Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
|
|
- Miroslav Macháček
- před 8 lety
- Počet zobrazení:
Transkript
1 Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
2 Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností a informaci o tomto rozdělení shrnout do charakteristik. Toto rozdělení resp. charakteristiky nazveme empirickým rozdělením resp. empirickými charakteristikami. Při dodržování jistých podmínek můžeme očekávat, že empirické rozdělení (resp. charakteristiky) se bude blížit teoretickému rozdělení (resp. charakteristikám) a to tím více, čím větší bude počet realizovaných pokusů.
3 Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností a informaci o tomto rozdělení shrnout do charakteristik. Toto rozdělení resp. charakteristiky nazveme empirickým rozdělením resp. empirickými charakteristikami. Při dodržování jistých podmínek můžeme očekávat, že empirické rozdělení (resp. charakteristiky) se bude blížit teoretickému rozdělení (resp. charakteristikám) a to tím více, čím větší bude počet realizovaných pokusů.
4 Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností a informaci o tomto rozdělení shrnout do charakteristik. Toto rozdělení resp. charakteristiky nazveme empirickým rozdělením resp. empirickými charakteristikami. Při dodržování jistých podmínek můžeme očekávat, že empirické rozdělení (resp. charakteristiky) se bude blížit teoretickému rozdělení (resp. charakteristikám) a to tím více, čím větší bude počet realizovaných pokusů.
5 Je třeba si uvědomit, že přibližování empirických hodnot k hodnotám teoretickým nemá charakter matematické konvergence, ale konvergence pravděpodobnostní. Pravděpodobnostní konvergencí rozumíme skutečnost, že při vzrůstajícím počtu pokusů se pravděpodobnost větších odchylek empirických hodnot od teoretických stále zmenšuje.
6 Je třeba si uvědomit, že přibližování empirických hodnot k hodnotám teoretickým nemá charakter matematické konvergence, ale konvergence pravděpodobnostní. Pravděpodobnostní konvergencí rozumíme skutečnost, že při vzrůstajícím počtu pokusů se pravděpodobnost větších odchylek empirických hodnot od teoretických stále zmenšuje.
7 Konvergence podle pravděpodobnosti Definice Jestliže pro posloupnost náhodných veličin X 1, X 2,..., X n,... platí vztah lim P( X n c < ɛ) = 1, ɛ > 0, n říkáme, že posloupnost {X n } konverguje podle pravděpodobnosti ke konstantě c. Pravděpodobnostní konvergence se označuje X n P c.
8 Čebyševova nerovnost Věta Pro libovolnou náhodnou veličinu X se střední hodnotou E(X ), konečným rozptylem D(X ) a pro každé ɛ > 0 platí P( X E(X ) < ɛ) 1 D(X ) ɛ 2. Čebyševova nerovnost se uplatňuje především v oblasti teorie, je možno ji však použít i pro odhad určitých pravděpodobností u náhodných veličin, jejichž rozdělení jsou neznámá.
9 Bernoulliova věta Věta Jestliže náhodná veličina X je počet výskytů jevu v n nezávislých pokusech a π je stálá pravděpodobnost, že tento jev nastane v jednom pokuse, potom pro každé ɛ > 0 platí ( ) lim P X n n π < ɛ = 1.
10 Věta Nechť náhodná veličina X má binomické rozdělení s parametry n a π, tj. X B(n, π) a, střední hodnotu E(X ) = nπ a rozptyl D(X ) = nπ(1 π). Pro normovanou náhodnou veličinu U = X nπ nπ(1 π) platí limitní vztah lim P(U u) = Φ(u), n kde Φ(u) je distribuční funkce rozdělení N(0, 1). a X je součtem n nezávislých náhodných veličin X 1, X 2,..., X n, z nichž každá má alternativní rozdělení A(π)
11 Moivreova-Laplaceova věta tedy říká, že při dostatečně velkém počtu nezávislých pokusů konverguje binomické rozdělení k rozdělení normálnímu. Aproximace je vhodná, jestliže nπ(1 π) > 9 a 1 n + 1 < π < n n + 1.
