Kritéria dělitelnosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Kritéria dělitelnosti"

Transkript

1 Kritéria dělitelnosti Jaroslav Zhouf, Pedf UK Praha Kritéria dělitelnosti slouží k rozhodování o tom, zda je určité přirozené číslo n dělitelné určitým přirozeným číslem k. Každé takové kritérium se snaží nahradit dané číslo n jiným, zpravidla menším číslem n, u něhož je již jednoduché rozhodnout o dělitelnosti číslem k. Pokud by n nebylo ještě vhodné, lze na něj aplikovat kritérium dělitelnosti znovu atd. Veškeré další úvahy budou vycházet z dekadického zápisu přirozeného čísla n= , kde a, a 1, a 2, a 3, jsou cifry, tj. ze zápisu n=... 1 a 1 a 1 a 1 a 1a a A. Dělitelnost určovaná pomocí posledních cifer n=... 1 a5 1 a 1 a3 1a2 a1 1 a je patrné, že poslední cifra a rozhoduje o dělitelnosti čísla n všemi děliteli čísla 1, tj. čísly 2, 5 a 1 (číslo 1 zde, ani nadále a 1 a 1 a 1a a 1 čísly 2, 5 a 1 dělitelné je. 3 2 Ze zápisu ( ) neuvažujeme), neboť číslo ( ) 3 2 Ze zápisu n (... 1 a5 1 a 1a3 a2) 1 aa 1 = je stejně tak patrné, že poslední dvojčíslí aa 1 rozhoduje o dělitelnosti čísla n všemi děliteli čísla 1, tj. čísly 2,, 5, 1, 2, 25, 5 a 1. (Na školách se vyslovuje většinou jen dělitelnost čtyřmi.) Analogicky poslední trojčíslí 2 1 rozhoduje o dělitelnosti všemi děliteli čísla 1, tj. čísly 2, 5, 8, 1, 2, 25,, 5, 1, 125, 2, 25, 5 a 1. (Na školách se opět vyslovuje jen dělitelnost osmi.) Poslední čtyřčíslí rozhoduje o dělitelnosti všemi děliteli čísla 1, mimo jiné o dělitelnosti šestnácti. Kritéria dělitelnosti určované pomocí posledního pětičíslí, šestičíslí atd. se vysloví analogicky. B. Dělitelnost čísly složenými z několika nesoudělných dělitelů Dělitelnost šesti se určuje pomocí dělitelnosti dvěma a třemi, dělitelnost deseti se určuje pomocí dělitelnosti dvěma a pěti, dělitelnost dvanácti se určuje pomocí dělitelnosti třemi a čtyřmi, dělitelnost šedesáti se určuje pomocí dělitelnosti třemi, čtyřmi a pěti atd. C. Dělitelnost určovaná pomocí součtu celočíselných násobků jednotlivých cifer (pomocí celočíselné lineární kombinace jednotlivých cifer) Ukážeme univerzální metodu vytváření kritérií dělitelnosti libovolným přirozenými čísly. Pro každého dělitele můžeme takto vytvořit libovolné množství kritérií. Z nich samozřejmě vybereme to nejjednodušší. Teoreticky je však možné použít kterékoli z nich.

2 d v ě m a Jelikož ( ) n=... 5 a5 5 a 5a3 5a2 5a1 2 a, je číslo n dělitelné dvěma, právě když je dělitelná dvěma cifra a. Tento postup nepřináší nové kritérium. t ř e m i Číslo n ( a 3 333a 333a 33a 3a ) 3 (.. a a a a a a ) = je dělitelné třemi, právě když je třemi dělitelný ciferný součet... a5 a a3 a2 a1 a čísla n. č t y ř m i Jelikož ( ) n= a5 2 5a 25a3 25a2 2a1 2a1 a, je číslo n dělitelné čtyřmi, právě když je dělitelné čtyřmi číslo 2a1 a. Příklad: Je-li n = 5835, je 2a1 a = 2 3 5= 11. Jelikož číslo 11 není dělitelné čtyřmi, není čtyřmi dělitelné ani číslo Každý si může rozmyslet, které z obou uvedených kritérií dělitelnosti čtyřmi je v tomto případě výhodnější. Ukážeme si ještě na dělitelnosti čtyřmi, jak můžeme vytvářet další kritéria. Při úpravě n= ( a5 2 5a 25a3 25a2 a1) 6a1 a vidíme, že číslo n je dělitelné čtyřmi, právě když je čtyřmi dělitelné číslo 6a1 a. Při úpravě n= ( a5 2 5a 25a3 25a2 3a1) 2a1 a vidíme, že číslo n je dělitelné čtyřmi, právě když je čtyřmi dělitelné číslo 2a1 a. Takže zkoumání čísla 2a1 a může být také výhodné, protože toto číslo může být menší než číslo 2a1 a. Podobné úpravy čísla n můžeme provádět dále, čímž můžeme vytvořit libovolné množství kritérií dělitelnosti čtyřmi. p ě t i Dělitelnost pěti se zkoumá podobně jako dělitelnost dvěma. Je to velmi jednoduchý výpočet, proto ho zde provádět nebudeme. š e s t i Platí n ( a 166a3 16a2 a1) 6 (... a5 a a3 a2 a1 a) ( a 1 667a 167a 17a 2a ) 6 (... 2a 2a 2a 2a 2a a ) = = =. Číslo n je dělitelné šesti, právě když je dělitelné šesti číslo... a5 a a3 a2 a1 a nebo číslo... 2a5 2a 2a3 2a2 2a1 a. Příklad: Je-li n = 28 3, je = 72 a dále 7 2= 3 a dále 3 = 12 a dále 1 2= 6, což je číslo dělitelné šesti, a proto je dělitelné šesti i číslo Nebo = 3, což je číslo dělitelné šesti, a proto je dělitelné šesti i číslo 28 3.

