FORENZNÍ CHEMIE - CHEMIK DETEKTIVEM
|
|
- Ludmila Kovářová
- před 10 lety
- Počet zobrazení:
Transkript
1 Chemistry and Industry for Teachers in European Schools FREZÍ CHEMIE - CHEMIK DETEKTIVEM Jednoduché experimenty do hodin chemie Hans Joachim Bader a Martin Rothweil Překlad Eva Stratilová Urválková Project CP DE CMEIUS C21 v. 0.0 ( )
2
3 CITIES (Chemistry and Industry for Teachers in European Schools, nebo-li Chemie a průmysl pro učitele evropských škol) je projekt programu CMEIUS, který se zaměřuje na vytváření výukových materiálů pro učitele chemie, jež se snaží zatraktivnit své hodiny chemie tím, že se snaží vyučovaná témata začlenit do kontextu chemického průmyslu a každodenního života. Projektu CITIES se účastní následující organizace: Goethe-Universität Frankfurt, ěmecko, Česká společnost chemická, Praha, Česká republika, Jagiellonian University, Krakov, Polsko, Hochschule Fresenius, Idstein, ěmecko, European Chemical Employers Group (ECEG; Skupina evropských chemických zaměstnavatelů), Brusel, Belgie, Královská chemická společnost, Londýn, Velká Británie, European Mine, Chemical and Energy Workers Federation (EMCEF; Federace evropských těžebních, chemických a energetických společností), Brusel, Belgie, ottingham Trent University, ottingham, Velká Británie, Gesellschaft Deutscher Chemiker (GDCh; ěmecká chemická společnost), Frankfurt/Main, ěmecko, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Španělsko, Další organizace zapojené do projektu CITIES: ewcastle-under-lyme School, Staffordshire, Velká Británie Masarykova střední škola chemická, Praha, Česká republika Astyle linguistic competence, Vídeň, Rakousko Univerzita Karlova v Praze, Praha, Česká republika Tento projekt je financovaný za podpory Evropské komise. Publikace vydané v rámci projektu vyjadřují pouze názory autorů, Evropská komise nenese žádnou zodpovědnost za jakékoli následky způsobené přenosem/využitím informací z těchto publikací. CITIES tým předpokládá, že všichni, kteří využívají uvedený experimentální materiál, znají a dodržují bezpečnostní i jiné předpisy závazné v jednotlivých zúčastněných zemích. CITIES nenese žádnou zodpovědnost za případné škody vzniklé nesprávným provedením uvedených postupů. v. 0.0 ( ) 1
4 DHALVÁÍ TISKŮ PRSTŮ PUŽITÍ PRÁŠKŮ PR DETEKCI TISKŮ ZÁKLADY Všechny prášky zmiňované v následujících experimentech se používají při profesionálním zajišťování důkazů. Všeobecně používanými činidly jsou železný prach a oxid železitý. Výborným povrchem pro zjišťování přítomnosti stop jsou sklo a glazovaná keramika. Zviditelněné stopy pak mohou být odebrány a zajištěny pomocí lepicí pásky, která se i se stopou přenese na bílý papír. DBA TRVÁÍ PMŮCKY CHEMIKÁLIE 15 min 4 jemné štetce, 4 Petriho misky, skleněné nádobí, lepicí páska (pokud možno co nejširší), bílý papír grafit/tuha, práškový hliník, jemný železný prach, oxid železitý (prach) BEZPEČST železný prach (hořlavý, F), práškový hliník (hořlavý, F) PSTUP PZRVÁÍ VYHDCEÍ AKLÁDÁÍ S DPADY a nádobách nebo jiných materiálech s hladkým povrchem zanechejte otisky prstů. Poté dejte do Petriho misek malá množství jednotlivých prášků a naneste je pomocí štětce na zanechané stopy. Prášky můžete nanášet buď lehkým poklepáním štětce nad stopou nebo stopu přímo zlehka potřete (pozor na rozmazání!). Přebytečný prášek odfoukněte. a zvýrazněnou stopu přilepte lepicí pásku a otisk opatrně sejměte; pásku přilepte na bílý papír. tisk prstu se po posypání objeví ve tvaru papilárních linií v barvě prášku. Pro různé povrchy materiálů se doporučují různé prášky. Prášek přilne k povrchu stopy díky přitažlivým silám způsobených složkami otisku prstu (voda, tuky, atd.), a proto prášek kontrastními barvami zviditelní otisk prstu. Prášky mohou být využity při opakování experimentu nebo uskladněny jako chemikálie pro další jiné experimenty. 2 Project CP DE CMEIUS C21
5 DHALVÁÍ TISKŮ PRSTŮ PUŽITÍ JDU ZÁKLADY DBA TRVÁÍ PMŮCKY CHEMIKÁLIE BEZPEČST PSTUP Jod se pro detekci stop používá ve formě prášku nebo par, v každém případě ne na místě činu kvůli svým škodlivým vlastnostem (při vdechnutí dráždí sliznice, nebezpečný i při kontaktu s kůží). Jod je dobrým kontrastním činidlem pro takové nosiče stop, jako je papír. Kvůli vysoké těkavosti lze stopy zvýrazněné jodem spatřit po relativně krátkou dobu, proto je nutné stopu vyfotografovat případně jinak zafixovat chemickou reakcí, např. se škrobem. 15 min nálevka s kohoutkem, gumový balónek, skleněná vata, gumové zátky, vyvíjecí komora (Erlenmayerova baňka se zátkou), miska s pískem, vařič, pinzeta, papír, karton/lepenka, ochranné rukavice, stojan jod jod (zdraví škodlivý, Xn; nebezpečný pro životní prostředí, ) a papíru nebo lepence zanechejte otisky prstů. Další operace je třeba provádět v digestoři (nebo alespoň při dobrém větrání) a s ochrannými rukavicemi. Varianta 1 (s jodovým rozprašovačem"): do nálevky s kohoutem dejte skleněnou vatu, pak jod a nakonec opět skleněnou vatu. K vývodu upevněte gumový balónek (viz obrázek). a nosič stop naneste jodové páry pomocí tohoto rozprašovače. Po skončení uzavřete nálevku gumovou zátkou. Varianta 2 (s vyvíjecí komorou): na dno větší Erlenmayerovy baňky nasypte lžičku krystalků jodu a v. 0.0 ( ) 3
