10. Afinní a euklidovský prostor

Rozměr: px
Začít zobrazení ze stránky:

Download "10. Afinní a euklidovský prostor"

Transkript

1 10. Afinní a euklidovský prostor Definice Afinním prostorem A = AV nad vektorovým prostorem V rozumíme trojici A, V,+,kde Ajemnožina,jejížprvkynazývámebody, V jevektorovýprostor,+jeoperace,která boduavektorupřiřadíbod:+:a V A,splňujícínásledujícíaxiomy: i a+o=aprolibovolnýbod a A ii a+v+w=a+v+wprolibovolnýbod a Aavektoryv,w V iiikekaždédvojicibodů a, b Aexistujeprávějedenvektorv V,prokterý a+v=b.tento vektorznačíme b a. Euklidovským prostorem EV rozumíme afinní prostor spolu se skalárním součinem na V neboli euklidovský prostor je afinní prostor nad unitárním prostorem. Dimenzí afinního nebo euklidovského prostoru rozumíme dimenzi příslušného vektorového prostoru. a + v 1 + v 2 = a + v 1 + v 2 d v 1 + v 2 v 1 v 2 a + v 1 d c a = a + o c Obrázek 1: Afinní prostor. Axiomiiříká,ževevýrazechtypu a+v 1 +v nemusímepsátzávorky.zaxiomůiaiii vidíme,že a a=o.zaxiomuiiivyplývá,že a+b a=bprolibovolnédvabody a, b. Základnímpříklademafinníhoprostorujeprostor AT n.bodyivektoryjsouuspořádané n-ticeprvků T. Operace sčítání bodu a vektoru je definována jako obvyklé sčítání n-tic. Vezmeme-li navíc na vektorovémprostoru T n běžný skalárnísoučin,mámezákladnípříkladeuklidovskéhoprostoru prostor ET n. Z kapitoly o homomorfismech vektorových prostorů víme, že každý vektorový prostor dimenze n je izomorfníaritmetickémuprostoru T n.trochuvágněřečeno,jedinývektorovýprostordimenze nje, ažnaizomorfismustj.přeznačníprvků, T n.prostoryzpředchozíhoodstavcemajípodobnouroliv afinnícheuklidovských prostorech: Uvidíme, že jediný afinníresp. euklidovský prostor dimenze n je,ažnaafinníresp.izometrickýizomorfismus,prostor AT n resp. ET n. Vlibovolnémafinnímprostoruplatínásledujícívztahy,kterájsouvafinnímprostoru AT n zřejmé. Pozorování10.2.Nechť AVjeafinníprostor, a, b, c, d Abody,u,v V vektory.pak ia+u b+v=a b+u v, iia b+c d=a d+c b, iiia b+b c=a c. 1

2 Důkaz. Pozorování lze snadno dokázat přímo z definiceviz cvičení, nebo lze výpočet převést na výpočetvat n kdejsoutvrzenízřejmávyužitímnějakésoustavysouřadnicvizníže. Podprostory Definice Nechť AV je afinníresp. euklidovský prostor. Říkáme, že BW je podprostorem AV,pokud B A, W V, W jevektorovýmpodprostorem V, Bjeuzavřenánasčítání boduavektoruzw arozdíllibovolnýchdvoubodůzb jevektorve W.Jinýmislovy, BWje podprostor AV, pokud tvoří se zúženými operacemi prostoru AV afinníeuklidovský prostor. Je-li b Blibovolnýbod,pak B= b+w= {b+w w W }. Naopak,prolibovolnýbod b Aapodprostor W V je BW,kde B= b+w,podprostorem AV. Důkaz. Dokážeme nejprve druhé tvrzení. Musíme ukázat, že 1. součetbodu b+w 1 b+w avektoruw 2 jebodvb+w.toplatí,protožeb+w 1 +w 2 = b+w 1 +w 2 axiomi. 2. rozdíldvoubodů b+w 1, b+w 2 b+wjevektorve W.Toplatí,protožeb+w 1 b+w 2 = b b+w 1 w 2 =o+w 1 w 2 =w 1 w 2 V podlepozorování,bodii,poznámceza definicí afinního prostoru a axiomui. Prvnítvrzení:SoučetboduzBavektoruzWjebodzB,tedy b+w B.Je-li a Blibovolnýbod, pak a b Wpodledefinice.Pakale a=b+a b b+wpodlepoznámkyzadefinicíafinního prostoru.čili B b+w. Chápeme-li T n jakovektorovýprostor,pakpodprostoryjsou rovnéútvary přímky,roviny,... procházejícípočátkem.podprostoryafinníhoprostoru AT n jsou rovnéútvary,kterépočátkem procházet nemusí. Afinní prostor dimenze 0 je bod. Afinnímu prostoru dimenze 1 říkáme přímka, afinnímu prostoru dimenze 2 říkáme rovina. Podprostoru dimenze n 1 v afinním prostoru dimenze n říkáme nadrovina. Při zadání afinního podprostoru většinou uvádíme pouze množinu B a říkáme, že B je podprostor AV. Příklad.Množina B=1,2,3+ 4,5,6 ={1,2,3+t 4,5,6 t R}={1+4t,2+5t,3+6t t R}jepodprostorafinníhoprostoru R 3.Jetopřímka,protožedimW=dim 4,5,6 =1. Množina B =1,2,3+ 4,5,6,7,8,9 jerovinaazároveňnadrovinavr 3,protožedimW= dim 4,5,6,7,8,9 =2. 2