3 s e d m i Platí n ( a 12a3 1a2 a1) 7 (... 5a5 a 6a3 2a2 3a1 a) ( a 1 29a 12a 1a a ) 7 (... 2a 3a a 2a 3a a ) = = = Číslo n je dělitelné sedmi, právě když je dělitelné sedmi číslo... 5a5 a 6a3 2a2 3a1 a nebo číslo... 2a5 3a a3 2a2 3a1 a. Příklad: Je-li n = 28 3, je = 77, což je číslo dělitelné sedmi, a proto je dělitelné sedmi i číslo Nebo = 7, což je číslo dělitelné sedmi, a proto je dělitelné sedmi i číslo o s m i Platí ( ) n= a5 1 25a 125a3 12a2 a1 8 a2 2a1 a. Číslo n je dělitelné osmi, právě když je dělitelné osmi číslo a2 2a1 a. Příklad: Je-li n = , je = 2, což je číslo dělitelné osmi, proto je dělitelné osmi i číslo d e v í t i Číslo n ( a 1111a 111a 11a a ) 9 (.. a a a a a a ) = je dělitelné devíti, právě když je devíti dělitelný ciferný součet... a5 a a3 a2 a1 a čísla n. d e s e t i Dělitelnost deseti se zkoumá podobně jako dělitelnost dvěma. Je to velmi jednoduchý výpočet, proto ho zde provádět nebudeme. j e d e n á c t i Platí n ( a 99a 91a 9a a ) 11 (... a a a a a a ) =. Číslo n je dělitelné jedenácti, právě když je dělitelné jedenácti číslo... a5 a a3 a2 a1 a, tj. právě když je dělitelný jedenácti rozdíl součtu cifer na sudých místech a součtu cifer na lichých místech. Příklad: Je-li n = , je ( ) ( 6 2) = 2, což není číslo dělitelné jedenácti, proto není dělitelné jedenácti ani číslo d v a n á c t i Platí n ( a 83a 8a a ) 12 (... a a a a 2a a ) = Číslo n je dělitelné dvanácti, právě když je dělitelné dvanácti číslo... a5 a a3 a2 2a1 a. Dělitelnost dalšími přirozenými čísly se vytvoří analogicky. Vše je pro několik nejmenších přirozených čísel shrnuto v následující tabulce. Je dobré všimnout si v této tabulce periodicity

4 koeficientů a případné předperiody vytvořené z koeficientů u jednotlivých cifer. Tabulka zbytků vyjadřující kritéria dělitelnosti jednotlivými přirozenými čísly: Dělitel nost čísla...a aa číslem 3 2 Kritérium dělitelnosti 2 a 3... a a3 a2 a1 a 1 5 a a a... a a a a a... 3a a 2a 3a a 2a 3a a a 2a a a a3 a2 a1 a 1 a a a3 a2 a1 a...a a a 2a a a a a 3a a a 3a a a a 6a 2a a 6a 2a a a a 5a 5a a a a 6a a a 7a a 5a 8a 6a a 3a 2a 7a a a 8a 8a a a a 2a a 8a 3a 6a 7a 5a 9a a a a... 1a a 2a a 8a 5a 1a a... 1a 1a 1a 1a a a a 7a 3a 2a 9a 6a a 5a 11a 8a 1a a 8a 8a a 1a a

5 25 1 1a a Úloha: Analogicky vytvořte pokračování výše uvedené tabulky pro další dělitele. D. Dělitelnost určovaná pomocí součtu celočíselných násobků dvojčíslí, trojčíslí, (pomocí celočíselné lineární kombinace dvojčíslí, trojčíslí, ) Budeme postupovat analogicky jako v oddíle C, budeme si ale všímat dvojčíslí, trojčíslí, vzniklých rozdělením zadaného přirozeného čísla od konce po dvojicích, po trojicích, D v o j č í s l í Můžeme také psát n=... 1 a5a 1 a3a2 aa 1. Když se tento zápis upraví na tvar n= ( a5a a3a2) 99 (... a5a a3a2 aa 1 ), lze odtud vyslovit kritéria dělitelnosti všemi děliteli čísla 99, tj. čísly 3, 9, 11, 33 a 99. Např.: Číslo n je dělitelné jedenácti, právě když je jedenácti dělitelné číslo... aa 5 aa 3 2 aa 1, tj. právě když je jedenácti dělitelný součet dvojic cifer od konce rozděleného zadaného čísla. Příklad: Je-li n = , je = 136 a dále 1 36= 37, což není číslo dělitelné jedenácti, proto není dělitelné jedenácti ani číslo Napíšeme-li n= ( a7a6 99 a5a a3a2) 11 (.. a7a6 a5a a3a2 aa 1 ), můžeme odsud vyslovit kritérium dělitelnosti pouze číslem 11, protože 11 je prvočíslo. T r o j č í s l í Ze zápisu n ( ) 999 ( ) = plynou kritéria dělitelnosti všemi děliteli čísla 999, tj. čísly 3, 9, 27, 37, 111, 333 a 999. Za povšimnutí stojí hlavně dělitelnost čísly 27 a 37. Ze zápisu n= ( ) 11 ( ) plynou kritéria dělitelnosti všemi děliteli čísla 1 1, tj. čísly 7, 11, 13, 77, 13 a 1 1. Za povšimnutí stojí hlavně dělitelnost čísly 7, 11 a 13. Příklad: Je-li n = , je = 33, což není číslo dělitelné jedenácti, proto není dělitelné jedenácti ani číslo Úloha: Proveďte stejné úvahy pro poslední čtyřčíslí, pětičíslí atd. E. Dělitelnost určovaná pomocí vhodného násobku daného čísla Úvahy v tomto oddíle jsou založeny na tvrzení: Číslo n= 1k a, kde k N, a 9, je dělitelné lichým číslem d různým od pěti, právě když existuje celé číslo m takové, že k ma je číslem d dělitelné. Toto tvrzení dokazovat nebudeme, důkaz ale není složitý, místo toho ukážeme jeho konkrétní aplikace.