12 pro podíl Věta Nechť náhodná veličina X je součet n nezávislých alternativních veličin X 1, X 2,..., X n, které mají stejný parametr π, 0 < π < 1, a náhodná veličina X n má střední hodnotu E ( ) ( X n = π a rozptyl D X ) n = π(1 π) n. Potom pro normovanou náhodnou veličinu U = X n π π(1 π) n (1) platí limitní vztah lim P(U u) = Φ(u), n kde Φ(u) je distribuční funkce normovaného normálního rozdělení N(0, 1).
13 Věta Nechť náhodná veličina X je součtem n nezávislých náhodných veličin X 1, X 2,..., X n, se stejným rozdělením s konečnou střední hodnotou E(X i) = µ a konečným rozptylem D(X i) = σ 2, i = 1, 2,..., n. a Pro normovanou náhodnou veličinu U = X nµ nσ 2 platí limitní vztah lim P(U u) = Φ(u), n kde Φ(u) je distribuční funkce rozdělení N(0, 1). a Střední hodnota a rozptyl náhodné veličiny X jsou vzhledem k nezávislosti a stejnému rozdělení veličin X i rovny E(X ) = nµ a D(X ) = nσ 2
14 pro průměr Věta Nechť náhodná veličina X je průměr n nezávislých náhodných veličin X 1, X 2,..., X n, které mají libovolný identický zákon rozdělení s konečnou střední hodnotou E(X i) = µ a konečným rozptylem D(X i) = σ 2. Potom pro střední hodnotu a rozptyl náhodné veličiny X platí a pro normovanou náhodnou veličinu platí limitní vztah E(X ) = µ a D(X ) = σ2 n U = X µ n (2) σ lim P(U u) = Φ(u), n kde Φ(u) je distribuční funkce normovaného normálního rozdělení N(0, 1).
15 Pro výběrový úhrn M platí: M = n X i as.n(nµ, nσ 2 ), E(M) = nµ, D(M) = nσ 2 i=1 U = M E(M) D(M) = M nµ nσ 2 as.n(0, 1) ( ) m nµ nσ 2 P(M m) = F (m) Φ ( ) P u 1 α/2 < m nµ nσ < u 2 1 α/2 = 1 α
16 Pro výběrový úhrn M platí: M = n X i as.n(nµ, nσ 2 ), E(M) = nµ, D(M) = nσ 2 i=1 U = M E(M) D(M) = M nµ nσ 2 as.n(0, 1) ( ) m nµ nσ 2 P(M m) = F (m) Φ ( ) P u 1 α/2 < m nµ nσ < u 2 1 α/2 = 1 α
17 Pro výběrový úhrn M platí: M = n X i as.n(nµ, nσ 2 ), E(M) = nµ, D(M) = nσ 2 i=1 U = M E(M) D(M) = M nµ nσ 2 as.n(0, 1) ( ) m nµ nσ 2 P(M m) = F (m) Φ ( ) P u 1 α/2 < m nµ nσ < u 2 1 α/2 = 1 α
18 Pro výběrový úhrn M platí: M = n X i as.n(nµ, nσ 2 ), E(M) = nµ, D(M) = nσ 2 i=1 U = M E(M) D(M) = M nµ nσ 2 as.n(0, 1) ( ) m nµ nσ 2 P(M m) = F (m) Φ ( ) P u 1 α/2 < m nµ nσ < u 2 1 α/2 = 1 α
19 Pro výběrový průměr X platí: n X = 1 n X i as.n(µ, σ2 σ2 n ), E(X ) = µ, D(X ) = n i=1 U = X D(X E(X ) = X µ ) σ n as.n(0, 1) ( P(X x) = F (x) Φ x µ ) σ n ( P u 1 α/2 < x µ ) σ n < u1 α/2 = 1 α
20 Pro výběrový průměr X platí: n X = 1 n X i as.n(µ, σ2 σ2 n ), E(X ) = µ, D(X ) = n i=1 U = X D(X E(X ) = X µ ) σ n as.n(0, 1) ( P(X x) = F (x) Φ x µ ) σ n ( P u 1 α/2 < x µ ) σ n < u1 α/2 = 1 α
21 Pro výběrový průměr X platí: n X = 1 n X i as.n(µ, σ2 σ2 n ), E(X ) = µ, D(X ) = n i=1 U = X D(X E(X ) = X µ ) σ n as.n(0, 1) ( P(X x) = F (x) Φ x µ ) σ n ( P u 1 α/2 < x µ ) σ n < u1 α/2 = 1 α