3 Soustavy souřadnic, jejich transformace Soustavousouřadnicvafinnímprostoru AVrozumímemnožinu S= {a,m 1,m 2,...,m n },kde a AaM= {m 1,...,m n }jebáze V. Kartézkou soustavou souřadnic v euklidovském prostoru EV rozumíme soustavu souřadnic S= {a,m 1,m 2,...,m n },kde M= {m 1,...,m n }jeortonormálníbáze V. Bod asenazývápočáteksoustavysouřadnic.přímky a+ u i senazývajísouřadnicovéosy. Souřadnicebodu b Aresp. Evsoustavěsouřadnic Sdefinujemejakovyjádřenívektoru b av bázi M,tedyvztahem {b} S = {b a} M. Souřadnicevektoruv V vsoustavěsouřadnic Sdefinujemejakovyjádřenívektoruvvbázi M, tedy vztahem {v} S = {v} M. Zvolitsoustavusouřadnictedyznamenáurčitpočátek bod a,avektorym i,kterétvoříbázi.kartézká soustavasoustavasouřadnicjetaková,ževektorym i majívelikost1ajsounavzájemkolmé. osa a + m 2 b a b {b} S = 1.5,2 m 2 a m 1 osa a + m 1 Obrázek2:Soustavasouřadnic S= {a,m 1,m 2 }var 2.Bod bajehosouřadnice. Uvektorovýchprostorůvíme,že {v 1 +v 2 } M = {v 1 } M + {v 2 } M a {t v 1 } M = t {v 1 } M prolibovolnou bázi M,vektoryv 1,v 2 V a t T.Operaceve V tedy můžemeprovádětvat n přejdeme-liod vektorůkjejichvyjádřenívbázi M.Podobnásituacejeuafinníchprostorů všechnyoperacevafinním prostoru můžemeprovádětvat n přejdeme-liodvektorůabodůkjejichvyjádřenívzhledemk soustavě souřadnic S: Tvrzení10.4.Mějmeafinníprostor AVajehosoustavusouřadnic S.Prolibovolnévektoryv 1,v 2 V,body b, c Aaprvek t Tplatí: {v 1 +v 2 } S = {v 1 } S +{v 2 } S, {t v 1 } S = t {v 1 } S, {b+v 1 } S = {b} S +{v 1 } S, {b c} S = {b} S {c} S. Je-li EVeuklidovskýprostoraSkartézkásoustavasouřadnic,pakprolibovolnévektoryv 1,v 2 V platí v 1 v 2 = {v 1 } S {v 2 } S. 3

4 Důkaz. Snadné. Z prvního semestru víme, jak se mění souřadnice vektorů při přechodu od báze k bázi. Nyní spočítáme, jak se mění souřadnice bodů při přechodu od soustavy souřadnic k jiné soustavě. Tvrzení Mějme dvě soustavy souřadnic S = {a,m 1,...,m n } a S = {a,m 1,...,m n} v afinnímprostoru AVdimenze n.označme P maticipřechoduodbáze M = {m 1,...,m n }kbázi M = {m 1,...,m n}tedy P= {id} M M.Pakprolibovolnýbod b Aavektorv V platí {b} S = {a } S + {b} S P T, {v} S = {v } S P T. Důkaz. {b} S = {b a} M = {b a +a a} M = {a a} M + {b a } M = = {a } S + {b a } M P T = {a } S + {b} S P T. Příklad.Vafinnímprostoru R 2 mámedánysoustavysouřadnic S= {a,m 1,m 2 }={1,1,1,2, 2,3}, S = {a,m 1,m 2}={ 4,5,5,3, 7,14}. Napištevzorečkynavýpočetvyjádřeníbodu b R 2 resp.vektoruvvsoustavěsouřadnic Smáme-li danévyjádřenívsoustavěsouřadnic S Řešení. Najdeme nejprve matici přechodu P od M = {1,2, 2,3} k M = {5,3, 7,14} metodou z kapitoly o homomorfismech: Tedy P= Spočítámeještě {a } S = {a a} M = { 5,4} M : tedy {a } S = 1, Mějmebod b R 2,jehožvyjádřenívS je {b} S =x, y.pakvyjádření bvs spočtemepodle přechozího tvrzení {b} S =x, y= 1,2+x, y P T = 1,2+x, y 3 1, 1 4 takže x= 1+3x + y, y=2 x +4y. Máme-livektorv R 2 jehožvyjádřenívs je {v} S =x, y,pak {v} S =x, yspočteme x=3x + y, y= x +4y., 4