6 D v o j n á s o b e k Jestliže píšeme n= 1k a, k N, a 9 2n= 2k 2a = 19k k 2a. Z poslední rovnosti můžeme vyslovit kritérium dělitelnosti devatenácti: Číslo n= 1k a je dělitelné devatenácti, právě když je devatenácti dělitelné číslo k 2a. To platí proto, že čísla 2 a 19 jsou nesoudělná. Příklad: Je-li n = 1938, je = 29 a = 38, což je číslo dělitelné devatenácti, proto je devatenácti dělitelné i číslo Kdybychom napsali 2n= 17k ( 3k 2a ), resp. 2n= 15k ( 5k 2a ) atd., mohli bychom analogicky vyslovit kritérium dělitelnosti sedmnácti, resp. patnácti (ale i třemi, či pěti) atd. Kdybychom napsali 2n= 21k ( k 2a ), resp. 2n= 23k ( 3k 2a ) atd., mohli bychom analogicky vyslovit kritérium dělitelnosti jednadvaceti (ale i třemi, či sedmi), resp. třiadvaceti atd. T r o j n á s o b e k, je ( ) Z rovností 3n 29k ( k 3a ) 28k ( 2k 3a ) 27k ( 3k 3a ) = = = atd. můžeme analogicky vyslovit kritéria dělitelnosti devětadvaceti, osmadvaceti (ale i dvěma, sedmi, čtrnácti), sedmadvaceti (ale i třemi, devíti) atd. 3n= 31k k 3a = 32k 2k 3a = 33k 3k 3a atd. můžeme Z rovností ( ) ( ) ( ) analogicky vyslovit kritéria dělitelnosti jednatřiceti, dvaatřiceti (ale i dvěma, čtyřmi, osmi, šestnácti), třiatřiceti (ale i třemi, jedenácti) atd. Č t y ř n á s o b e k Z rovností n 39k ( k a ) 37k ( 3k a ) = = atd. můžeme analogicky vyslovit kritéria dělitelnosti devětatřiceti (ale i třemi, třinácti), sedmatřiceti atd. Z rovností n= 1k ( k a) = 3k ( 3k a) atd. můžeme analogicky vyslovit kritéria dělitelnosti jednačtyřiceti, třiačtyřiceti atd. Úloha: Proveďte stejné úvahy pro pětinásobek, šestinásobek atd.

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků dělitelnosti

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků dělitelnosti METODICKÝ LIST DA8 Název tématu: Autor: Předmět: Dělitelnost dělitelnost čtyřmi, šesti, osmi a devíti Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: Cíl výuky:

Více

Prvočísla a čísla složená

Prvočísla a čísla složená Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

Dělitelnost přirozených čísel - opakování

Dělitelnost přirozených čísel - opakování Dělitelnost přirozených čísel - opakování Do kolika různých obdélníků můžeme sestavit 60 čtvercových dlaždic tak, abychom vždycky spotřebovali všechny dlaždice a nerozbíjeli je? Závěr: Všichni tito dělitelé

Více

1.5.7 Znaky dělitelnosti

1.5.7 Znaky dělitelnosti 1.5.7 Znaky dělitelnosti Předpoklady: 010506 Pedagogická poznámka: Příklad 1 je dořešení zadání z minulé hodiny. Je třeba se u něj nezdržovat. Př. 1: Na základní škole ses učil pravidla, podle kterých

Více

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 1 2 5, R A P O T Í N N á z e v p r o j e k t u : V e s v a z k o v é š k o l

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 1 2 5, R A P O T Í N N á z e v p r o j e k t u : V e s v a z k o v é š k o l N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 1 2 5, R A P O T Í N N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě - i n t e r a k t i v n ě Č í s l o

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika1.ročník Elementární teorie čísel. Ročník 1. Datum

Více

DĚLITEL A NÁSOBEK DIGITÁLNÍ UČEBNÍ MATERIÁL VY_32_INOVACE_TR_01-20_MA-6. autor Hana Trundová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE

DĚLITEL A NÁSOBEK DIGITÁLNÍ UČEBNÍ MATERIÁL VY_32_INOVACE_TR_01-20_MA-6. autor Hana Trundová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 DĚLITEL

Více

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 125 N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 125 N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 125 N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě - i n t e r a k t i v n ě Č í s l o p r o j e k t u

Více

Kód trezoru 1 je liché číslo.

Kód trezoru 1 je liché číslo. 1 Kód trezoru 1 je liché číslo. Kód trezoru 1 není prvočíslo. Každá číslice kódu trezoru 1 je prvočíslo. Ciferný součet kódu trezoru 1 je 12. Druhá cifra kódu trezoru 1 je sudá, ostatní jsou liché. Jeden

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. znaky dělitelnosti

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. znaky dělitelnosti METODICKÝ LIST DA7 Název tématu: Autor: Předmět: Dělitelnost znaky dělitelnosti, dělitelnost dvěma, třemi, pěti, deseti a dvaceti pěti Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody

Více

Dělitelnost šesti

Dělitelnost šesti 1.3.11 Dělitelnost šesti Předpoklady: 010310 Př. 1: Zopakuj si všechny znaky dělitelnosti a roztřiď je do skupin podle podobnosti. Probrali jsme tři druhy pravidel pro dělitelnost: podle poslední číslice:

Více

Diskrétní matematika 1. týden

Diskrétní matematika 1. týden Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Kritéria dělitelnosti Divisibility Criterions

Kritéria dělitelnosti Divisibility Criterions VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky Kritéria dělitelnosti Divisibility Criterions 2014 Veronika Balcárková Ráda bych na tomto místě poděkovala

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Argumentace a ověřování Gradovaný řetězec úloh Autor: Stanislav Trávníček Úloha 1 (úroveň 1)

Více

š č šú ň š š Ž č Ž š č ůž ň š ůž ů Í ž č č č ň č Ž Ž Ž Ž šú š ů š č š Ž Ž Ž š č č šú Ž ů Ž ž č Ž ň ú š Ž Ž š Ž

š č šú ň š š Ž č Ž š č ůž ň š ůž ů Í ž č č č ň č Ž Ž Ž Ž šú š ů š č š Ž Ž Ž š č č šú Ž ů Ž ž č Ž ň ú š Ž Ž š Ž š č Č Č š ž č č č Ž Č č č č š č Á Č Č č Ů Ž š ú č ž ž č ůž ň š Ž š úč Ž ž Ž č Ž ž Ž ž Ž č š č šú ň š š Ž č Ž š č ůž ň š ůž ů Í ž č č č ň č Ž Ž Ž Ž šú š ů š č š Ž Ž Ž š č č šú Ž ů Ž ž č Ž ň ú š Ž Ž š Ž

Více

O dělitelnosti čísel celých

O dělitelnosti čísel celých O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572

Více

ů č č č č úč č ž ň ž č ž ž š ž č ř č ů ř ř č ó é Á ř é š Á

ů č č č č úč č ž ň ž č ž ž š ž č ř č ů ř ř č ó é Á ř é š Á ť č Ě č Í Č Č Č Č Č é é Č Č úč č ř é ž ú š é ů ř ř č č Č š ř é č ř š Č š č č ř ř ů č č č č úč č ž ň ž č ž ž š ž č ř č ů ř ř č ó é Á ř é š Á É ď ď Ť É š ř É š É č Č ř ž ž é ř ř ř č ř ň Á é Š ň č ž ř ř ž