22 Pro výběrový průměr X platí: n X = 1 n X i as.n(µ, σ2 σ2 n ), E(X ) = µ, D(X ) = n i=1 U = X D(X E(X ) = X µ ) σ n as.n(0, 1) ( P(X x) = F (x) Φ x µ ) σ n ( P u 1 α/2 < x µ ) σ n < u1 α/2 = 1 α
23 Poznámka k opravě na spojitost Používáme-li normální rozdělení jako aproximaci pro rozdělení diskrétní náhodné veličiny, doporučuje se, zejména u silněji asymetrických rozdělení, provést tzv. opravu na spojitost, která tuto aproximaci zlepšuje. Při výpočtu pravděpodobností P(X x) resp. P(X x) pomocí normální aproximace jsou totiž výsledky podhodnocené. Naopak při výpočtu pravděpodobností P(X < x) resp. P(X > x) pomocí normální aproximace jsou výsledky nadhodnocené.
24 Poznámka k opravě na spojitost Podstata výpočtů pravděpodobností pomocí opravy na spojitost spočívá v tom, že výpočet pravděpodobnosti pro argument x provedeme přibližně pomocí argumentu x + 0,5 resp. x 0,5. Příklady provedených korekcí ukazuje tabulka: před opravou x < 3 x 3 x = 5 x 7 x > 7 po opravě x < 2,5 x < 3,5 4,5 < x < 5,5 x > 6,5 x > 7,5
25 Příklad 1 Pravděpodobnost zásahu cíle při jednom výstřelu je 0,8. Jaká je pravděpodobnost, že se počet zásahů při 200 výstřelech nebude lišit od střední hodnoty počtu zásahů o více než 10 zásahů?
26 Příklad 1 Binomické rozdělení: E(X ) = nπ = 200 0,8 = 160 D(X ) = nπ(1 π) = 200 0,8 (1 0,8) = 32 P(150 X 170) = p(150) + p(151) + + p(170) = = ( ) , , ( ) 0, , ( ) 0, ,2 30 = 0,937
27 Příklad 1 Binomické rozdělení: E(X ) = nπ = 200 0,8 = 160 D(X ) = nπ(1 π) = 200 0,8 (1 0,8) = 32 P(150 X 170) = p(150) + p(151) + + p(170) = = ( ) , , ( ) 0, , ( ) 0, ,2 30 = 0,937
28 Příklad 1 Pomocí Moivre-Laplaceovy věty: ( ) x nπ F (x) Φ nπ(1 π) ( ) P(150 X 170) = F (170) F (149) Φ 32 ( ) Φ 32 = 0,936
29 Příklad 1 Pomocí Moivre-Laplaceovy věty (s opravou na spojitost): ( ) x nπ F (x) Φ nπ(1 π) P(150 X 170) P(149,5 ( < X ) < 170,5) ( = F (170,5) ) F (149,5) = = Φ 170, Φ 149, = 0,937
30 Příklad 1 Pomocí Čebyševovy nerovnosti: P( X E(X ) < ɛ) 1 D(X ) ɛ 2 E(X ) = nπ = 200 0,8 = 160 D(X ) = nπ(1 π) = 200 0,8 (1 0,8) = 32 P( X 160) < 10) = 0,68 P( X 160) < 11) = 0,736
31 Příklad 1 Pomocí Čebyševovy nerovnosti: P( X E(X ) < ɛ) 1 D(X ) ɛ 2 E(X ) = nπ = 200 0,8 = 160 D(X ) = nπ(1 π) = 200 0,8 (1 0,8) = 32 P( X 160) < 10) = 0,68 P( X 160) < 11) = 0,736
32 Příklad 1 Pomocí Čebyševovy nerovnosti: P( X E(X ) < ɛ) 1 D(X ) ɛ 2 E(X ) = nπ = 200 0,8 = 160 D(X ) = nπ(1 π) = 200 0,8 (1 0,8) = 32 P( X 160) < 10) = 0,68 P( X 160) < 11) = 0,736
33 Příklad 1 Pomocí Čebyševovy nerovnosti: P( X E(X ) < ɛ) 1 D(X ) ɛ 2 E(X ) = nπ = 200 0,8 = 160 D(X ) = nπ(1 π) = 200 0,8 (1 0,8) = 32 P( X 160) < 10) = 0,68 P( X 160) < 11) = 0,736
34 Příklad 2 Ve volbách dalo 52 % voličů hlas koaličním stranám. Jaká je pravděpodobnost, že při průzkumu veřejného mínění o rozsahu 2600 respondentů získala převahu opozice?