5 Afinní zobrazení, izometrie Definice10.6.Nechť AV, A V jsouafinníprostory, a A, a A body, f: V V homomorfismus.zobrazení F: A A definovanépředpisem Fa+v=a + fv nazýváme afinní zobrazení vytvořené homomorfismem f. Je-li f monomorfismus, nazývá se F regulární afinní zobrazení. Je-li f izomorfismus, nazývá se F afinní izomorfismus. Nechť EV, E V jsoueuklidovsképrostory.afinnízobrazení F: E E vytvořenéhomomorfismem f: V V senazýváizometrie,pokud fjeunitárnízobrazenízachováváskalárnísoučin. Pokud f je navíc izomorfismus, nazývá se F izometrický izomorfismus. a + v F v a = Fa fv Fa + v = a + fv a Obrázek3:AfinnízobrazenízR 2 do R 2. Afinnízobrazeníjetedyurčenoobrazemjednohoboduvdefinicibylourčeno Fa=a aobrazy vektorů.navolběbodu anezáleží:je-li Fa+v=a + fv,paktaké Fb+v=Fb+fvpro libovolnýbod b A,jaklzesnadnoověřit. Mějmeafinníprostory AU, BV, CW.Jsou-li F: A B, G:B Cafinnízobrazenívytvořená homomorfismy f : U V, g : V W,paksloženézobrazení GF : A C jeafinnízobrazení vytvořené homomorfismem f: U W. Je-li F afinní izomorfismus, pak existuje inverzní zobrazení F 1 : B Aatoto Fjeafinnízobrazenívytvořenéhomomrfismem f 1 : V U.Ověřenítěchtofaktů a formulaci podobných tvrzení pro euklidovské prostory přenecháme čtenáři. Všimněme si rovněž, že každá izometrie je regulární afinní zobrazeníprotože unitární zobrazení je prosté. Nyní dokážeme poznámku z první části: Jediný afinníresp. euklidovský prostor dimenze n je, až na afinníresp.izometrickýizomorfismus,prostor AT n resp. ET n. Věta Každý afinní prostor AV dimenze n je afinně izomorfní aritmetickému afinnímu prostoru AT n.každýeuklidovskýprostor EVdimenze njeizometrickyizomorfníaritmetickémueuklidovskémuprostoru ET n. Důkaz.Zvolímelibovolnousoustavusouřadnic Svprostoru AV.Zobrazení Fb={b} S jeafinní izomorfismusprostorů AVaAT n,protožeprolibovolné bje Fb+v={b+v} S = {b} S + {v} S, 5

6 tedy F jeafinnízobrazenívytvořenéizomorfismem f: V AT n, fv={v} M.Proeuklidovský prostor zvolíme kartézkou soustavu souřadnic a zobrazení F definujeme stejně. Parametrickéarovnicovévyjádřenípodprostorů AT n Každýpodprostor Bafinníhoprostoru AT n můžemevyjádřitvetvaru B= a+v,kde ajenějaký bodzba V jepodprostor T n.zvolíme-linějakoubázi M= {m 1,...,m k }prostoru V,máme B= a+ m 1,...,m k. Tomuto vyjádření se říká parametrické vyjádření podprostoru B. Připomeňme, že každý bod b B můžeme vyjádřit jako b=a+t 1 m t k m k, t i T. Vektort 1,...,t k jeurčenjednoznačněprotože Mjebáze,jetovlastněvyjádřeníbodu bvsoustavě souřadnica,m 1,...,m k. Zpodprostory AT n jsmesejižsetkalipřiřešenísoustavyrovnic.uvažujmesoustavu krovnicon neznámých Ax T = b,kde ha=k=ha b,tj.žádnázrovnicnení nadbytečná asoustavamá řešení.množinavšechřešeníje v p +KerA,kde v p T n jelibovolnéřešenísoustavy,dimkera= n k.takžemnožinavšechřešeníjepodprostor AT n dimenze n k.protosoustavě Ax T = b říkámerovnicovévyjádřenípodprostoru v p +KerA. Přechod od rovnicového vyjádření k parametrickému je zřejmý: Příklad.Určeteparametrickypodprostor B R 5 danýrovnicemi x 1 +2x 2 x 3 + x 5 = 1 2x 1 +4x 2 + x 4 x 5 = 4 Řešení. Máme vlastně pouze vyřešit danou soustavu rovnic. Gaussovou eliminací vypočteme Tedy B můžeme vyjádřit parametricky např. taktopři počítání báze řešení homogenní soustavy volíme parametryna2.,4.a5.místě,volímepostupně0,0,2,0,2,0,1,0,0,abyřešenívyšlo hezky B=2,0,1,0,0+ 1,0,5,0,2, 1,0, 1,2,0, 2,1,0,0,0. Mějmenynínaopakparametrickévyjádření B= a+v = a+ m 1,...,m k achcemepodprostor B vyjádřitrovnicově.tedyhledámesoustavu n krovniconneznámých Ax T = b T,jejímžřešenímje právěmnožina B.Jinýmislovychceme,abyKerA=V aabypartikulárnímřešenímbylbod a.to jsmesenaučilivkapitoleolineárníchformáchaduálech.napíšemevektorym 1...m k dořádkůmatice 6

7 Cadořádkůmatice AnapíšemenějakoubáziKerC.PakmámeKerA=V.Vektorpravýchstran určíme,abysoustavuřešilbod a zvolíme b=aa T. Příklad.Najdětenějakérovnicovévyjádřenípodprostoru B R 5 danéhoparametricky B=2,0,1,0,0+ 1,0,5,0,2, 1,0, 1,2,0, 2,1,0,0,0. Řešení. Postupujeme podle návodu nad příkladem. Vyřešíme hommogenní soustavu rovnic s maticí C: C= KerC= 1, 2, 1,0,2,5,10, 1,2,0 Rovnicové vyjádření B bude x 1 2x 2 x 3 +2x 5 = b 1 5x 1 +10x 2 x 3 +2x 4 = b 2 Pravoustranuurčíme,abyzadanésoustavěvyhovovalbod2,0,1,0,0,tedy b 1 = 3, b 2 =9.Rovnicové vyjádření B je tedy například: x 1 2x 2 x 3 +2x 5 = 3 5x 1 +10x 2 x 3 +2x 4 =9 Všimněmesiještěgeometrickéhovýznamuřádkůvrovnicovémvyjádření Ax T = b T podprostoru a+v euklidovskéhoprostoru ER n.veuklidovskémprostoru ER n jekerarovnoortogonálnímudoplňku lineárního obalu řádků matice A. Tedy v řádcích matice A máme bázi ortogonálního doplňku prostoru V.Jinýmislovy,lineárníobalřádkůmatice Ajepřesněmnožinavektorůkolmýchna V.Tomuto prostoru se proto také říká normálový prostor, libovolnému nenulovému prvku tohoto prostoru říkámenormálovývektor.vpřípadě,že a+v jenadrovina,tj.dimv=n 1,paknormálový prostor má dimenzi 1, tedy normálový vektor je určen jednoznačně až na násobek. Příklad.2x 1 3x 2 +4x 3 =2jerovnicovýpopisroviny1,0,0+ 2,0,1,3,2,0 vr 3.Vektor 2, 3,4jenormálovývektor.Normálovýprostorje 2, 3,4. 7

8 Vzájemná poloha podprostorů v afinním prostoru Definiceatvrzení10.8.Nechť BUaCWjsoupodprostoryafinníhoprostoru AV.Říkáme, že BUaCWjsou rovnoběžné,pokud U Wnebo W U; různoběžné, pokud mají alespoň jeden společný bod a nejsou rovnoběžné; mimoběžné, pokud nemají společný bod a nejsou rovnoběžné. Pokud B C,pak B C= d+u W, kde d B Cjelibovolnýbod. Průniku B Cněkdyříkámeprůsečík Ba C,jetonejvětšíafinnípodprostor AV,kterýjeobsažen v obou podprostorech. Důkaz tvrzení, viz cvičení. Proověřenírovnoběžnostidvoupodprostorůsivšimněme,ževztah W W platíprávětehdy,když dimw W =dimw.podobně W Wprávětehdy,kdyždimW W =dimw. Příklad.Určete,zdajsoupodprostory B= b+w, B = b + W Z 4 5 rovnoběžné: B=1,2,3+ 1,0,4, B =3,0,1+ 1,4,3,2,4,2 Řešení.ZřejmědimW=1.UrčímedimW : UrčímedimW W Jetedy W W,podprostory Ba B jsourovnoběžné , dimw =2, dimw W =2. Následuje kriterium na rozlišení různoběžných a mimoběžných podprostorů: Tvrzení Nechť BU a CW jsou nerovnoběžné podprostory afinního prostoru AV. Následující tvrzení jsou ekvivalentní: i Podprostory B a C jsou různoběžné; iiprokaždé b B, c Cje b c U W; iiiexistují b B, c Cje b c U W. Důkaz.i ii.vezmemelibovolnýbod d B C.Vektor b dležívu,vektor d cležívw podledefinicepodprostouuzavřenostnaodčítání.tedy b c=b d+d c U W. 8

9 ii iiijezřejmé. iii i.protože b c U W,máme b c=u+w,kdeu U,w W.Bod b u=c+wležív BivC. Proprakticképočítáníjeužitečnápodmínkaiiispoluspozorováním,že b c U Wprávětehdy, kdyždim b c U W=dimU W. Mějmedvěmimoběžnépřímky p, qvafinnímprostorudimenze3.přímku r=c+ w,kteráprotíná oběpřímky,nazývámepříčkoumimoběžek paqvesměruw. Tvrzení Nechť p=a+uaq = b+vjsoumimoběžnépřímkyvafinnímprostoru AV dimenze3aw V nenulovývektor.pakpříčkamimoběžek paqvesměru w existujeprávětehdy, kdyžw u v.vtomtopřípadějeurčenajednoznačně. Důkaz.Uvažujmerovinu ρ=a+ u,w.pokud rjepříčka paqsesměremw,pak rležívrovině ρa protíná q.protože b ρtoplyneztoho,že paqjsoumimoběžné,musínutněw u v jinak byse qa ρneprotly.vtomtopřípadějeprůnikem ρaqjedinýbod dprotože u v w ={o}. Tedypříčka rjeurčenajednoznačně: r=d+ w. Přímky paqjsoumimoběžné,pokudnejsourovnoběžnétonastaneprávětehdy,kdyždim u,v =2 anejsourůznoběžnétonastaneprávětehdy,kdyždim b a,u,v >dim u,v.dohromady, paq jsoumimoběžné,právěkdyždim b a,u,v =3. Podmínkaw u v jesplněna,právěkdyždim w,u,v =dim u,v. Příklad.Vafinnímprostoru R 3 naleznětepříčkumimoběžek p=a+ u =1,2, 1+ 1, 1,1, q= b+ v =0,9, 2+ 1,0,0 vesměruw=1,2,0. Řešení.Určímenejprvedim b a,u,v tedydim w,u,v =3ap,qjsouskutečněmimoběžné.Podobněověříme,žedim w,u,v =3,tedy příčka ve směru w existuje. Spočítáme průsečík d přímky q s rovinou ρ=a+ u,w =1,2, 1+ 1, 1,1,1,2,0. Prvnízpůsob:Bod dležínapřímce q,tedy d=0,9, 2+α1,0,0,avrovině ρ,tedy d=1,2, 1+ β1, 1,1+γ1,2,0.Rozepsánímdosložekzískámesoustavutřírovnicotřechneznámých.Vyjde α=3.takže d=3,9, 2., 9

10 Druhý způsob: Spočítáme rovnicové vyjádření roviny ρ: Řešením této soustavy je 2, 1, 3.Dopočtením pravé strany získáme vyjádření ρ: 2x+y+3z= 3. Průsečík d=x, y, zmusíležetnapřímce q,tedyx, y, z=α,9, 2,avrovině ρ,tedymusíplatit 2α+9+3 2= 3.Takže α=3, d=3,9, 2. Hledanápříčkaje3,9, 2+ 1,2,0. Tvrzení10.11.Nechť p=a+uaq= b+vjsoumimoběžnépřímkyvafinnímprostoru AVdimenze 3ac Alibovolnýbodneležícína pani q.pakpříčkamimoběžek paqprocházejícíbodem cexistuje právětehdy,když c a, c b u v.vtomtopřípadějeurčenajednoznačně. Důkaz.Uvažujmerovinu ρ=a+ u, c a.pokud rjepříčka paqprocházejícíbodem c,pak rležív rovině ρ a protíná q. Tedy p a ρ nemohou být rovnoběžné. Zřejmě p a ρ jsou rovnoběžné, právě když c a u,v.symetrickouúvahourovinu ρvedemepřímkou qabodem czjistíme,že c b u,v. Vpřípadě,že c=a, c b u,v jeprůnikem ρaqjedinýbod d.příčka rexistujeajeurčena jednoznačně: r=d+ c d.detailypřenechámečtenáři. Příklad.Vafinnímprostoru R 3 naleznětepříčkumimoběžek p=a+ u =3,3,3+ 2,2,1, q= b+ v =0,5, 1+ 1,1,1 procházejícíbodem c=4,5,3. Řešení.Snadnoověříme,žedim b a,u,v =dim c a,u,v =dim c b,u,v =3,tedypřímkyjsou skutečně mimoběžné a příčka procházející bodem c existuje. Najdeme průsečík d přímky q s rovinou procházející přímkou p a bodem c: ρ=a+ u, c a =4,5,3+ 1,2,0,2,2,1. Vyjde d=0, 5,1.Hledanápříčkaje d+ c d =0, 5,1+ 4,0,4 =0, 5,1+ 1,0,1. 10

11 Vzdálenost a úhel v euklidovských prostorech Nechť EV je euklidovský prostoru dimenze n. Vzdáleností bodů a, b rozumíme velikost jejich rozdílu: da, b:= a b = a ba b. Nechť Ba Cjsoupodprostory EV.Vzdálenostípodprostorů B, B rozumímenejmenšímožnou vzdálenost b Bod c C: db, C:=min{db, c b B, c C}. Úhlemvektorůu,v V rozumímečíslo u,v 0, π 2,proněž cos u,v= uv u v. Úhlempodprostorů BU, CWrozumímenejmenšímožnýúhel αvektorůu U,w W: B, C:=min{ u,w u U,v W }. Minima v definici vzdálenosti a úhlu dvou podprostorů se skutečně nabývánebudeme dokazovat. Výraz vpravo v definici úhlu dvou vektorů je v intervalu 0, 1 Cauchyova nerovnost. Definice tedy dávají smysl. Všimněme si, že úhel dvou vektorů je stejný jako úhel jejich libovolných nenulových násobků. Nyní se naučíme počítat vzdálenost dvou rovnoběžných podprostorů a vzdálenost dvou mimoběžek. Tvrzení Mějme dva podprostory BU a CW euklidovskéhoprostoru EV, U W a libovolnýbod b B.Pakpodprostor b+w protínápodprostor Cvjedinémbodě cadb, C=db, c. Důkaz.Podprostory b+w a C= c+w zde c Cjelibovolnýbodnejsoumimoběžné,protože nejsourovnoběžnéw W = {o}ab c W W W W = Vpoužilijsmekritériumna mimoběžnost.průnikemjetedyprostor c+w W =c+{o}.zbýváukázat,ževzdálenost db, c jenejmenšímožná.vezmemelibovolnédvabody e B, f C adokážeme de, f db, c.bod g= f+b eležívcw,protože b e Ua U W.Protože g b=f e,platí de, f=db, g. Vektor c bjekolmýna c g,protože c b W a c g W.PodlePythagorovyvětymáme d 2 b, g=d 2 b, c+d 2 c, g,takže de, f=db, g db, c. Příklad.Spočítejtevzdálenostpřímky p=x+uaroviny ρ=y+ Wv ER 4 : p=6,0,1,0+ 1,3, 1,2, ρ= 2,4,5,3+ 1,2,3,1,2,5,2,3. Řešení.Snadnoověříme,žedimU=1,dimW=2,dimU W=2,takže paρjsouskutečně rovnoběžné.spočítáme W

12 Takže W = 11,4,1,0,1, 1,0,1. Řešenímsoustavyrovniczjistíme,žex+W ρ=c= 3,2,2,2.Vzdálenost pod ρje dp, ρ= dx, c= = 90=3 10. Tvrzení10.13.Mějmedvěmimoběžnépřímky p=b+u, q= c+wveuklidovskémprostoru EV dimenze3.pakexistujeprávějednapříčkamimoběžekvesměru u,w.označíme-li e, fjejíprůsečíky s paq,pak dp, q=de, f. Důkaz.Exsitenciprávějednépříčkamimoběžekvesměru v = u,w námzaručujetvrzení10.10 vektoryu,w,vtvoříbázi.uvažujmerovinu ρ=c+ uw.protožepřímka pjerovnoběžnásrovinou ρae+ u,w ρ = f,zpřechotíhotvrzenívíme,že de, f = dp, ρ.protože q ρ,máme de, f dp, q.opačnánerovnost de, f dp, qjezřejmá. Příklad.Spočtětevzdálenostmimoběžek p=b+u, q= c+wvprostoru ER 3 : p=1, 8,11+ 2,3, 6, q=8,3,13+ 6, 1,12. Řešení.Snadnoověříme,ževektory b c,u,w tvoříbázi R 3,takžepřímky paqjsouskutečně mimoběžné.určíme v = u,w : , takženapř.v=3, 6, 2.Nyníurčímeprůsečík fpříčkymimoběžek paqvesměru v spřímkou q spočítáme f=a+ u,v q.vyjde f=2,4,1.příčkavesměru v jetedy r=2,4,1+ 3,6, 2. Spočteme e=r p.vyjde e=5, 2, 1.Vzdálenost paqje de, f= =7. Nyní se naučíme počítat úhly dvou podprostorů v některých speciálních případech. Tvrzení Mějme euklidovský prostor EV. Pak i Úhel dvou přímek je roven úhlu jejich směrových vektorů. ii Úhel dvou nadrovin je roven úhlu jejich normálových vektorů iii Úhel přímky a nadroviny je roven doplňku úhlu směrového vektoru přímky a normálového vektoru nadrovinydo π 2. Důkaz. Viz cvičení. Trojpoměr, geometrická charakterizace afinních a izometrických zobrazení Definice Mějme tři různé body a, b, c v afinním prostoru A ležící na jedné přímce. Dělícím poměremnebotrojpoměrembodu cvzhledemkbodům a, brozumímeprvek λ T,prokterý c a=λc bzřejměexistuje,protožebodyležínajednépřímce.značíme λ=c; a, b. Pokudc; a, b= 1aTmácharakteristikurůznouodnuly,říkáme,že cjestředemúsečkya, b. Platí c=a+ 1 2 b a=b+1 2 a b. 12

13 Dělicípoměrtedyudává,kolikrátjevětšívektorc aoprotivektoruc b.znaménkoudává,zda jsou vektory c a a c b souhlasněznaménko +, nebo nesouhlasně orientoványznaménko-. Některé jednoduché vlastnosti dělicího poměru, viz cvičení. Následující pěkná věta charakterizuje afinní zobrazení ryze geometricky afinní zobrazení jsou přesně ta, která zachovávají trojpoměr: Věta10.16.Nechť AVaA V jsouafinníprostorynadtělesemcharakteristikyrůznéod2, F : A A zobrazení.jeekvivalentní: i Fjeafinnízobrazení ii F zachovávátrojpoměr:prolibovolnétřibody a, b, c Aležícínajednépřímcejebuď Fa= Fb=Fc,neboFa; Fb, Fc=a; b, c Důkaz.i 2.Vizcvičení. ii i.zvolímelibovolnýbod a A.Hledámehomomorfismus f: V V,kterývytváří F,tedy chceme, aby pro libovolné b A platilo Fb=Fa+fb a Položíme proto fu:= Fa+u Fa. Musímeověřit,že f jehomomorfismus ověřitžeprolibovolné t T avektoryu,v V platí ftu=tfuafu+v=fu+fv.nebolichcemedokázat,že Fa+tu Fa=t Fa+u Fa 1 a Fa+u+v Fa=Fa+u Fa+Fa+v Fa 2 Nejprveprvnívztah.Pokud t=0nebou=o,pakvztahzřejměplatí.vopačnémpřípadějsou a, a+uaa+tutřirůznébodyležícínajednépřímceaplatía; a+tu, a+u=t.podlepředpokladu buď Fa+tu=Fa+u=Faavztah1platí,neboFa; Fa+tu, Fa+u=t,cožjepřesně dokazovaný vztah. Druhý vztah můžeme upravit do ekvivalentní formy Fa+u+v Fa+u=Fa+v Fa 3 Je-liu=onebov=o,vztah3platí.Předpokládejmetedy,žeu,v o.označíme bstředúsečky a, a+u+v.snadnoověříme,že bjezároveňstředemúsečkya+u, a+v.rozlišímečtyřipřípady 1. Fb=Fa=Fa+u+v=Fa+u=Fa+v.Vtomtopřípadězřejmě3platí. 2. Fb=Fa=Fa+u+v,Fb; Fa+u, Fa+v= 1.Vtomtopřípadě Fb Fa+u= Fa+v Fb.Levástranajerovna Fb Fa+u,pravástranajerovna Fa+v Fb= Fb Fa+u. 13

14 3. Fb; Fa, Fa+u+v= 1, Fb=Fa+u=Fa+v.Vtomtopřípadě Fb Fa= Fa+u+v Fb.Levástranajerovna Fa+u+v Fb=Fb Fa.Pravástrana rovněž. 4. Fb; Fa, Fa+u+v= 1,Fb; Fa+u, Fa+v= 1.Vtomtopřípadě Fb= Fa+ 1 2 Fa+u+v Fa=Fa+u+1 2 Fa+v Fa+u.Tedy2Fa+u Fa= Fa+u+v Fa+Fa+u Fa+v.Poúpravěvyjde3. Izometrie lze charakterizovat jako zobrazení, která zachovávají vzdálenosti. Věta10.17.Nechť EVaE V jsoueuklidovsképrostory, F: E E zobrazení.jeekvivalentní: i Fjeizometrie ii F zachovávávzdálenosti:pro libovolnédva body a, b A platí dfa, Fb = da, b, kde vzdálenostvlevojevprostoru E V ;vzdálenostvpravojevprostoru EV. Důkaz.i ii.je-li F izometrievytvořenáhomomorfismeme f,pak f jedledefiniceunitární zobrazení, tj. homomorfismus, který zachovává skalární součin. Potom ale f zachovává normy vektorů, takže F zachovává vzálenosti. ii i.návodkdůkazu: 1. Nejprve pomocí trojúhelníkové nerovnosti odvoďte, že obrazem třech různých bodů na jedné přímce je trojice různých bodů ležících na jedné přímce, a že F zachovává trojpoměr. 2. Zpředchozívětyplyne,že F jeafinnízobrazení,tedy Fa+u=Fa+fu.Odvoďte,že f zachovává normy vektorů. 3. Libovolný homomorfismus, který zachovává normy vektorů, je unitární. 14

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b. 1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

2. kapitola: Euklidovské prostory

2. kapitola: Euklidovské prostory 2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

AB = 3 CB B A = 3 (B C) C = 1 (4B A) C = 4; k ]

AB = 3 CB B A = 3 (B C) C = 1 (4B A) C = 4; k ] 1. část 1. (u 1, u 2, u, u 4 ) je kladná báze orientovaného vektorového prostoru V 4. Rozhodněte, zda vektory (u, 2u 1 + u 4, u 4 u, u 2 ) tvoří kladnou, resp. zápornou bázi V 4. 0 2 0 0 0 0 0 1 0 2 0

Více

6 Lineární geometrie. 6.1 Lineární variety

6 Lineární geometrie. 6.1 Lineární variety 6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity) 4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost

Více

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x 1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.

Více

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Obsah 1 KOMPLEXNÍ ROZŠÍŘENÍ PROSTORU 7 1 Komplexní rozšíření vektorového prostoru........... 7 Komplexní rozšíření reálného afinního

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14. Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V

Více

2. přednáška 8. října 2007

2. přednáška 8. října 2007 2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina

Více

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1] [1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Lineární zobrazení. V prvním z následujících tvrzení navíc uvidíme, že odtud plynou a jsou tedy pak rovněž splněny podmínky:

Lineární zobrazení. V prvním z následujících tvrzení navíc uvidíme, že odtud plynou a jsou tedy pak rovněž splněny podmínky: Lineární zobrazení Nechť (V, +, ) a (W, +, ) jsou dva vektorové prostory nad týmž tělesem (T, +, ). Nechť f : V W je zobrazení splňující následující podmínky: ( u, v V)(f(u + v) = f(u) + f(v)), ( s T )(

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

7 Analytické vyjádření shodnosti

7 Analytické vyjádření shodnosti 7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

6.1 Vektorový prostor

6.1 Vektorový prostor 6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u. Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti: Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte

Více

Rovnice přímky v prostoru

Rovnice přímky v prostoru Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé

Více

Lineární algebra Eva Ondráčková

Lineární algebra Eva Ondráčková Lineární algebra Eva Ondráčková Vektorové prostory Mnozízvásužsenejspíšsetkalispojmemvektor.Ukážemesi,ževektorynejsoujen množiny orientovaných úseček v rovině či trojrozměrném prostoru, ale něco zajímavějšího,

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008 Aritmetické vektory Martina Šimůnková Katedra aplikované matematiky 16. března 2008 Martina Šimůnková (KAP) Aritmetické vektory 16. března 2008 1/ 34 Úvod 1Úvod Definice aritmetických vektorů a operací

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. 6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Euklidovské prostory. Euklidovský prostor dimense 3

Euklidovské prostory. Euklidovský prostor dimense 3 Euklidovské prostory Euklides nebo také Eukleides byl řecký matematik žijící kolem roku 300 př.n.l. Jeho nejznámějším dílem jsou Základy, ve kterých vybudoval geometrii způsobem definice- věta- důkaz.

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

1. přednáška 1. října Kapitola 1. Metrické prostory.

1. přednáška 1. října Kapitola 1. Metrické prostory. 1. přednáška 1. října 2007 Kapitola 1. Metrické prostory. Definice MP, izometrie. Metrický prostor je struktura formalizující jev vzdálenosti. Je to dvojice (M, d) složená z množiny M a funkce dvou proměnných

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

M - Příprava na 1. čtvrtletku pro třídu 4ODK

M - Příprava na 1. čtvrtletku pro třídu 4ODK M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více

Afinní transformace Stručnější verze

Afinní transformace Stručnější verze [1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)

Více

Matice lineárních zobrazení

Matice lineárních zobrazení Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Brno, 017 Předmluva Text pokrývá látku, která je přednášena v učitelském studiu matematiky v předmětu M5510 "Teorie kuželoseček a kvadrik".

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více