Více

Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti

Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti Kongruence 1. kapitola. Opakování základních pojmů o dělitelnosti In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 3 9. Persistent URL: http://dml.cz/dmlcz/403653 Terms

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly METODICKÝ LIST DA6 Název tématu: Autor: Předmět: Dělitelnost dělitel a násobek, sudá a lichá čísla, prvočísla a čísla složená Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky:

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš METODICKÝ LIST DA10 Název tématu: Autor: Předmět: Dělitelnost Rozklad na součin prvočísel Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti:

Více

Historie matematiky a informatiky Cvičení 1

Historie matematiky a informatiky Cvičení 1 Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co

Více

ě ě é ň é ř ř ě ř é ě ě č ě úč ě é č č ě č é ě é čů ř ů č é ě ž ř ú ř ř č ř ě ě ř é Š ř é ř ě ř ř ú č ě ř é Š ř ě ř ř é č ě é é ž é Č é č é é ř ě žň ě

ě ě é ň é ř ř ě ř é ě ě č ě úč ě é č č ě č é ě é čů ř ů č é ě ž ř ú ř ř č ř ě ě ř é Š ř é ř ě ř ř ú č ě ř é Š ř ě ř ř é č ě é é ž é Č é č é é ř ě žň ě ě ě Á Ř É Ě É Ř Á Č é ř ř ů č ř ě č š č č č ě š ě ř é ě ř é Š ž č č ř ř č ř ě ř ř Č ř ř č ě č ů ů ž ě č ž ů č ř č ů ů ř ů ě ř ě ř ě ř é é ř ř ř č č é é ě ě é ň é ř ř ě ř é ě ě č ě úč ě é č č ě č é ě é

Více

O dělitelnosti čísel celých

O dělitelnosti čísel celých O dělitelnosti čísel celých 6. kapitola. Nejmenší společný násobek In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 73 79. Persistent URL: http://dml.cz/dmlcz/403569

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent

Více

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Jaroslav Zhouf, PedF UK, Praha Úvod Pascalův trojúhelník je schéma přirozených čísel, která má své využití např. v binomické

Více

Pomocný text. Polynomy

Pomocný text. Polynomy Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné

Více

56. ročník Matematické olympiády

56. ročník Matematické olympiády 56. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C. Určete všechny dvojice (a, b) přirozených čísel, pro něž platí a + 5 b = b + 5 a. Řešení. Substitucí m = a, n = b převedeme rovnici

Více

Napsali: Mgr. Michaela Jedličková; RNDr. Peter Krupka, Ph.D.; RNDr. Jana Nechvátalová Recenzenti:

Napsali: Mgr. Michaela Jedličková; RNDr. Peter Krupka, Ph.D.; RNDr. Jana Nechvátalová Recenzenti: Použité symboly: Motivace k probíranému učivu na praktickém příkladu Úvahové úlohy nebo otázky poukazující na další souvislosti probírané látky s běžným životem Připomenutí učiva, na které nová látka navazuje

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. čísla soudělná a nesoudělná

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. čísla soudělná a nesoudělná METODICKÝ LIST DA9 Název tématu: Autor: Předmět: Dělitelnost Nejmenší společný násobek a největší společný dělitel Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky:

Více

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky 0 Učivo Vysvětlení Př. + pozn. Zlomek vyjádření části celku část snědla jsem kousky celek a pizza byla rozdělena na kousky Pojem zlomek Vyjádření zlomku Základní tvar: čitatel a jmenovatel jsou nesoudělná

Více

Kongruence. 2. kapitola. Kongruence a jejich základní vlastnosti

Kongruence. 2. kapitola. Kongruence a jejich základní vlastnosti Kongruence 2. kapitola. Kongruence a jejich základní vlastnosti In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 10 20. Persistent URL: http://dml.cz/dmlcz/403654 Terms

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

ě ě é é Ú Ů ě ů ě ú Í Č ě ú é ň é Ú ě Ý é ů ě ě ě š ú ě ě š ů Ú ÚČ ě ň ú ž ú š ě é Ž é ÚČ é é é Š ě Ž ÚČ ň ÚČ ó ú ú ú Ž ú Č Ž Ů ú š ě Ý ě ě ž ú ě é š

ě ě é é Ú Ů ě ů ě ú Í Č ě ú é ň é Ú ě Ý é ů ě ě ě š ú ě ě š ů Ú ÚČ ě ň ú ž ú š ě é Ž é ÚČ é é é Š ě Ž ÚČ ň ÚČ ó ú ú ú Ž ú Č Ž Ů ú š ě Ý ě ě ž ú ě é š Ý Ř Ý Ě Ř Ř Ý š ě Č ú ú ě é ď š ě Č ě ě š ů ú ů ů ě ě š Ů ú é ňé é ě ě ě é é ú ě ů ú Č é ě ě ě é é Ú Ů ě ů ě ú Í Č ě ú é ň é Ú ě Ý é ů ě ě ě š ú ě ě š ů Ú ÚČ ě ň ú ž ú š ě é Ž é ÚČ é é é Š ě Ž ÚČ ň ÚČ

Více

2. Dělitelnost přirozených čísel

2. Dělitelnost přirozených čísel 2. Dělitelnost přirozených čísel 6. ročník - 2. Dělitelnost přirozených čísel Číslo 4 756 můžeme rozložit 4 756 = 4. 1 000 + 7. 100 + 5. 10 + 6 Obdobně : čtyřciferné číslo můžeme zapsat ve tvaru a bcd

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

á ý á á ú ú ř ý ý ů ě ů ř á á á á ě ě š ř ů á ě ě ě ů ř š ý š ě ů ž ář ř ř š ý ář á ě ř á ý ě ů á á á ě á ž ě ě ů ě ý ě ř ě šť Č ý á á ř á ě á ř ý ý á

á ý á á ú ú ř ý ý ů ě ů ř á á á á ě ě š ř ů á ě ě ě ů ř š ý š ě ů ž ář ř ř š ý ář á ě ř á ý ě ů á á á ě á ž ě ě ů ě ý ě ř ě šť Č ý á á ř á ě á ř ý ý á É Ř Á Ý Ý Ý ů Ř Ý Ě ů ě ář Ú ř ě ě ě ě ě á ý á á ú ú ř ý ý ů ě ů ř á á á á ě ě š ř ů á ě ě ě ů ř š ý š ě ů ž ář ř ř š ý ář á ě ř á ý ě ů á á á ě á ž ě ě ů ě ý ě ř ě šť Č ý á á ř á ě á ř ý ý á á ě ú ř ě