35 Příklad 2 X... počet respondentů volící opozici X B(2600; 0,48) E(X ) = nπ = ,48 = 1248 D(X ) = nπ(1 π) = ,48 (1 0,48) = 648,96
36 Příklad 2 X... počet respondentů volící opozici X B(2600; 0,48) E(X ) = nπ = ,48 = 1248 D(X ) = nπ(1 π) = ,48 (1 0,48) = 648,96
37 Příklad 2 P(X > 1300) = 1 P(X 1300) = 1 [p(0) + + p(1300)] = = 1 [( ) ,480 0, ( ) 0, , ] = 1 0,98031 = 0,01969
38 Příklad 2 Pomocí Moivre-Laplaceovy věty: ( ) x nπ F (x) Φ nπ(1 π) P(X > 1300) = 1 P(X 1300) = 1 F (1300) 1 Φ ( ,96 ) = 1 0,97939 = 0,02061
39 Příklad 2 Pomocí Moivre-Laplaceovy věty (s opravou na spojitost): ( ) x nπ F (x) Φ nπ(1 π) P(X > 1300) = 1 P(X 1300) 1 P(X < 1300,5) = = 1 Φ ( 1300, ,96 ) = = 1 0,98034 = 0,01966
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek
Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných
populace soubor jednotek, o jejichž vlastnostech bychom chtěli vypovídat letní semestr Definice subjektech.
Populace a Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1 populace soubor jednotek, o jejichž vlastnostech bychom
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Cvičení ze statistiky - 7. Filip Děchtěrenko
Cvičení ze statistiky - 7 Filip Děchtěrenko Minule bylo.. Probrali jsme spojité modely Tyhle termíny by měly být známé: Rovnoměrné rozdělení Střední hodnota Mccalova transformace Normální rozdělení Přehled
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost
Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
Pravděpodobnost a statistika
Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení
VYBRANÁ ROZDĚLENÍ. DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodná veličina (dále NV)? Číselné vyjádření výsledku náhodného pokusu. Jaké
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?
NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU
Cvičení ze statistiky - 5. Filip Děchtěrenko
Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost
PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]
PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
Pravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
NMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
Diskrétní náhodná veličina. November 12, 2008
Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.
3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY
4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
MATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika
1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!
Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
NÁHODNÁ VELIČINA. 3. cvičení
NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který
Pravdepodobnosť. Rozdelenia pravdepodobnosti
Pravdepodobnosť Rozdelenia pravdepodobnosti Pravdepodobnosť Teória pravdepodobnosti je matematickým základom pre odvodenie štatistických metód. Základné pojmy náhoda náhodný jav náhodná premenná pravdepodobnosť
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Statistická teorie učení
Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Diskrétní matematika. DiM /01, zimní semestr 2016/2017
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Poznámky k předmětu Aplikovaná statistika, 5.téma
Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné
NMSA202 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA POZNÁMKY O ZKOUŠCE
Datum poslední aktualizace: 13. června 2014 NMSA202 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA POZNÁMKY O ZKOUŠCE Zkouška má písemnou a ústní část. Nejdříve je písemná část, která se dále dělí na početní
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka
Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,
Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární