křivky mezi bodem x 0 y 0 a přímkou p, tečnou v bodě y 0 x 0 sestrojenou, obdržíme následující konstrukci viz obr. 6.). Položme začátek pravoúhelných souřadnic přímo do bodu x 0 y 0 a rýsujme v měřítku na př. stokráte větším onoho, v kterém provedli jsme původní sestrojení, přímku AB na základě hodnot a ^ /3 OA = 100' oв = юo Přímku p obdržíme, rýsujeme-li OC ± AB, dále OQ = d (hodnota ta musí býti vypočtena) a vedeme-li bodem Q rovnoběžku k AB. Tečna křivky K r v bode O prochází bodem D, jehož souřadnice jsou (viz rov. 16) OE = 2v 0, ED = y + 3x 0, při čemž potřebné veličiny v 0, y, x 0 béřeme přímo z původní konstrukce. Spojka OD protne přímku p v bodě P a dá souřadnici OM = dx. Z rovnice (16) plyne konečně dv = tf- dx. 2v Postup jest tudíž následující. S hodnotou v 0) vzatou přímo z původní konstrukce, vypočteme z rovnic (15) hodnoty x 0 y 0 a z rovnice (17) vzdálenost d. Konstruktivně určíme dx a výpočtem dle rovnice <18) hodnotu dv. Hledaný kořen jest v 0 -f- dv.
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Ladislav Klír Příspěvek ke geometrii trojúhelníku Časopis pro pěstování mathematiky a fysiky, Vol. 44 (1915), No. 1, 89--93 Persistent URL: http://dml.cz/dmlcz/122380
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Václav Hübner Stanovení pláště rotačního kužele obsaženého mezi dvěma sečnými rovinami Časopis pro pěstování mathematiky a fysiky, Vol. 33 (1904), No. 3, 321--331
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Kounovský O projektivnosti involutorní Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 3-4, 433--439 Persistent URL: http://dml.cz/dmlcz/109245
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 10. Plochy šroubové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 99 106.
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Vincenc Jarolímek Čtyři úlohy o parabole Časopis pro pěstování mathematiky a fysiky Vol. 48 (1919) No. 1-2 97--101 Persistent URL: http://dml.cz/dmlcz/121127
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Václav Láska O nomografii Časopis pro pěstování mathematiky a fysiky, Vol. 42 (1913), No. 2, 209,209a,210--217 Persistent URL: http://dml.cz/dmlcz/121570 Terms
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Vavřinec Jelínek O některých úlohách z arithmografie. [II.] Časopis pro pěstování mathematiky a fysiky, Vol. 24 (1895), No. 2, 132--136 Persistent URL: http://dml.cz/dmlcz/120880
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [V.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 2-3, 158--163 Persistent URL: http://dml.cz/dmlcz/122325
O rovnicích s parametry
O rovnicích s parametry 3. kapitola. Kvadratické rovnice In: Jiří Váňa (author): O rovnicích s parametry. (Czech). Praha: Mladá fronta, 1964. pp. 45 [63]. Persistent URL: http://dml.cz/dmlcz/403496 Terms
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Gabriel Blažek O differenciálních rovnicích ploch obalujících Časopis pro pěstování mathematiky a fysiky, Vol. 2 (1873), No. 3, 167--172 Persistent URL: http://dml.cz/dmlcz/109126
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.
Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Matyáš Lerch K didaktice veličin komplexních. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 5, 265--269 Persistent URL: http://dml.cz/dmlcz/108855
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Langr O čtyřúhelníku, jemuž lze vepsati i opsati kružnici Časopis pro pěstování mathematiky a fysiky, Vol. 28 (1899), No. 3, 244--250 Persistent URL: http://dml.cz/dmlcz/122234
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Zdeněk Pachta Vrchol základním bodem svazku kuželoseček Časopis pro pěstování matematiky a fysiky, Vol. 72 (1947), No. 4, D74--D78 Persistent URL: http://dml.cz/dmlcz/122801
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Antonín Pleskot O jisté úloze, která řeší přibližnou rektifikaci oblouku kruhového Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 3-4, 305--313
Konvexní útvary. Kapitola 4. Opěrné roviny konvexního útvaru v prostoru
Konvexní útvary Kapitola 4. Opěrné roviny konvexního útvaru v prostoru In: Jan Vyšín (author): Konvexní útvary. (Czech). Praha: Mladá fronta, 1964. pp. 49 55. Persistent URL: http://dml.cz/dmlcz/403505
Funkcionální rovnice
Funkcionální rovnice Úlohy k procvičení In: Ljubomir Davidov (author); Zlata Kufnerová (translator); Alois Kufner (translator): Funkcionální rovnice. (Czech). Praha: Mladá fronta, 1984. pp. 88 92. Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Úlohy Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 1, 140--144 Persistent URL: http://dml.cz/dmlcz/121666 Terms of use: Union of Czech Mathematicians
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Ferdinand Pietsch Výpočet cívky pro demonstraci magnetoindukce s optimálním využitím mědi v daném prostoru Časopis pro pěstování matematiky a fysiky, Vol. 62 (1933),
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Václav Láska O sestrojování vzorců empirických. [II.] Časopis pro pěstování mathematiky a fysiky, Vol. 40 (1911), No. 2, 142--152 Persistent URL: http://dml.cz/dmlcz/122406
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Procházka Poznámka ku perspektivnému zobrazování Časopis pro pěstování mathematiky a fysiky, Vol. 29 (1900), No. 1, 49--59 Persistent URL: http://dml.cz/dmlcz/109081
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Cornelius Plch Společný spůsob dokazování různých pouček a vzorců. [II.] Časopis pro pěstování mathematiky a fysiky, Vol. 10 (1881), No. 5, 252--260 Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 1, 25--31 Persistent URL: http://dml.cz/dmlcz/124004
Nerovnosti v trojúhelníku
Nerovnosti v trojúhelníku Úvod In: Stanislav Horák (author): Nerovnosti v trojúhelníku. (Czech). Praha: Mladá fronta, 1986. pp. 5 12. Persistent URL: http://dml.cz/dmlcz/404130 Terms of use: Stanislav
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Jan Sommer Pokus vysvětliti Machův klam optický Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 2, 101--105 Persistent URL: http://dml.cz/dmlcz/109224
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Emanuel Čubr Poloměr setrvačnosti a centrální ellipsa Časopis pro pěstování mathematiky a fysiky, Vol. 3 (1874), No. 3, 108--113 Persistent URL: http://dml.cz/dmlcz/123753
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent
Úvod do neeukleidovské geometrie
Úvod do neeukleidovské geometrie Obsah In: Václav Hlavatý (author): Úvod do neeukleidovské geometrie. (Czech). Praha: Jednota československých matematiků a fysiků, 1926. pp. 209 [212]. Persistent URL:
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kadeřávek Zcela elementární důkaz Pelzova rozšíření Daudelinovy věty Časopis pro pěstování mathematiky a fysiky, Vol. 36 (1907), No. 1, 44--48 Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Lošťák Příspěvek ku trisekci úhlu Časopis pro pěstování mathematiky a fysiky, Vol. 14 (1885), No. 1, 38--42 Persistent URL: http://dml.cz/dmlcz/122092 Terms
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Granát Vypočítávání obsahu šikmo seříznutého kužele. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 46 (1917), No. 1, 71--74 Persistent URL:
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Vincenc Jarolímek Několik konstrukcí kuželoseček. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 1, 1--7 Persistent URL: http://dml.cz/dmlcz/124001
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Tomeš I. Konstrukce os ellipsy, znám-li její středobod Časopis pro pěstování mathematiky a fysiky, Vol. 9 (1880), No. 5, 275--279 Persistent URL: http://dml.cz/dmlcz/120887
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Václav Pleskot O dvojitém logaritmickém papíru Časopis pro pěstování matematiky a fysiky, Vol. 64 (1935), No. 3, R33--R39 Persistent URL: http://dml.cz/dmlcz/121516
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Jaroslav Doležal Trojúhelník abc osvětliti tak, aby stín jeho na průmětně měl daný tvar Časopis pro pěstování mathematiky a fysiky, Vol 36 (1907), No 2, 203--208
Základy teorie matic
Základy teorie matic 7. Vektory a lineární transformace In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 43--47. Persistent URL: http://dml.cz/dmlcz/401335 Terms of
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Langr O jisté úloze v trojúhelníku Časopis pro pěstování mathematiky a fysiky, Vol 34 (1905), No 1, 65--72 Persistent URL: http://dmlcz/dmlcz/123335 Terms
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Václav Petržílka Demonstrační pokus měření rychlosti zvuku v plynech Časopis pro pěstování matematiky a fysiky, Vol. 61 (1932), No. 6, 254--258 Persistent URL:
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Bohumil Bydžovský O immaginárných bodech. [II.] Časopis pro pěstování mathematiky a fysiky, Vol. 39 (1910), No. 4, 417--426 Persistent URL: http://dml.cz/dmlcz/121244
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jindřich Procházka Pokusy o interferenci a odrazu zvuku Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D197--D200 Persistent URL: http://dml.cz/dmlcz/120811
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Vavřinec Jelínek O některých úlohách z arithmografie. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 24 (1895), No. 1, 68--76 Persistent URL: http://dml.cz/dmlcz/123863
Jak se studují geometrické útvary v prostoru. II. část
Jak se studují geometrické útvary v prostoru. II. část VIII. Dodatek In: Jiří Klapka (author): Jak se studují geometrické útvary v prostoru. II. část. (Czech). Praha: Jednota českých matematiků a fysiků,
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Bedřich Procházka Příspěvek k fotogrammetrii Časopis pro pěstování mathematiky a fysiky, Vol. 27 (1898), No. 5, 312--317 Persistent URL: http://dml.cz/dmlcz/108945
Přímky a křivky. Úvod. Úvodní úlohy. Terms of use:
Přímky a křivky Úvod. Úvodní úlohy In: N. B. Vasiljev (author); V. L. Gutenmacher (author); Leo Boček (translator); Alena Šarounová (illustrator): Přímky a křivky. (Czech). Praha: Mladá fronta, 1982. pp.
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Astronomická zpráva na květen a červen 1909 Časopis pro pěstování mathematiky a fysiky, Vol. 38 (1909), No. 4, 525--528 Persistent URL: http://dml.cz/dmlcz/121459
O metodách rovinných konstrukcí
O metodách rovinných konstrukcí 1. Přehled metod planimetrických konstrukcí In: Josef Holubář (author): O metodách rovinných konstrukcí. (Czech). Praha: Jednota českých matematiků a fysiků, 1940. pp. 5
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 27. Cyklické grupy In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 198--202. Persistent
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Bílek Pythagorova věta ve třetí třídě středních škol Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D265--D268 Persistent URL: http://dml.cz/dmlcz/123381
O mnohoúhelnících a mnohostěnech
O mnohoúhelnících a mnohostěnech I. Úhly a mnohoúhelníky v rovině In: Bohuslav Hostinský (author): O mnohoúhelnících a mnohostěnech. (Czech). Praha: Jednota československých matematiků a fysiků, 1947.
Komplexní čísla a funkce
Komplexní čísla a funkce 3. kapitola. Geometrické znázornění množin komplexních čísel In: Jiří Jarník (author): Komplexní čísla a funkce. (Czech). Praha: Mladá fronta, 1967. pp. 35 43. Persistent URL:
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Václav Simandl Poznámka ke kombinacím daného součtu z čísel přirozené řady číselné Časopis pro pěstování mathematiky a fysiky, Vol. 46 (1917), No. 2-3, 155--159
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jan Novák Aritmetika v primě a sekundě Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D254--D257 Persistent URL: http://dml.cz/dmlcz/120798
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Vilém Jung Několik analytických studií o plochách mimosměrek (zborcených). [V.] Časopis pro pěstování mathematiky a fysiky, Vol. 18 (1889), No. 6, 316--320 Persistent
O dynamickém programování
O dynamickém programování 9. kapitola. Cauchy-Lagrangeova nerovnost In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 65 70. Persistent URL: http://dml.cz/dmlcz/403801
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Eduard Weyr O stanovení orthogonálných trajektorií kružnic v rovině Časopis pro pěstování mathematiky a fysiky, Vol. 10 (1881), No. 1, 20--24 Persistent URL:
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Vladimír Knichal Čísla Gaussova. [I.] Časopis pro pěstování matematiky a fysiky, Vol. 62 (1933), No. 4-5, R73--R76 Persistent URL: http://dml.cz/dmlcz/123910 Terms
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, pp
Neurčité rovnice 2. Lineární rovnice o dvou neznámých In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 10 14. Persistent URL: http://dml.cz/dmlcz/402867
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Vavřinec Jelínek Za jakých podmínek lze vést vrcholem trojúhelníka příčku, která by byla střední měřicky úměrnou úseků, jež stanoví na protější straně Časopis
O dynamickém programování
O dynamickém programování 7. kapitola. O jednom přiřazovacím problému In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 55 59. Persistent URL: http://dml.cz/dmlcz/403799
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Josef B. Slavík; B. Klimeš Hluk jako methodická pomůcka při zjišťování příčin chvění v technické praxi Pokroky matematiky, fyziky a astronomie, Vol. 2 (957), No.
O dělitelnosti čísel celých
O dělitelnosti čísel celých 6. kapitola. Nejmenší společný násobek In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 73 79. Persistent URL: http://dml.cz/dmlcz/403569
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi Rejstřík In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp.
Booleova algebra. 1. kapitola. Množiny a Vennovy diagramy
Booleova algebra 1. kapitola. Množiny a Vennovy diagramy In: Oldřich Odvárko (author): Booleova algebra. (Czech). Praha: Mladá fronta, 1973. pp. 5 14. Persistent URL: http://dml.cz/dmlcz/403767 Terms of
Cyklografie. Užití cyklické projekce a Laguerrových transformací
Cyklografie Užití cyklické projekce a Laguerrových transformací In: Ladislav Seifert (author): Cyklografie. (Czech). Praha: Jednota československých matematiků a fysiků v Praze, 1949. pp. 95 101. Persistent
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Šafránek Některé fysikální pokusy s katodovou trubicí Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D285--D289 Persistent URL: http://dml.cz/dmlcz/123398
Aritmetické hry a zábavy
Aritmetické hry a zábavy 1. Doplnění naznačených výkonů In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 5 9. Persistent URL: http://dml.cz/dmlcz/4329
Goniometrické funkce
Goniometrické funkce 3. kapitola. Grafy goniometrických funkcí In: Stanislav Šmakal (author); Bruno Budinský (author): Goniometrické funkce. (Czech). Praha: Mladá fronta, 1968. pp. 90 108. Persistent URL:
Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti
Kongruence 1. kapitola. Opakování základních pojmů o dělitelnosti In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 3 9. Persistent URL: http://dml.cz/dmlcz/403653 Terms
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Josef Studnička O geometrickém znázornění funkcí cyklických a hyperbolických Časopis pro pěstování mathematiky a fysiky, Vol. 10 (1881), No. 2, 80--84
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Josef Štěpánek O rovnicích kulového zrcadla vypuklého a čoček rozptylných Časopis pro pěstování matematiky a fysiky, Vol. 57 (1928), No. 2, D17--D20 Persistent
Co víme o přirozených číslech
Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 8. Plochy součtové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 88 94. Persistent
O podobnosti v geometrii
O podobnosti v geometrii Kapitola IV. Stejnolehlost v polohových úlohách In: Jaroslav Šedivý (author): O podobnosti v geometrii. (Czech). Praha: Mladá fronta, 1963. pp. 48 60. Persistent URL: http://dml.cz/dmlcz/403487
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Ferdinand Pietsch O pokroku v osvětlování elektřinou. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 39 (1910), No. 5, 529--533 Persistent URL: http://dml.cz/dmlcz/123804
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Theodor Monin Řešení úlohy 12. v XI. ročníku tohoto časopisu Časopis pro pěstování mathematiky a fysiky, Vol. 17 (1888), No. 5, 231,233 235 Persistent URL: http://dml.cz/dmlcz/108795
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Fürst O racionalních poměrech obsahů některých těles soustavy krychlové Časopis pro pěstování mathematiky a fysiky, Vol. 19 (1890), No. 1, 20--27 Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Úlohy Časopis pro pěstování mathematiky a fysiky, Vol. 14 (1885), No., 19--142 Persistent URL: http://dml.cz/dmlcz/12116 Terms of use: Union of Czech Mathematicians
O nerovnostech a nerovnicích
O nerovnostech a nerovnicích Kapitola 3. Množiny In: František Veselý (author); Jan Vyšín (other); Jiří Veselý (other): O nerovnostech a nerovnicích. (Czech). Praha: Mladá fronta, 1982. pp. 19 22. Persistent
PANM 16. List of participants. http://project.dml.cz. Terms of use:
PANM 16 List of participants In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
Úlohy o maximech a minimech funkcí
Úlohy o maximech a minimech funkcí 1. kapitola. Základní pojmy a nejjednodušší úlohy In: Jaromír Hroník (author): Úlohy o maximech a minimech funkcí. (Czech). Praha: Mladá fronta, 1967. pp. 5 15. Persistent
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 13. Homomorfní zobrazení (deformace) grupoidů In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962.
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Karel Zahradník Geometrie kruhu. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 5 (1876), No. 5, 15--0 Persistent URL: http://dml.cz/dmlcz/109406 Terms
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Hromádko Ukázky z indické arithmetiky obecné Časopis pro pěstování mathematiky a fysiky, Vol. 5 (1876), No. 4, 182--187 Persistent URL: http://dml.cz/dmlcz/121711
Úlohy o maximech a minimech funkcí
Úlohy o maximech a minimech funkcí 3. kapitola. Extrémy goniometrických funkcí In: Jaromír Hroník (author): Úlohy o maximech a minimech funkcí. (Czech). Praha: Mladá fronta, 1967. pp. 46 58. Persistent
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Příloha A In: Vlasta Chmelíková (author): Zlatý řez nejen v matematice. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2009. pp. 157 166. Persistent URL: http://dml.cz/dmlcz/400805
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Janoušek O nepravidelném rozkladu světla Časopis pro pěstování mathematiky a fysiky, Vol. 1 (1872), No. 5, 256--261 Persistent URL: http://dml.cz/dmlcz/122691
Kongruence. 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence
Kongruence 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 43 54. Persistent URL: http://dml.cz/dmlcz/403656
O dělitelnosti čísel celých
O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572
Kongruence. 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly
Kongruence 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 55 66. Persistent URL: http://dml.cz/dmlcz/403657
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky M. Jahoda; Ivan Šimon Užití sodíkového světla pro Ramanův zjev Časopis pro pěstování matematiky a fysiky, Vol. 69 (1940), No. 3-4, 187--190 Persistent URL: http://dml.cz/dmlcz/123324
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky L. Borovanský Ukázky themat daných k písemným zkouškám maturitním na českých školách středních v škol. r. 1907 [II.] Časopis pro pěstování mathematiky a fysiky,
Časopis pro pěstování matematiky
Časopis pro pěstování matematiky Jiří Bečvář; Miloslav Nekvinda Poznámka o extrémech funkcí dvou a více proměnných Časopis pro pěstování matematiky, Vol. 81 (1956), No. 3, 267--271 Persistent URL: http://dml.cz/dmlcz/117194
Shodná zobrazení v konstruktivních úlohách
Shodná zobrazení v konstruktivních úlohách III. část. Středová souměrnost In: Jaroslav Šedivý (author): Shodná zobrazení v konstruktivních úlohách. (Czech). Praha: Mladá fronta, 1962. pp. 25 37. Persistent
Malý výlet do moderní matematiky
Malý výlet do moderní matematiky Úvod [též symboly] In: Milan Koman (author); Jan Vyšín (author): Malý výlet do moderní matematiky. (Czech). Praha: Mladá fronta, 1972. pp. 3 6. Persistent URL: http://dml.cz/dmlcz/403755
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Josef Studnička O kvadratuře kruhu Časopis pro pěstování mathematiky a fysiky, Vol. 1 (1872), No. 1, 35--38 Persistent URL: http://dml.cz/dmlcz/123418
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 2. Rotační plochy In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 8 31. Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Antonín Libický O trojúhelníku, jehož strany tvoří řadu arithmetickou. [II.] Časopis pro pěstování mathematiky a fysiky, Vol. 27 (1898), No. 3, 220--227 Persistent
Polynomy v moderní algebře
Polynomy v moderní algebře Výsledky cvičení a návody k jejich řešení In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 94 [102]. Persistent URL: http://dml.cz/dmlcz/403718