Více

ž ř ž é ň ž šš ř ň ř ř č é é ř é ž é ř šř š š ř ř č é š é é ř é č č é ř é č é ř

ž ř ž é ň ž šš ř ň ř ř č é é ř é ž é ř šř š š ř ř č é š é é ř é č č é ř é č é ř ř ů ú ř ž é é é é ř č ú ř č é ž ň ň ž é ř é ř é ř č ř é č é é ř É Á Á Í Á É Ý Í Ů Š Á Ž Ě Ý É Á Ř Ý ž ř ž é ň ž šš ř ň ř ř č é é ř é ž é ř šř š š ř ř č é š é é ř é č č é ř é č é ř č ř ž é č ř ř ř é č é

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

āā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā

Více

Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š

Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š ý š Ú ž š ž š ý ž ř Ť šť Č ý ň ř ž ú š ý ž ý ř ů ž ž ř ř ý ů š ň ý ú ř šť š ý ú ž ý ú ó ú š š ů ř Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š ř Ž ý

Více

ť ě Ť ř ť ý ů ý ř ř ě ě ř ě ž ů ě ě ě ý ú ň š Č ř ě ř ž ě Ř š ů ž ů ř ž ČÍ š Š ě ž ř ž ř ý ř ě ř ř Ů ě š ž ř Č ů ě ř ř ž ý ř š ý ě ů ě ě š ř ě ř ž ě ý

ť ě Ť ř ť ý ů ý ř ř ě ě ř ě ž ů ě ě ě ý ú ň š Č ř ě ř ž ě Ř š ů ž ů ř ž ČÍ š Š ě ž ř ž ř ý ř ě ř ř Ů ě š ž ř Č ů ě ř ř ž ý ř š ý ě ů ě ě š ř ě ř ž ě ý Ý Á ř ú ú ž š š ě ř ř ě ř ý ý Í Č ě š ě Š ě ř š ě ř ř ý ě ě ě š ě š ě ž ř ě ý ř ř ý ě Č Ů ý ý ř ě ý ú ř ú ýť ž ť ě Ť ř ť ý ů ý ř ř ě ě ř ě ž ů ě ě ě ý ú ň š Č ř ě ř ž ě Ř š ů ž ů ř ž ČÍ š Š ě ž ř ž ř ý

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 68. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými. (Michal Rolínek) Řešení. Pokud by

Více

Aritmetická posloupnost druhého řádu

Aritmetická posloupnost druhého řádu Aritmetická posloupnost druhého řádu Jaroslav Zhouf, PedF UK Praha V domácím kole 54. ročníku matematické olympiády kategorie B byla zadána tato úloha: Úloha Nastoleleží khromádeko1,,3,..., kkamenech,kde

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

é ů č ý Š é ů č ý é ů č ý é č ú č ú ý ý ů Ó ý ů ů ý ú č ú č ž Ý č ý č ý ů ú ý ů é Ž Ž č č č č é ý é ů č é Ů č č é ů Ý é ů é ů Ó ý Ý é ů č Š é ů č é ů

é ů č ý Š é ů č ý é ů č ý é č ú č ú ý ý ů Ó ý ů ů ý ú č ú č ž Ý č ý č ý ů ú ý ů é Ž Ž č č č č é ý é ů č é Ů č č é ů Ý é ů é ů Ó ý Ý é ů č Š é ů č é ů Ú ý Ú é č é ž Á ý é č ú ý č Ú ý Ž Ó é Í ů Ž ý č č Ž Š ů ý é éž Ř é é č ý é ů č ý é ů č ý é ů č ý é ů Ó ý é ů Ó ý é ů č ý é ů č ý é ů č ý Š é ů č ý Š é ů č ý é ů č ý Š é ů č ý é ů č ý Š é ů č ý é ů č ý

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

ž ř ž ř ý é é č ů ý ý ň ý ý ň ň é č ř ř ř é č é ř é

ž ř ž ř ý é é č ů ý ý ň ý ý ň ň é č ř ř ř é č é ř é Ý ý ř ý ů ú ř ž ý ř ý é Ý é ý ý é ř č ú ý ř ý č é ž ý ň ň ž é ř é ř é ř č ř ý é č é ý ý é ř É Á Á Í Á É Ý Í Ů Š Á Ž Ě Ý É Á Ř Ý Á Á ž ř ž ř ý é é č ů ý ý ň ý ý ň ň é č ř ř ř é č é ř é ů ý é ř ů ř é čů

Více

Úlohy domácí části I. kola kategorie B

Úlohy domácí části I. kola kategorie B 66. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B 1. Každému vrcholu pravidelného 66úhelníku přiřadíme jedno z čísel 1 nebo 1. Ke každé úsečce spojující dva jeho vrcholy (straně nebo

Více

ú ú ť ú ú ú ú ú ú ú ú ú ť ť ú ú ť ú ú ú ť ó ú ť Ý ú ú ú ú ú ú ú ó

ú ú ť ú ú ú ú ú ú ú ú ú ť ť ú ú ť ú ú ú ť ó ú ť Ý ú ú ú ú ú ú ú ó É Š ú ú ú ť ú ú ú ť ú ú ú ú ú ť ú ú ú ú ú ú ú ú ú ť ú ú ť ú ú ú ú ú ú ú ú ú ť ť ú ú ť ú ú ú ť ó ú ť Ý ú ú ú ú ú ú ú ó ú ú ú ú ú ú ú ú ť ú ú ď ú ť ť ú ú ú ú ú ť Ú Á ú ť ú ú ú ú ú ú ú ó ť ú ú ú Á Ú Ť ú ú

Více

Jak funguje asymetrické šifrování?

Jak funguje asymetrické šifrování? Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil

Více

ú ů Ý ůš š ů š ů Ý Ý ů

ú ů Ý ůš š ů š ů Ý Ý ů š š ó š Á ó Š Š š ž ó ú Š Š š ú ú Š ú š ú ů Ý ůš š ů š ů Ý Ý ů š Ť ú ú ů š ž ž Š ž ž ž Š Ý Ť ň Ť ň š š ď ž ž ž ň ď ž ň ň ň ň ž Ý ž Ú ů š š š Š ž ž ž ů š ž ž ž ú ú Š ť Ů Š Š Ř Ě É š š Č ÚČ Ě É É ď Í ú Í

Více

Ř Ů č č č ň ř ň ř ř ř ř Ú ž ř Í č č č č ň ř č Ž ň ř č ň ř Ů ů ř ů ň ří ů ň ř ř ů ří ú ů ň ř ž ž ž ž ž ž ů Ž ř ú ň č ž ř ř č ž ž č Ž č ž ň ň ří č ř ř ž

Ř Ů č č č ň ř ň ř ř ř ř Ú ž ř Í č č č č ň ř č Ž ň ř č ň ř Ů ů ř ů ň ří ů ň ř ř ů ří ú ů ň ř ž ž ž ž ž ž ů Ž ř ú ň č ž ř ř č ž ž č Ž č ž ň ň ří č ř ř ž č č Í č č č Č ó č Č š č ř ů č ů ú ů úč ž úč č ů č ů ů ř ř úč č ů č Í ů ř ř č ř ř ř ň Ú Ř Ů č č č ň ř ň ř ř ř ř Ú ž ř Í č č č č ň ř č Ž ň ř č ň ř Ů ů ř ů ň ří ů ň ř ř ů ří ú ů ň ř ž ž ž ž ž ž ů Ž ř ú ň

Více

Í ž ž Ž ž Ž Ž ž Š ď Ž Í ť ž Í Ž Ž Ž Í Ý Š Í Š ž Ž Š ž ž ť Ž Š

Í ž ž Ž ž Ž Ž ž Š ď Ž Í ť ž Í Ž Ž Ž Í Ý Š Í Š ž Ž Š ž ž ť Ž Š Á Í Í É ď ď Í Á ž Ž ž ž ž ž Í Í Ý Ě Í Í Í ž Š Ž Í ž Í ž ž ž ž ž ž Í ž ž Ž ž Ž Ž ž Š ď Ž Í ť ž Í Ž Ž Ž Í Ý Š Í Š ž Ž Š ž ž ť Ž Š ž Š ž ž ž Í ž ž Ž ž ž ť Í ž Ž ž ť Ž ž ž Š Ž ž Ž ž ť ž ž Í ž Š Ž ď ž ž ž ť

Více

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově METODICKÉ LISTY výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově reg. č. projektu: CZ.1.07/1.3.11/02.0005 Sada metodických listů: KABINET MATEMATIKY Název metodického

Více

Příprava na závěrečnou písemnou práci

Příprava na závěrečnou písemnou práci Příprava na závěrečnou písemnou práci Dělitelnost přirozených čísel Osová a středová souměrnost Povrch a objem krychle a kvádru Zlomky 1) Určete, zdali jsou pravdivé následující věty. 2) a) Číslo 544 721

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:

Více

ěž Úč úč Í ěž Ž č Ž ž ů Á Č Č Ž Úč Ž Úč Ž ň ž Ů č č Ž Úč Ž Í č š ě ň ó ÚČ č Ž Úč č Č š Ž Š Š ÍŠ

ěž Úč úč Í ěž Ž č Ž ž ů Á Č Č Ž Úč Ž Úč Ž ň ž Ů č č Ž Úč Ž Í č š ě ň ó ÚČ č Ž Úč č Č š Ž Š Š ÍŠ š ě ě š ů úč Ý č Č š ě úč š ěž ÚČ Úč ž č ž ě ě ě ů ě č ň č ž ÚČ Í ů č ú ě Á č Č č ň úč š ěž Úč úč Í ěž Ž č Ž ž ů Á Č Č Ž Úč Ž Úč Ž ň ž Ů č č Ž Úč Ž Í č š ě ň ó ÚČ č Ž Úč č Č š Ž Š Š ÍŠ ěž úč úč ž ě ž Ž

Více

Á É ú ě Á ě Á Č ě ž ú ý é ě ý é ě ďž é ě č ť ě é Č Č ě úě šíě é š ě ě ě é é ě é š ě é ě ě úě ěď ý š é é é č ě ť č Ř é š ě é ěú ýš č č ý ý ý ě č é ď Í

Á É ú ě Á ě Á Č ě ž ú ý é ě ý é ě ďž é ě č ť ě é Č Č ě úě šíě é š ě ě ě é é ě é š ě é ě ě úě ěď ý š é é é č ě ť č Ř é š ě é ěú ýš č č ý ý ý ě č é ď Í š ú ě ě é ě ý ú č š ó čó ž ó č ů é č ě č ň ť ť Á É ú ě Á ě Á Č ě ž ú ý é ě ý é ě ďž é ě č ť ě é Č Č ě úě šíě é š ě ě ě é é ě é š ě é ě ě úě ěď ý š é é é č ě ť č Ř é š ě é ěú ýš č č ý ý ý ě č é ď Í š ě

Více

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí. Instrukce: Vytiskněte si tenhle přehled, vybarvěte důležité části (zvýrazňovačkou, pastelkami) tak, aby jste se rychle orientovali. Při počítání příkladů jej mějte před sebou! a dívejte se do něj. Možná

Více

Ú č Č ě é č č ú ŠÍ ú š ě é č Á ě é č č ž é ž é Č é ú š ů č ě ů ž ý č é č ú ě Ž ú ž č č č é š č ú ě Č č š Č ě ě š ů ě č Č č é č Č Č ě ý ě Ů é ě č ú ó ž

Ú č Č ě é č č ú ŠÍ ú š ě é č Á ě é č č ž é ž é Č é ú š ů č ě ů ž ý č é č ú ě Ž ú ž č č č é š č ú ě Č č š Č ě ě š ů ě č Č č é č Č Č ě ý ě Ů é ě č ú ó ž Á Ň Ě ž ý š é é ú č ú š ý Ú é č ě ě ŠÍ Ů ů Č ě ě š ů č ě ě č ě š ý ú ž Á č č Č č ě é ú é ú ý Ú é Ř ů š é ú Č é Í é Ú ý Ž Č Ú č Č ě é č č ú ŠÍ ú š ě é č Á ě é č č ž é ž é Č é ú š ů č ě ů ž ý č é č ú ě Ž

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

Č Ž ú ú ú Š ú Š ú ú ó ú Č ú ú ú Č Ů ú ň ú ú Ě ú ú

Č Ž ú ú ú Š ú Š ú ú ó ú Č ú ú ú Č Ů ú ň ú ú Ě ú ú Ř ú ú Č ó ú ú Ů Ž Č Ž ú ú ú Š ú Š ú ú ó ú Č ú ú ú Č Ů ú ň ú ú Ě ú ú Ř ú ó ú ú Č ó ó ú ú ú ú ú ú ó ú ú ň Š Č Š ú ň ó Č Č ú ó Ů Ú ó Ť ú ó Č ó Ň ó ó ó Č ó ó ú ď Ů ú ú Š ú ň ň Ň ú ú ú Č Š ú ú Ů Ů Ž Ú Š ú Š

Více

Dirichletův princip. D1 Z libovolných 82 přirozených čísel lze vybrat dvě čísla tak, aby jejich rozdíl byl dělitelný číslem 81. Dokažte.

Dirichletův princip. D1 Z libovolných 82 přirozených čísel lze vybrat dvě čísla tak, aby jejich rozdíl byl dělitelný číslem 81. Dokažte. Dirichletův princip U1 Dirichletův princip a jeho důkaz. U2 Na konferenci 70 delegátů hovoří 11 různými jazyky, stejným jazykem nejvíce 15 z nich. Za oficiální je považován takový jazyk, kterým hovoří

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L

Více

Woody a Steina Vasulkovi

Woody a Steina Vasulkovi Woody a Steina Vasulkovi W o o d y & S t e i n a Va s u l k a V i d e o a r t o v á t v o r b a m a n ž e l ů Va s u l k o v ý c h j e v ý z n a m n ý m m e z n í k e m v e s v ě t o v é t v o r b ě u

Více

Největší společný dělitel

Největší společný dělitel 1..1 Největší společný dělitel Předpoklady: 01016 Číslo Číslo nsn Platí pravidlo "nsn získáme jako součin obou čísel"? = 1 = Násobící pravidlo platí. 1 = Násobící pravidlo platí. 1 = Násobící pravidlo

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

ř ř Ý Á Ř Ě É ů ř é č é ž ň ř Č š č š ž ř ý ů ů ř ž š š š é ř ř ř ť č ú ž ř ů ý š ý é ř č š ý č š ž č č ů Š š é š é ň éč é é ů š Š Š é ř š ř ž ý Ů Č č

ř ř Ý Á Ř Ě É ů ř é č é ž ň ř Č š č š ž ř ý ů ů ř ž š š š é ř ř ř ť č ú ž ř ů ý š ý é ř č š ý č š ž č č ů Š š é š é ň éč é é ů š Š Š é ř š ř ž ý Ů Č č č Ý Á Ř Ě É ů ř č š ř ů Ó É č úč č ú ý ý ý ú Č ř ř Ó É Č úč Č ý č ř é ý ý ž ř ř Ý Á Ř Ě É ů ř é č é ž ň ř Č š č š ž ř ý ů ů ř ž š š š é ř ř ř ť č ú ž ř ů ý š ý é ř č š ý č š ž č č ů Š š é š é ň éč é é

Více

š É ú Á Á ž ó ú Ť Á

š É ú Á Á ž ó ú Ť Á ú Ť ó š Á ú Á ý ó Ů Á Ř ÁÁ š Ť ú Ť š É ú Á Á ž ó ú Ť Á ž ž ý Ť Í Í ž š ž Č š Č Í ó Í ú ú ž š ž š Č ú É ú ú ž ý ú š ž ý ž ž ý š ó ž š ý ž š ý ý ů ú ů ý ů ž ó š ž ž ú ž ž ž ž š š ž Á ů ž š Ž Č š Č ú ů ú

Více

Ř ů Á Ř č úč ý ý ý ú ý č é ř ú é č é é ý ě ř ě ý ů é ř ě é č č ň č ě č é úč ě ř Č č ů ě č é č č č ěř ý é ů č é é č ů ú é Č ř ý ě ř é č ň é ú ě é ř é š

Ř ů Á Ř č úč ý ý ý ú ý č é ř ú é č é é ý ě ř ě ý ů é ř ě é č č ň č ě č é úč ě ř Č č ů ě č é č č č ěř ý é ů č é é č ů ú é Č ř ý ě ř é č ň é ú ě é ř é š ů Á Ř Ř ť Ť ů é ě ř č é Č ě ě š ř ů é é ý ů Á ěš Č úč Č é é Č ř éč Úč ř é č š š é ř ň Ů é ů ř é č ř č ř ý č ů ě č éč ř š č č č é ř ě ě ř ř ý č ý ů č ř ř ý č é ů č č ý ř Č č ř ě č šť č ý ů úč ů ý ř š Č

Více

ž ž ž ž ž ž ž ž ž Ř ž ž Ž Ž É Ě Ň ž

ž ž ž ž ž ž ž ž ž Ř ž ž Ž Ž É Ě Ň ž É Á É Á Ž ž ž ž Ý Ě ž ž Ž ž ž ž ž ž ž ž ž ž ž ž ž ž ž Ř ž ž Ž Ž É Ě Ň ž ž Š Š ž ž ž Ž Ř ž ž ž ž ž ž ž Ž ž Š É ž Ň ž Ó ž ž ž ž Ž Ž ž Ž ž ž Ž ž ž ž Š ž ž ž Ž ž Ž ž Ř Ž ž ž ž ž ž Ž ž Š ž Š ž Ž Ž ž ž Ž Š Ž

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více

ž ř ř ý Ž š ý š š Ž ř š š š ř š ý š ý Ž ů Ž ž š ý Ž Č š ý š Ů Ů ř ř š š ř ý ý ž ý Ž šť š ý ý ý ý ů ůž ý ý ř ý ý ž ý Ž ý ú š ý Ž Í ů ý ů ů ů ú ý ů ř ý

ž ř ř ý Ž š ý š š Ž ř š š š ř š ý š ý Ž ů Ž ž š ý Ž Č š ý š Ů Ů ř ř š š ř ý ý ž ý Ž šť š ý ý ý ý ů ůž ý ý ř ý ý ž ý Ž ý ú š ý Ž Í ů ý ů ů ů ú ý ů ř ý Ě Á Á Áš Ě Á ž ř ř ž ň ů ú ý š ů ř š Ú š š Ž ř ř Ž ň ů ú ř ř Ž ů ý ý ý ý ř Í š Ž ů ý ů ů ů ú ý ů ř ý ů ž ř ř ý Ž š ý š š Ž ř š š š ř š ý š ý Ž ů Ž ž š ý Ž Č š ý š Ů Ů ř ř š š ř ý ý ž ý Ž šť š ý ý ý ý ů

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

š š š š Ú Ú ů ů Ř ý

š š š š Ú Ú ů ů Ř ý Ě Ý úř Ě Á š š Ú Ú ů ý š ý š ž ú ý ú ú ú š ú ú ÚČ ž ť š ý Ř Ž ť š Í ť úř Ř š š š š Ú Ú ů ů Ř ý Ě Ř ý ŠÍ ž ů ů š Š Ó ž Č Ú ý ú ý š Ě Ř ý ú ů Í Í š ů Ó Ů Ž Í Č ů ů Ř ŠÍ Ů ý ň Ž ý ž ý ů Í ÚČ ůš ú Í ýš ž ýš

Více

č é ú ř Ž é é ž ů ň é ř ž ů ř š ř š ř é ř ú ž č ř ů é ž é ž ž ž ř ž é ž é ř ř ř č é ř ž ř é ř úř úř úř é ů č č é ř ř úř é é ř é č š ž č ř ů č é é é ú

č é ú ř Ž é é ž ů ň é ř ž ů ř š ř š ř é ř ú ž č ř ů é ž é ž ž ž ř ž é ž é ř ř ř č é ř ž ř é ř úř úř úř é ů č č é ř ř úř é é ř é č š ž č ř ů č é é é ú úř Č úř Í ř ř úř šť Í Í č úř úř ř š ú Á ň š ř ů é ú Í Í Ž ž Ž š č č Ž ř š č š ú ú óí ř ú ř š ň ř ž č ř ž č Í ž ž Ž ň Í š ř Ž é š ů ř š Á ř ž é č é ú ř Ž é é ž ů ň é ř ž ů ř š ř š ř é ř ú ž č ř ů é ž é

Více

Úlohy II. kola kategorie A

Úlohy II. kola kategorie A 5. ročník matematické olympiády Úlohy II. kola kategorie A 1. Najděte základy z všech číselných soustav, ve kterých je čtyřmístné číslo (1001) z dělitelné dvojmístným číslem (41) z.. Uvnitř strany AB daného

Více

V B r n ě, 2 4. b ř e z n a

V B r n ě, 2 4. b ř e z n a P E D A G O G I C K Á F A K U L T A M A S A R Y K O V Y U N I V E R Z I T Y V B R N Ě K a t e d r a o b č a n s k é v ý c h o v y V ý v o j č e s k o s l o v e n s k ý c h a č e s k ý c h p o l i t i c

Více

ý Č é é é ř ž ý ý ý ý ř é ř ý é ž Ž š ř ý ý ž ř ř é ř é ř ř é Ú š ř ž ý ú š ž ř ř ž é ž ň š é ž é ř ý ř Š ž ř é ž Ů é é ŽÍ ú é ý š é é ž ýš é é ž ř ž

ý Č é é é ř ž ý ý ý ý ř é ř ý é ž Ž š ř ý ý ž ř ř é ř é ř ř é Ú š ř ž ý ú š ž ř ř ž é ž ň š é ž é ř ý ř Š ž ř é ž Ů é é ŽÍ ú é ý š é é ž ýš é é ž ř ž ř ž é Á Š ř š ř ř ř ř š ú ř é Ř ř Č ť ř Ř éž ř ř é Ú é ř ó Ó é ý ř ý ý Ó ř ý é ý ř ř ž Č Č ž é ň Š Č Ž Č é ř é š Š Ú ř é Úř ý š Í é ý Č Š ř Úž ř é ř é ř ř ý Č é é é ř ž ý ý ý ý ř é ř ý é ž Ž š ř ý ý ž

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Modulární aritmetika, Malá Fermatova věta.

Modulární aritmetika, Malá Fermatova věta. Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-03

Více

ř č é é ř ě ý ů é ě Ě ř ů ý é ř č ř é é ř é ě ý ů é é ř ú úč č é ň ř ý ě é é ě ř řé ů ý č

ř č é é ř ě ý ů é ě Ě ř ů ý é ř č ř é é ř é ě ý ů é é ř ú úč č é ň ř ý ě é é ě ř řé ů ý č ř ř é ř ě ř ř é č ř č ř é é Úč ň é ý é ů šř ý Ú ě šř ě ů Ú ě ů ř ý ř é ř ě č ř ů ý č ř Ú Úč ů ů ď é šř ř š é ř é úč š ě é ě Š š é ř Ú Ž š ě Í ě ů š ě é ř é ř š é ř é ě é ů šř Ť ú ů Ú ě Ž č ř ú č ř ú č

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete všechny dvojice (x, y) reálných čísel, která vyhovují soustavě rovnic (x + )2 = y, (y )2 = x + 8. Řešení. Vzhledem k tomu,

Více

ř ý ý ř ě Úř ř ř š ú ř ý ěř Ú Č ě Í ú ř ú ý ů ě ě Í ř ě š ú ř ú ř Í ř ě ě Č ó Ž ě ýš ě š Č

ř ý ý ř ě Úř ř ř š ú ř ý ěř Ú Č ě Í ú ř ú ý ů ě ě Í ř ě š ú ř ú ř Í ř ě ě Č ó Ž ě ýš ě š Č ř ř š ř ú ř ý ěř ú ů ř š ěř Č š ř ý ý ř ě Úř ř ř š ú ř ý ěř Ú Č ě Í ú ř ú ý ů ě ě Í ř ě š ú ř ú ř Í ř ě ě Č ó Ž ě ýš ě š Č ř ř ú ýš ř ů ý š ý ů ý Ú ř ě ó ř ý š ř ý ýš ů ý ěř Ú ě ě ý ů ý ý ěř ě ř ř ý ě

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

PŘIJÍMACÍ ZKOUŠKY 2007

PŘIJÍMACÍ ZKOUŠKY 2007 MATEMATIKA Obor: 79-41-K/401 Součet bodů: Opravil: 1. termín Kontroloval: Vítejte v Omské v následujících 45 minutách budete řešit test z matematiky. Dobře si přečtěte zadání výpočty uvádějte s celým postupem

Více

3. podzimní série Termín odeslání: 8. prosince 2014

3. podzimní série Termín odeslání: 8. prosince 2014 Kongruence podzimní série Termín odeslání: 8 prosince 2014 Poznámka: Nulu za přirozené číslo nepovažujeme Úloha 1 ( body) Když si Kuba hrál se svým oblíbeným přirozeným číslem, zjistil zajímavou věc Nejenže

Více