6 do baňky dejte papír s hledanými otisky. Baňku uzavřete gumovou zátkou, dejte ji na misku s pískem a tu opatrně zahřívejte; lze také postavit ke zdroji tepla sublimace probíhá bez problémů). PZRVÁÍ VYHDCEÍ AKLÁDÁÍ S DPADY RADY tisky prstů se objeví jako nahnědlé vzory papilárních linií. Jod ulpívá na povrchu stopy díky přitažlivým silám látek ve stopě (voda, tuky, atd.). Krystalky jodu lze ponechat pro další provedení tohoto nebo jiných experimentů, nebo zlikvidovat jako pevný chemický odpad. Stopy jsou viditelné pouze po krátkou dobu, protože jod je poměrně těkavá látka. Dlouhodobé fixace lze dosáhnout přestříkáním nosiče stop jednoprocentním roztokem škrobu (stopy zmodrají). Před nanesením roztoku škrobu je dobré nechat odtěkat přebytečné množství jodu. 4 Project CP DE CMEIUS C21
7 DHALVÁÍ TISKŮ PRSTŮ PUŽITÍ KYAAKRYLÁTU ZÁKLADY Kyanoakrylátová lepidla jsou jednosložková lepidla na bázi monomerních esterů 2-kyanoakrylové kyseliny. V přítomnosti vody velice rychle vulkanizují přeměňují se na vysokomolekulární polymery s nerozvětveným řetězcem. Touto metodou mohou být úspěšně odhaleny otisky prstů např. na kovech a skle: otisk zbělá/zešedne. Jako činidlo lze použít kromě monomeru také polymer: zahříváním vzniká z polymeru monomer, který může následně opět polymerovat. CR CR n H 2 C C C T * CH 2 C * C n DBA TRVÁÍ 30 min PMŮCKY CHEMIKÁLIE BEZPEČST PSTUP velká krystalizační miska (Ø 14 cm), topná deska, teploměr, kádinka (50 ml), odpařovací miska, malý kovový (hliníkový) předmět nebo porcelánový/skleněný předmět obalený hliníkovou fólií, hliníková folie kyanoakrylát (vteřinové lepidlo), ethanol, oxid hlinitý ethanol (vysoce hořlavý, F), kyanoakrylát (dráždivý, Xi). Kyanoakrylát může během několika vteřin slepit kůži či oční víčka. Jako nosič otisků použijte kovový předmět, např. kávovou lžičku. Předmět lze s úspěchem nahradit např. lodičkou obalenou hliníkovou fólií (lesklou stranou nahoru). a ethanolem odmaštěný kousek kovového povrchu naneste několik otisků. Všechny následující operace provádějte v digestoři. Velká krystalizační miska bude sloužit jako odpařovací zařízení: Krystalizační misku naplňte do poloviny vodou. Dovnitř vložte kádinku nebo vyšší Petriho misku s malým množstvím vteřinového lepidla. ádobku s lepidlem případně podložte velkou pryžovou zátkou nebo jiným předmětem, aby dovnitř nemohla vniknout voda z krystalizační misky. Vedle této nádobky vložte vyšší v. 0.0 ( ) 5
8 odpařovací misku (opět případně vypodloženou, aby na ni nedosáhla hladina vody) s kovovým předmětem nesoucím otisky prstů. Do vody v krystalizační misce ponořte teploměr, celou misku překryjte hliníkovou fólií a aparaturu zahřívejte na topné desce zhruba na C. Po několika minutách lze pozorovat vyvíjení světle šedých otisků prstů na kovovém předmětu, případně i na vnitřním povrchu krycí hliníkové fólie. PZRVÁÍ VYHDCEÍ AKLÁDÁÍ S DPADY tisky prstů na kovovém materiálu se objeví jako šedobílé vzory papilárních linií. Monomerní kyanoakrylát rychle tvrdne/vulkanizuje na vysokomolekulární nerozvětvenou formu pomocí stopových množství vody. Díky relativně vysokému obsahu vody v otisku prstu dochází k polymerizaci právě na tomto místě. S použitým kyanoakrylátovým lepidlem zacházejte jako s odpady z domácností. 6 Project CP DE CMEIUS C21
9 ZAJIŠŤVÁÍ TISKŮ BT, HU A VZIDEL: SÁDRA JAK ČIIDL PR UCHVÁÍ STP ZÁKLADY DBA TRVÁÍ K osvětlení zločinu slouží kromě otisků prstů jako dobré stopy rovněž otisky bot, nohou či vozidel. Tyto stopy lze nalézt v písku nebo kypré půdě. Pokud není možné získat originál stopy, musí se otisk odlít. Pro odlévání se doporučuje zubní nebo běžná sádra. Před odlitím musí být stopa zafixována nějakým fixačním činidlem, což může být lak na vlasy nebo nátěrový lak. V následujícím experimentu se používá lak na vlasy a sádra. 45 min PMŮCKY mísa na sádru, škrabka, mělká plastová miska (cca cm), dřevěný nebo lepenkový rám CHEMIKÁLIE modelovací sádra, sprej na vlasy, květinový substrát BEZPEČST - PSTUP PZRVÁÍ VYHDCEÍ Mělkou misku naplňte vrstvou květinového substrátu a otiskněte do něj stopu. Stopu zafixujte lakem na vlasy a zajistěte okraje stopy tím, že kolem stopy dáte lepenkový rám. Připravte sádru podle instrukcí na obalu sádra s vodou by měla mít takovou konzistenci, aby se dala pohodlně přenést do zafixované stopy. Připravenou sádru můžete do stopy buď opatrně nalít nebo ji nanést pomocí špachtle; sádru začněte plnit do nejhlubšího místa stopy. Předtím, než úplně sádra zaschne, odstraňte lepenkový rám. Vrstvu zajišťovacího materiálu (květinového substrátu) však můžete odstranit až po úplném ztvrdnutí sádry. dlitek je trojrozměrnou zrcadlovou kopií originálu stopy. tisk (v našem případě stopa chodidla) je zafixován pomocí laku na vlasy. Sádra obsahuje hemihydrát síranu vápenatého, který při reakci s vodou vytváří pevný dihydrát síranu vápenatého. CaS 4 ½ H ½ H 2 CaS 4 2 H 2 AKLÁDÁÍ S DPADY Zbytky sádry se likvidují jako odpad z domácnosti. v. 0.0 ( ) 7
10 RADY Před pořízením skutečné stopy z přírody musí být stopa řádně očištěna od zbytkových nečistot (listí, kousky dřeva, kamínky, atd.) a případná voda se odsaje savým papírem nebo pipetou. ěkteré podkladové materiály mají tendenci hodně vstřebávat vodu a odlitek tak nelze dokonale očistit. V takových případech je nutné stopu zafixovat kvalitním nátěrem. 8 Project CP DE CMEIUS C21
11 BVEÍ EMBSVAÝCH ČÍSEL A PÍSME ZVIDITELĚÍ ZIČEÝCH EMBSVAÝCH STP A MSAZÝCH PŘEDMĚTECH ZÁKLADY Motory, zbraně a klíče s chráněným profilem jsou typické předměty, které obsahují vlastní unikátní kódy ve formě písmenek, čísel či jiných znaků. Jestliže je tento předmět použit při spáchání zločinu, pachatel většinou odstraní nebo změní stopy, které by ho mohly usvědčit. To se často dělá různým pilováním, škrábáním, vrtáním, obrušováním nebo vyrýváním jiných znaků. V takových případech používá forenzní technologie metody metalografického leptání, kterým se také někdy říká zvýraznění struktury. Leptáním se totiž zvýrazní změny ve struktuře materiálu, které nastaly původním ražením znaků do kovu. Techniku lze demonstrovat na mosazném nádobí vyleptaném pomocí chloridu železitého. Podrobnosti k přípravě leptacího roztoku naleznete níže. DBA TRVÁÍ PMŮCKY min (nemagnetické) klíče vyrobené z mosazi nebo alpaky, pilník, smirkový papír (zrnitost 320, 600, 1000), odměrný válec (50 ml), Petriho misky, kleště (pinzeta), kádinka (100 ml), lžička, váhy, váženka, papírové ubrousky CHEMIKÁLIE chlorid železitý (bezvodý), HCl (w = 30 %) BEZPEČST PSTUP chlorid železitý (zdraví škodlivý, Xn), kyselina chlorovodíková (žíravá, C) Vyražené znaky v předmětech odstraňte pomocí pilníku tak, aby to vypadalo, že tam nikdy nebyly. Povrch vyhlaďte smirkovým papírem (320, 600 a 1000). Jestliže používáte vlhčený smirkový papír, musí být dostatečně navlhčen. Leptací roztok připravte rozpuštěním 5 g FeCl 3 v 50 ml kyseliny chlorovodíkové. Předměty dejte na 10 min do Petriho misky s leptacím roztokem. Předměty poté opláchněte pod tekoucí vodou a vysušte papírem do sucha. Pokud není výsledek dostatečně přesvědčivý, můžete celý postup několikrát opakovat. v. 0.0 ( ) 9
12 PZRVÁÍ VYHDCEÍ Vyražená čísla či písmena odstraněná pilníkem se zdají pouhým okem neviditelná. Po krátké lázni v kyselém roztoku chloridu železitého jsou vidět jako kontrastní šedá místa. Při ražení za studena dochází k hlubším změnám materiálu, než je jen samotný vytepaný znak, a proto lze těchto hlubších změn využít k obnovení zdánlivě zničených znaků. Jestliže se tyto části dostanou do styku s oxidačním činidlem (Fe 3+ ), vylučuje se v daném místě elementární kov. Díky narušené struktuře slitiny dochází v místě ražby k rychlejší oxidaci a k vytvoření silnější vrstvičky produktu na povrchu. Cu + 2 Fe 3+ Cu Fe 2+ AKLÁDÁÍ S DPADY RADY Kyselé roztoky těžkých kovů zneutralizujte a poté likvidujte jako odpad obsahující kovy. K dosažení maximální reprodukovatelnosti ve školních podmínkách nemusí být odstraněn celý znak z předmětu. Alpaka obsahuje zhruba 60 % mědi, 20 % niklu a 20 % zinku. Embosovanými předměty se v našem případě myslí ty, které obsahují vyražené znaky dovnitř kovu nikoli plastické vystouplé znaky. 10 Project CP DE CMEIUS C21
13 EVIDITELÉ IKUSTY A PADĚLÁÍ DKUMETŮ PŘÍPRAVA MDRÉH EVIDITELÉH IKUSTU ZÁKLADY DBA TRVÁÍ PMŮCKY CHEMIKÁLIE BEZPEČST PSTUP Thymolftalein je organické barvivo schopné měnit svou strukturu podle ph prostředí. V zásaditém prostředí je modrý, v neutrálním a kyselém prostředí bezbarvý minut kádinky (100 ml, 2 x 250 ml), odměrný válec (100 ml), skleněná tyčinka, štětec, velké bílé filtrační papíry nebo papíry do tiskárny, rozprašovač, lžička, váhy, váženka thymolftalein, ethanol, uhličitan sodný bezvodý, hydroxid sodný ethanol (vysoce hořlavý, F), uhličitan sodný (dráždivý, Xi), hydroxid sodný (žíravý, C) ejprve připravte následující roztoky: - 0,04 g ah ve 100 ml destilované vody, - 0,04 g thymolftaleinu v 50 ml ethanolu - 0,5 g a 2 C 3 v 100 ml vody. alijte bezbarvý roztok thymolftaleinu do bezbarvého roztoku uhličitanu. Tento roztok můžete použít jako inkoust. apište štětcem pár slov na papír. Po cca 10 minutách přestříkejte papír roztokem hydroxidu. PZRVÁÍ VYHDCEÍ Ethanolový roztok thymolftaleinu je bezbarvý. Pokud je tento roztok smíchán s bezbarvým roztokem uhličitanu, vnikne modrý roztok, který lze použít jako inkoust. Po uplynutí zhruba 10 minut inkoust na papíře zmizí. Přestříkáním papíru roztokem hydroxidu se nápis opět objeví. Rozpouštěním uhličitanu sodného ve vodě vznikají hydroxidové ionty, roztok má alkalickou povahu a 2 C 3 + H 2 2a + + HC H - Modrou barvu roztoku způsobuje indikátor thymolftalein, který je přidán k roztoku. Tímto modrým inkoustem lze psát zprávy. Pokud se nechá papír volně na vzduchu, zásadité prostředí je postupně neutralizováno vznikající kyselinou uhličitou (oxid v. 0.0 ( ) 11
14 uhličitý, kterého je ve vzduchu cca 0,03 %, reaguje s vodou v inkoustu za vzniku kyseliny uhličité). Se změnou ph prostředí se mění i struktura indikátoru stává se bezbarvým, a proto již nelze přečíst zprávu. Jakmile je na papír nanesen roztok hydroxidu, změní se ph prostředí a modré zbarvení se opět navrátí. C _ C a + H H - a + thymolftalein AKLÁDÁÍ S DPADY Zbývající roztoky lze vylít do odpadu. 12 Project CP DE CMEIUS C21
15 EVIDITELÉ IKUSTY A PADĚLÁÍ DKUMETŮ PŘÍPRAVA IKUSTU VIDITELÉH P KRÁTKU DBU ZÁKLADY DBA TRVÁÍ PMŮCKY CHEMIKÁLIE Krátkodobě viditelný inkoust lze jednoduše připravit pomocí škrobu. Jakmile inkoust zaschne, písmo zmizí. K psaní je možné použít pouze papír, který neobsahuje škrob. Běžný tiskařský papír však škrob obsahuje, lepší je tedy filtrační papír. Jakmile je neviditelné písmo přestříkáno roztokem jodu v jodidu draselném, zpráva se znovu objeví. Reakcí s thiosulfátem sodným dojde znovu ke zmizení písma. 30 min kádinky (100 ml, 3 x 250 ml), odměrný válec (100 ml), magnetická míchačka s vyhříváním, magnetické míchadlo, filtrační papír, 2x rozprašovač, štětec, lžička, skleněné tyčinky, váhy, kopist jod, jodid draselný (sodný), škrob, pentahydrát thiosulfátu sodného, led BEZPEČST jod (dráždivý, Xn; nebezpečný pro životní prostředí, ) PSTUP Připravte roztok neviditelného inkoustu: ve 100 ml vody rozpusťte 1 g škrobu, přidejte cca 50 ml vroucí destilované vody a zahřívejte roztok dalších zhruba pět minut. Poté přidejte asi 40 ml ledu. apište na filtrační papír tajnou zprávu a nechejte ho uschnout. Pro zviditelnění zprávy potřebujete roztok jodu. Ten připravte rozpuštěním 1,7 g KI a 2,5 g I 2 ve vodě a doplňte roztok do 100 ml vodou. Roztok nalijte do rozprašovače a přestříkejte jím hledanou zprávu. (Při použití ai rozpusťte 1,54 g soli.) Zprávu můžete opět zneviditelnit, jestliže ji přestříkáte následujícím roztokem: rozpusťte ve vodě 2,32 g a 2 S 2 3.5H 2 a roztok doplňte do 100 ml vodou. PZRVÁÍ Barva původního roztoku inkoustu je slabě viditelná, ale po vyschnutí škrobu je písmo úplně neviditelné. v. 0.0 ( ) 13
16 I I I I I anesením roztoku jodu s jodidem draselným písmo zmodrá. ásledné přestříkání papíru roztokem thiosíranu sodného písmo opět zmizí. VYHDCEÍ Jod je za pokojové teploty ve vodě špatně rozpustný. Přidáním KI se jeho rozpustnost ve vodě zvýší. Molekuly jodu I 2 tvoří spolu s jodidovými ionty I 3 - ionty, které jsou ve vodě velmi dobře rozpustné. I 2 + KI KI 3 (nebo I 2 + I - I 3 - ) Jod vytváří ve škrobu s amylosou fialovomodrý komplex. Molekuly jodu se vmezeří do prostorových závitů amylosy a toto uspořádání způsobuje modré zbarvení. Molekuly jodu ve stočené molekule amylosy. Amylosa vzniká spojením molekul glukos α(1,4)- glykosidickou vazbou, tato vazba způsobuje vznik šroubovice v prostoru. H H H H H H H H H H H H H H H H Spojení molekul glukosy, které vytvářejí amylosu Rozpuštěním jodu a jodidu draselného ve vodě vzniká červenohnědý roztok. Jestliže se jod nanesením na papír dostane na místo se škrobem, vnikne do amylosy a vzniklý modrý komplex zviditelní písmo. 14 Project CP DE CMEIUS C21
17 Molekuly jodu I 2, čili elementární jod musí být přítomen, aby vznikl komplex se škrobem, přesněji amylosou. Thiosíran sodný písmo zneviditelní tím, že redukuje jod na jodidové ionty, které netvoří s amylosou barevný komplex. Thiosíran (S ) se reakcí s jodem oxiduje na tetrathionatan (S ). AKLÁDÁÍ S DPADY Roztok škrobu lze vylít do kanalizace. Zbytek jodu a jodidu draselného společně s thiosulfátem sodným likvidujte jako těžké kovy. v. 0.0 ( ) 15
18 EVIDITELÉ IKUSTY A PADĚLÁÍ DKUMETŮ EVIDITELÉ PER ZÁKLADY DBA TRVÁÍ PMŮCKY eviditelné pero je komerčně dostupný nástroj naplněný neviditelným inkoustem. Zprávy, které jsou jím napsány, lze přečíst jedině s pomocí mini UV lampy, která je součástí pera. 1 minuta eviditelné pero (Pero s neviditelným inkoustem), UV lampa, papír CHEMIKÁLIE - BEZPEČST - PSTUP PZRVÁÍ VYHDCEÍ RADY apište zprávu na papír pomocí pera s neviditelným inkoustem. Poté osvětlete papír UV lampou. Zpráva je nejprve neviditelná, ale v UV světle se jeví jako světle modré (fialové) písmo. eviditelné pero obsahuje blíže neurčenou látku, která neabsorbuje viditelné světlo, a proto se jeví jako bezbarvá. Jakmile je však látka osvětlena světlem o vlnových délkách v UV oblasti, tyto vlnové délky látka absorbuje a tudíž i vyzařuje světlo v této vlnové oblasti (luminiscence). Luminiscence je jev, kdy elektron přejde z energeticky vyšší hladiny na nižší, přičemž vyzáří energii ve formě světla. eviditelné pero lze v ČR sehnat spíše jako Pero s neviditelným inkoustem, cena cca 100,- Kč. 16 Project CP DE CMEIUS C21
19 KREV HEMGLBIVÝ TEST (TEICHMAŮV TEST, V. 1) ZÁKLADY Červené krvinky obsahují barevný transportní metaloprotein, hemoglobin, který se skládá z barevné složky, hemu, a proteinové části, globulinu ty dohromady tvoří komplex. Molekula hemoglobinu obsahuje čtyři globiny a na ně navázané hemy, z nichž každý sestává z modifikovaného porfyrinového kruhu s navázaným železem (Fe 2+ ). Právě tento systém je přenašečem kyslíku v krvi. Molekula kyslíku se váže na železnatý ion bez jakékoli změny redoxního čísla. Hem se může změnit na hematin, kde je železo v oxidačním stavu III. ásledující Teichmannův test dokazuje přítomnost krve ve vzorku, který může být i několik staletí starý. Test je zde popsán ve dvou provedeních. Glo His bin H HC D C 2 + Fe A B A D III Fe B C Cl - HC 2 Hemoglobin CH Hemin CH DBA TRVÁÍ 30 minut PMŮCKY CHEMIKÁLIE mikroskop (500x zvětšení), třecí miska s tloučkem, kahan, kapátko, podložní a krycí sklíčko, držák na zkumavky chlorid sodný, konc. kyselina octová, vepřová krev BEZPEČST kyselina octová (žíravá, C) PSTUP a podložní sklíčko kápněte kapku krve a rozetřete ji druhým sklíčkem; kapku nechejte 5-10 minut schnout. Mezitím si v třecí misce rozetřete trošku (!) chloridu sodného. Jakmile krev zaschne, seškrábněte ji na druhé v. 0.0 ( ) 17
20 sklíčko, přidejte na špičku kopistku chloridu sodného a zakápněte dvěma kapkami kyseliny octové. Přikryjte vzorek krycím sklíčkem a opatrně zahřívejte v plameni k varu. Po ochlazení sklíčka pozorujte vzorek pod mikroskopem. Začněte od nejmenšího zvětšení, až uvidíte zřetelně krystaly (viz obr). (zdroj: lfbz Chemie Frankfurt/M.; 160x zvětšení, světelný mikroskop) PZRVÁÍ VYHDCEÍ AKLÁDÁÍ S DPADY RADY Pod mikroskopem lze spatřit mnoho krystalů. To jsou krystaly chloridu sodného, které se nerozpustily a nereagovaly. Až při větším zvětšení se objeví mnoho jemných, jehlovitých krystalů tmavě hnědé barvy. Teichmannovy krystaly jsou krystaly, ve kterých se nachází chlorid hematinu (hnědá barva) hemin. mikroskopická sklíčka se likvidují jako domácí odpad. Mikroskopické sklíčko může při vysokých teplotách prasknout (ochranné brýle!). Místo krycího sklíčka lze použít druhé podložní sklíčko nebo krycí sklíčko vůbec nepoužít. Příliš mnoho acl maskuje krystaly heminu. Podložní sklíčko se může v plameni zakouřit. 18 Project CP DE CMEIUS C21
21 KREV HEMGLBIVÝ TEST (TEICHMAŮV TEST, V. 2) DBA TRVÁÍ PMŮCKY CHEMIKÁLIE 20 min jako v předchozí variantě, navíc odměrný válec 10 ml a zkumavka viz předchozí provedení BEZPEČST kyselina octová (žíravá, C) PSTUP PZRVÁÍ VYHDCEÍ AKLÁDÁÍ S DPADY RADY Do zkumavky dejte 2 ml krve, trošku acl a tři až čtyři kapky kyseliny octové; zamíchejte. Roztok opatrně zahřejte v modrém plameni kahanu, nechejte odpařit roztok na 2/3 původního množství. Po ochlazení dejte kapku roztoku na podložní sklíčko, a rozetřete ji. Až kapka uschne, pozorujte krystaly pod mikroskopem začněte od nejmenšího zvětšení do doby správného zaostření. Krystaly musí být zřetelně viditelné. I v tomto případě jsou viditelné přebytečné krystaly acl, ale méně než v prvním případě. Mezi krystaly se nacházejí rhombické hnědé krystaly heminu, s lehce modravým povrchem. Krystalků heminu je o dost méně než acl, ale jsou naproti tomu snáze rozeznatelné. Teichmannovy krystaly jsou krystaly, ve kterých se nachází chlorid hematinu hemin (viz struktura v první variantě). Mikroskopická sklíčka se likvidují jako domácí odpad. Ve zkumavce může díky viskozitě směsi dojít k utajenému varu (ochranné brýle!) v. 0.0 ( ) 19
22 KREV ZJIŠŤVÁÍ STP KRVE PMCÍ LUMILU ZÁKLADY Bezpečná a charakteristická metoda využívající vodného roztoku luminolu odhalí i stopové množství krve, které je pouhým okem neviditelné. Luminol totiž ve spojení s peroxidem vykazuje silnou chemiluminiscenci: během reakce dochází k přeměně chemické energie v elektrickou, která je vyzářena ve formě světla. (zdroj: DBA TRVÁÍ PMŮCKY 30 minut kádinky (100 ml, 250 ml), střička, dva pásky bavlněné látky, odměrný válec (10 ml), lžička, váhy, pipety, rukavice CHEMIKÁLIE luminol (5-amino-2,3-dihydroftalazin-1,4-dion), uhličitan sodný, peroxid vodíku (w = 30 %), vepřová krev, kečup BEZPEČST PSTUP PZRVÁÍ VYHDCEÍ peroxid vodíku (žíravý, C), uhličitan sodný (dráždivý, Xi) a kousek bavlněné tkaniny nakapejte několik kapek vepřové krve, na druhý kousek látky kečup. Do 250 ml kádinky připravte roztok luminolu: 0,1 g luminolu a 5 g uhličitanu sodného rozpusťte ve 100 ml destilované vody a přidejte 15 ml peroxidu vodíku. Přelijte roztok do střičky nebo rozprašovače tak, aby nerozpuštěný zbytek zůstal v kádince. Tkaninu s pravými a falešnými krevními stopami umístěte do temného prostoru (např. přivřená skříň) a postříkejte roztokem z rozprašovače. Pokud se nedostaví žádný efekt, postřik zopakujte. Po přestříkání místa s krví se místo rozsvítí namodralým světlem. Akci můžete několikrát opakovat. Skvrna s kečupem neposkytuje žádnou reakci. Luminol podléhá v zásaditém prostředí oxidaci peroxidem vodíku na diazachinon a postupně až na peroxodeanion. Z oxidačního produktu se za katalýzy hemovou skupinou odštěpuje molekula dusíku a vzniká excitovaný anion kyseliny aminoftalové. Vyzářením 20 Project CP DE CMEIUS C21
23 energie v podobě světla molekula opět dosahuje základního energetického stavu. H 2 H 2 H H + H22/[H] - 2 H2 H 2 + H 2 2 /2 H H 2 Catalyst: Kat.: hem haem H 2 * H 2 h*ν Reakce roztoku luminolu s krví (v přítomnosti peroxidu vodíku); katalyzátor hem. v. 0.0 ( ) 21
24 R 1 A D Fe B C CH R 2 CH Hem (v užším slyslu: protoferro hem - Fe 2+ komplex protoporfyrinu) AKLÁDÁÍ S DPADY Zbytek luminolu neutralizujte zředěnou HCl a vylijte do odpadu. 22 Project CP DE CMEIUS C21
25 Tato práce je licencována nekomerční licencí Creative Commons Attribution-on-commercial-o Derivative Works 3.0 Unported License. Kopii licence získáte návštěvou stránek nebo zašlete dopis na adresu Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. v. 0.0 ( ) 23
1. Otisky prstů použití prášků
Autory návodů jsou Hans Joachim Bader a Martin Rothweil z projektu CITIES, ověření, popř. úpravy experimentů, návod č. 10 a fotodokumentaci zajistily Renata Šulcová, Hana Böhmová a Eva Stratilová Urválková
Chemistry and Industry for Teachers in European Schools FORENZNÍ CHEMIE. Scénář vyučovací hodiny chemie. Iwona Maciejowska
Chemistry and Industry for Teachers in European Schools FORENZNÍ CHEMIE Scénář vyučovací hodiny chemie Iwona Maciejowska Překlad Eva Stratilová Urválková Project N. 129193-CP-1-2006-1-DE COMENIUS C21 v.
Chemistry and Industry for Teachers in European Schools FORENZNÍ CHEMIE. Detektivní hádanka. Iwona Maciejowska. Překlad Eva Stratilová Urválková
Chemistry and Industry for Teachers in European Schools FORENZNÍ CHEMIE Detektivní hádanka Iwona Maciejowska Překlad Eva Stratilová Urválková Project N. 129193-CP-1-2006-1-DE COMENIUS C21 v. 0.0 (2009-10-03)
Chemistry and Industry for Teachers in European Schools CHEMIE VŠECHNO MĚNÍ. Margarín z vodíku a rostlinného oleje. Původní článek: Keith Healey
Chemistry and Industry for Teachers in European Schools CHEMIE VŠECHNO MĚNÍ Margarín z vodíku a rostlinného oleje Původní článek: Keith Healey Původní jazyk článku: angličtina Český překlad: Marek Čtrnáct
KVALITATIVNÍ ELEMENTÁRNÍ ANALÝZA ORGANICKÝCH LÁTEK
LABORATORNÍ PRÁCE Č. 24 KVALITATIVNÍ ELEMENTÁRNÍ ANALÝZA ORGANICKÝCH LÁTEK PRINCIP Organická kvalitativní elementární analýza zkoumá chemické složení organických látek, zabývá se identifikací jednotlivých
P + D PRVKY Laboratorní práce
Téma: Reakce sloučenin zinku P + D PRVKY Laboratorní práce Pozn: Výsledky úkolu 1 zapisujte až po 14 dnech. Úkol 4 provádějte pouze pod dohledem učitele. Úkol 1: Připravte 5 gramů bílé skalice. Bílá skalice
RUŠENÁ KRYSTALIZACE A SUBLIMACE
LABORATORNÍ PRÁCE Č. 5 RUŠENÁ KRYSTALIZACE A SUBLIMACE KRYSTALIZACE PRINCIP Krystalizace je důležitý postup při získávání čistých tuhých látek z jejich roztoků. Tuhá látka se rozpustí ve vhodném rozpouštědle.
ORGANICKÁ CHEMIE Laboratorní práce č. 9
Téma: Bílkoviny, enzymy ORGANICKÁ CHEMIE Laboratorní práce č. 9 Úkol 1: Dokažte, že mléko obsahuje bílkovinu kasein. Kasein je hlavní bílkovinou obsaženou v savčím mléce. Výroba řady mléčných výrobků je
ORGANICKÁ CHEMIE Laboratorní práce č. 3
Téma: Hydroxyderiváty uhlovodíků ORGANICKÁ CHEMIE Laboratorní práce č. 3 Úkol 1: Dokažte přítomnost ethanolu ve víně. Ethanol bezbarvá kapalina, která je základní součástí alkoholických nápojů. Ethanol
téma: Halogeny-úvod autor: Ing. František Krejčí, CSc. cíl praktika: žáci si osvojí znalosti z chemie halogenů doba trvání: 2 h
téma: Halogeny-úvod cíl praktika: žáci si osvojí znalosti z chemie halogenů pomůcky: psací potřeby popis aktivit: Žáci si osvojí problematiku halogenů, popíší jejich elektronovou konfiguraci a z ní vyvodí
ORGANICKÁ CHEMIE Laboratorní práce č. 4 Téma: Karbonylové sloučeniny, karboxylové kyseliny
ORGANICKÁ CHEMIE Laboratorní práce č. 4 Téma: Karbonylové sloučeniny, karboxylové kyseliny Úkol 1: Připravte acetaldehyd. Karbonylová skupina aldehydů podléhá velmi snadno oxidaci až na skupinu karboxylovou.
Ústřední komise Chemické olympiády. 53. ročník 2016/2017. KRAJSKÉ KOLO kategorie C. ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) časová náročnost: 120 minut
Ústřední komise Chemické olympiády 53. ročník 2016/2017 KRAJSKÉ KOLO kategorie C ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) časová náročnost: 120 minut Zadání praktické části krajského kola ChO kat. C 2016/2017
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 6 PRÁCE S PLYNY
LABORATORNÍ PRÁCE Č. 6 PRÁCE S PLYNY Mezi nejrozšířenější práce s plyny v laboratoři patří příprava a důkazy oxidu uhličitého CO 2, kyslíku O 2, vodíku H 2, oxidu siřičitého SO 2 a amoniaku NH 3. Reakcí
Laboratorní cvičení z kinetiky chemických reakcí
Laboratorní cvičení z kinetiky chemických reakcí LABORATORNÍ CVIČENÍ 1. Téma: Ovlivňování průběhu reakce změnou koncentrace látek. podmínek průběhu reakce. Jednou z nich je změna koncentrace výchozích
Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády. 46. ročník 2009/2010. KRAJSKÉ KOLO kategorie D
Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády 46. ročník 2009/2010 KRAJSKÉ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH TEORETICKÁ ČÁST (60 bodů) Úloha 1 Vlastnosti prvků 26
UHLOVODÍKY A HALOGENDERIVÁTY
LABORATORNÍ PRÁCE Č. 25 UHLOVODÍKY A HALOGENDERIVÁTY PRINCIP Uhlovodíky jsou nejjednodušší organické sloučeniny, jejichž molekuly jsou tvořeny pouze uhlíkem a vodíkem. Uhlovodíky klasifikujeme z několika
Návod k laboratornímu cvičení. Alkoholy
Úkol č. 1: Ověřování fyzikálních vlastností alkoholů Návod k laboratornímu cvičení Alkoholy Pomůcky: 3 velké zkumavky - A,B,C, hodinové sklíčko, kapátko nebo skleněná tyčinka Chemikálie: etanol (F), etan-1,2-
3) Kvalitativní chemická analýza
3) Kvalitativní chemická analýza Kvalitativní analýza je součástí analytické chemie a zabývá se zjišťováním, které látky (prvky, ionty, sloučeniny, funkční skupiny atd.) jsou obsaženy ve vzorku. Lze ji
Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje.
ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje. Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka, Tomáš Navrátil
DENATURACE PROTEINŮ praktické cvičení
DENATURACE PROTEINŮ praktické cvičení Jméno, třída, datum: Téma: Proteiny a enzymy Úlohy: 1. Denaturace proteinů vaječného bílku acetonem. 2. Vysolování proteinů vaječného bílku síranem amonným. 3. Tepelná
Ústřední komise Chemické olympiády. 56. ročník 2019/2020 ŠKOLNÍ KOLO. Kategorie A. Praktická část Zadání 40 bodů
Ústřední komise Chemické olympiády 56. ročník 2019/2020 ŠKOLNÍ KOLO Kategorie A Praktická část Zadání 40 bodů PRAKTICKÁ ČÁST 40 BODŮ Autor Doc. Ing. Petr Exnar, CSc. Technická univerzita v Liberci Recenze
Ústřední komise Chemické olympiády. 55. ročník 2018/2019 ŠKOLNÍ KOLO. Kategorie B ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ)
Ústřední komise Chemické olympiády 55. ročník 2018/2019 ŠKOLNÍ KOLO Kategorie B ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) PRAKTICKÁ ČÁST 40 BODŮ Autor Bc. Lukáš Tomaník VŠCHT Praha RNDr. Petr Holzhauser, Ph.D.
Návody na pokusy SEG Chemie pro začátečníky 103.7250
Návody na pokusy SEG Chemie pro začátečníky 103.720 OBSAH 1 2 3 4 6 7 8 9 10 11 12 13 14 1 16 17 18 Obsah sady... Látky potřebné pro některé pokusy... Příprava indikačních roztoků... Příprava a použití
5.06 Teichmanovy krystaly (důkaz krve). Projekt Trojlístek
5. Forenzní chemie (chemie v kriminalistice) 5.06 Teichmanovy krystaly (důkaz krve). Projekt úroveň 1 2 3 1. Předmět výuky Metodika je určena pro vzdělávací obsah vzdělávacího předmětu Chemie. Chemie 2.
P + D PRVKY Laboratorní práce
Téma: Reakce sloučenin železa a kobaltu P + D PRVKY Laboratorní práce Úkol 1: Určete, které vlivy se podílí na korozi železa. Koroze je označení pro děj probíhající na povrchu některých kovů. Na jejím
Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje.
ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje. Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka 2018/19
Laboratorní cvičení manuál pro vyučujícího. Barevné reakce fenolů, reakce glycerolu
Laboratorní cvičení manuál pro vyučujícího Barevné reakce fenolů, reakce glycerolu Před příchodem žáků do laboratoře je třeba připravit tyto chemikálie v odpovídající koncentraci: Roztok fenolu 1%, roztok
STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace. Digitální učební materiály
Název školy Číslo projektu Název projektu Klíčová aktivita Označení materiálu: Typ materiálu: Předmět, ročník, obor: Tematická oblast: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ
Návod k laboratornímu cvičení. Efektní pokusy
Návod k laboratornímu cvičení Efektní pokusy Úkol č. 1: Chemikova zahrádka Pomůcky: skleněná vana, lžička na chemikálie. Chemikálie: vodní sklo, síran zinečnatý ZnSO 4 (X i ), síran železnatý FeSO 4, chlorid
Metody odběru a zviditelnění otisků prstů Identifikace krevních stop
Metody odběru a zviditelnění otisků prstů Identifikace krevních stop Odběrem a analýzou otisků prstů se zabývá odvětví kriminalistické techniky zvané daktyloskopie. Tento obor zkoumá otisky papilárních
Ústřední komise Chemické olympiády. 55. ročník 2018/2019 ŠKOLNÍ KOLO. Kategorie C ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ)
Ústřední komise Chemické olympiády 55. ročník 2018/2019 ŠKOLNÍ KOLO Kategorie C ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) PRAKTICKÁ ČÁST 40 BODŮ Autor RNDr. Jan Břížďala Gymnázium Třebíč RNDr. Jan Havlík, Ph.D.
NOVÉ NÁMĚTY PRO DEMONSTRAČNÍ POKUSY. Ondřej Maca, Tereza Kudrnová
NOVÉ NÁMĚTY PRO DEMONSTRAČNÍ POKUSY Ondřej Maca, Tereza Kudrnová HUSTÝ DÝM 1) pro koho: 1. ročník čtyřletého gymnázia 2) zařazení do učiva: vlastnosti látek; halogeny; pentely 3) pomůcky: zkumavka se zátkou,
Ústřední komise Chemické olympiády. 55. ročník 2018/2019 KRAJSKÉ KOLO. Kategorie A ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) Časová náročnost 120 minut
Ústřední komise Chemické olympiády 55. ročník 2018/2019 KRAJSKÉ KOLO Kategorie A ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) Časová náročnost 120 minut Úloha 1 Příprava Mohrovy soli 15 bodů Mezi podvojné soli patří
některé pórovité látky s obrovským povrchem jsou schopny vázat (adsorbovat) do svých pórů velké množství vody, organických a anorganických látek
ADSORPCE některé pórovité látky s obrovským povrchem jsou schopny vázat (adsorbovat) do svých pórů velké množství vody, organických a anorganických látek jsou to například aktivní uhlí (uměle vyrobená
Ústřední komise Chemické olympiády. 42. ročník. KRAJSKÉ KOLO Kategorie D. SOUTĚŽNÍ ÚLOHY TEORETICKÉ ČÁSTI Časová náročnost: 60 minut
Ústřední komise Chemické olympiády 42. ročník 2005 2006 KRAJSKÉ KOLO Kategorie D SOUTĚŽNÍ ÚLOHY TEORETICKÉ ČÁSTI Časová náročnost: 60 minut Institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy
Ústřední komise Chemické olympiády. 55. ročník 2018/2019 ŠKOLNÍ KOLO. Kategorie B ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ)
Ústřední komise Chemické olympiády 55. ročník 2018/2019 ŠKOLNÍ KOLO Kategorie B ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) PRAKTICKÁ ČÁST 40 BODŮ Autor Bc. Lukáš Tomaník VŠCHT Praha RNDr. Petr Holzhauser, Ph.D.
Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii
Datum: Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Laboratorní cvičení č. Tlak vzduchu: Teplota vzduchu: Vitamíny Vlhkost vzduchu
Reakce kyselin a zásad
seminář 6. 1. 2011 Chemie Reakce kyselin a zásad Známe několik teorií, které charakterizují definují kyseliny a zásady. Nejstarší je Arrheniova teorie, která je platná pro vodné prostředí, podle které
JODOMETRICKÉ STANOVENÍ ROZPUŠTĚNÉHO KYSLÍKU
JODOMETRICKÉ STANOVENÍ ROZPUŠTĚNÉHO KYSLÍKU (dle Winklera v Alsterbergově modifikaci) Cílem je stanovení rozpuštěného kyslíku v pitné vodě z vodovodního řádu. Protokol musí osahovat veškeré potřebné hodnoty
téma: Úvodní praktikum - Práce v laboratoři autor: Ing. Dagmar Kučerová
téma: Úvodní praktikum - Práce v laboratoři cíl praktika: Žáci budou seznámeni s laboratorním řádem a poučeni o bezpečnosti práce. pomůcky: laboratorní řád popis aktivit: Žáci se seznámí se všemi body
Název: Exotermní reakce
Název: Exotermní reakce Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, fyzika Ročník: 3. Tématický celek: Kovy či redoxní
2.10 Pomědění hřebíků. Projekt Trojlístek
2. Vlastnosti látek a chemické reakce 2.10 Pomědění hřebíků. Projekt úroveň 1 2 3 1. Předmět výuky Metodika je určena pro vzdělávací obsah vzdělávacího předmětu Chemie. Chemie 2. Cílová skupina Metodika
Laboratorní cvičení manuál pro vyučujícího. Oxidace benzaldehydu, redukční účinky kyseliny mravenčí a příprava kyseliny acetylsalicylové
Laboratorní cvičení manuál pro vyučujícího Oxidace benzaldehydu, redukční účinky kyseliny mravenčí a příprava kyseliny acetylsalicylové Před příchodem žáků do laboratoře je třeba připravit tyto chemikálie
Název: Deriváty uhlovodíků karbonylové sloučeniny
Název: Deriváty uhlovodíků karbonylové sloučeniny Autor: Mgr. Štěpán Mička Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, fyzika Ročník: 4. Tématický
Klíč k vyhodnocení variace učebnice Chemie
Dokažte pohyb částic látek! Na zpětný projektor umístíme 2 Petriho misky s vodou. Na hladinu vody v misce vložíme zrnko kafru a do středu druhé ponoříme několik krystalků manganistanu draselného. Co to
7) Uveď příklad chemické reakce, při níž se sloučí dva prvky za vzniku sloučeniny. (3) hoření vodíku s kyslíkem a vzniká voda
Chemické reakce a děje Chemické reakce 1) Jak se chemické reakce odlišují od fyzikálních dějů? (2) změna vlastností látek, změna vazeb mezi atomy 2) Co označujeme v chemických reakcích jako reaktanty a
Sešit pro laboratorní práci z chemie
Sešit pro laboratorní práci z chemie téma: Důkaz C, H, N a halogenů v organických sloučeninách autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie
Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan. Chemie anorganická analytická chemie kvantitativní. Datum tvorby
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Ročník Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie anorganická analytická chemie kvantitativní 2. ročník Datum tvorby
Oborový workshop pro ZŠ CHEMIE
PRAKTICKÁ VÝUKA PŘÍRODOVĚDNÝCH PŘEDMĚTŮ NA ZŠ A SŠ CZ.1.07/1.1.30/02.0024 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Oborový workshop pro ZŠ CHEMIE
Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády. 46. ročník 2009/2010. OKRESNÍ KOLO kategorie D
Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády 46. ročník 2009/2010 OKRESNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH TEORETICKÁ ČÁST (55 bodů) Úloha 1 Závislost rozpustnosti
Název: Vitamíny. Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy
Název: Vitamíny Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, biologie, matematika Ročník: 5. Tématický celek: Biochemie
Předmět: CHEMIE Ročník: 8. ŠVP Základní škola Brno, Hroznová 1. Výstupy předmětu
Chemie ukázka chemického skla Chemie přírodní věda, poznat chemické sklo a pomůcky, zásady bezpečné práce práce s dostupnými a běžně používanými látkami (směsmi). Na základě piktogramů žák posoudí nebezpečnost
Chemistry and Industry for Teachers in European Schools CHEMIE VŠECHNO MĚNÍ. Nanotechnologie v akci. Původní článek: Keith Healey
Chemistry and Industry for Teachers in European Schools CHEMIE VŠECHNO MĚNÍ Nanotechnologie v akci Původní článek: Keith Healey Původní jazyk článku: angličtina Český překlad: Marek Čtrnáct a Hana Čtrnáctová
DOCELA OBYČEJNÁ VODA
Skupina č. Pracovali: Téma : DOCELA OBYČEJNÁ VODA Úloha č.1 Příprava destilované vody. Sestavte destilační aparaturu, do baňky nalijte vodu (s trochou modré skalice) a zahřívejte. Popište získaný destilát.
Všeobecné lékařství 2014/15
ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Úvod do práce v laboratoři Měření objemů, filtrace, centrifugace, rozpustnost, dělení směsí Praktické cvičení z lékařské biochemie Všeobecné
Ústřední komise Chemické olympiády. 50. ročník 2013/2014. OKRESNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH
Ústřední komise Chemické olympiády 50. ročník 2013/2014 OKRESNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH TEORETICKÁ ČÁST (70 BODŮ) Informace pro hodnotitele Ve výpočtových úlohách jsou uvedeny dílčí výpočty
Úloha č. 9 Stanovení hydroxidu a uhličitanu vedle sebe dle Winklera
Úloha č. 9 Stanovení hydroxidu a uhličitanu vedle sebe dle Winklera Princip Jde o klasickou metodu kvantitativní chemické analýzy. Uhličitan vedle hydroxidu se stanoví ve dvou alikvotních podílech zásobního
Spektrofotometrické stanovení fosforečnanů ve vodách
Spektrofotometrické stanovení fosforečnanů ve vodách Úkol: Spektrofotometricky stanovte obsah fosforečnanů ve vodě Chemikálie: 0,07165 g dihydrogenfosforečnan draselný KH 2 PO 4 75 ml kyselina sírová H
Návod k laboratornímu cvičení. Vitamíny
Úkol č. 1: Přítomnost vitaminu C v ovoci a zelenině Návod k laboratornímu cvičení Vitamíny Pomůcky: třecí miska s tloučkem, filtrační kruh, nálevka, filtrační papír, zkumavky, stojan na zkumavky Chemikálie:
Ústřední komise Chemické olympiády. 53. ročník 2016/2017. KRAJSKÉ KOLO kategorie C. ŘEŠENÍ PRAKTICKÉ ČÁSTI (40 bodů) časová náročnost: 120 minut
Ústřední komise Chemické olympiády 53. ročník 2016/2017 KRAJSKÉ KOLO kategorie C ŘEŠENÍ PRAKTICKÉ ČÁSTI (40 bodů) časová náročnost: 120 minut Úloha 1 Rychlá příprava mědi 20 bodů 1. Fe + CuSO 4 Cu + FeSO
Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii
Datum: Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Tlak vzduchu: Teplota vzduchu: Laboratorní cvičení č. Oddělování složek směsí
REAKCE V ORGANICKÉ CHEMII A BIOCHEMII
REAKCE V ORGANICKÉ CHEMII A BIOCHEMII PaedDr. Ivana Töpferová Střední průmyslová škola, Mladá Boleslav, Havlíčkova 456 CZ.1.07/1.5.00/34.0861 MODERNIZACE VÝUKY Anotace: laboratorní práce z organické chemie
Ústřední komise Chemické olympiády. 52. ročník 2015/2016. ŠKOLNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH
Ústřední komise Chemické olympiády 52. ročník 2015/2016 ŠKOLNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH 21 Řešení školního kola ChO kat. B 2015/2016 TEORETICKÁ ČÁST (70 BODŮ) Úloha 1 Měď v minerálech 12
Ústřední komise Chemické olympiády. 54. ročník 2017/2018. ŠKOLNÍ KOLO kategorie D ŘEŠENÍ TEORETICKÉ ČÁSTI: 70 BODŮ
Ústřední komise Chemické olympiády 54. ročník 2017/2018 ŠKOLNÍ KOLO kategorie D ŘEŠENÍ TEORETICKÉ ČÁSTI: 70 BODŮ Řešení teoretické části školního kola ChO kat. D 2017/2018. Úloha 1 Hádej, kdo jsem. 11
KARBOXYLOVÉ KYSELINY
LABORATORNÍ PRÁCE Č. 28 KARBOXYLOVÉ KYSELINY PRINCIP Karboxylové kyseliny jsou látky, které ve své molekule obsahují jednu nebo více karboxylových skupin. Odvozují se od nich dva typy derivátů, substituční
Název: Nenewtonovská kapalina
Název: Nenewtonovská kapalina Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, biologie, fyzika Ročník: 5. Tématický celek:
Polysacharidy. Ch 9/05. Inovace výuky Chemie
Inovace výuky Chemie Polysacharidy Ch 9/05 Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a příroda Chemie Přírodní látky 9. ročník polysacharidy,
LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ
LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Stanovení monosacharidů a oligosacharidů (metoda titrace po inverzi) Garant úlohy: Ing. Lucie Drábová, Ph.D. OBSAH Základní požadované znalosti pro vstupní
CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK
CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK Význam stechiometrických koeficientů 2 H 2 (g) + O 2 (g) 2 H 2 O(l) Počet reagujících částic 2 molekuly vodíku reagují s 1 molekulou kyslíku za vzniku
Vitamin C důkaz, vlastnosti
Předmět: Doporučený ročník: 4. - 5. ročník Zařazení do ŠVP: biochemie, přírodní látky, vitaminy Doba trvání pokusu: 45 minut Seznam pomůcek: zkumavky, kádinky, pipety (automatické), míchací tyčinky, odměrné
MANUÁL LABORATORNÍCH PRACÍ Z CHEMIE
MANUÁL LABORATORNÍCH PRACÍ Z CHEMIE ZÁKLADNÍ ŠKOLA KLADNO MOSKEVSKÁ 2929 ZPRACOVALA : Mgr. MICHAELA ČERMÁKOVÁ 2014 SEZNAM LABORATORNÍCH PRACÍ 8. ROČNÍK Teplota varu Dělení směsí filtrace Uhlík vlastnosti
Laboratorní práce z chemie č. Téma: S-prvky
Autor: Mgr. Lenka Fišerová Škola: Gymnázium, Kadaň, 5. května 620, po. Vytvořeno: listopad 2012 Kód: VY_32_INOVACE_13_05Fis_ChLPVG Předmět: CHEMIE Ročník:2. ročník VG Téma: S prvky Cíl: Prakticky ověřit
2) Připravte si 3 sady po šesti zkumavkách. Do všech zkumavek pipetujte 0.2 ml roztoku BAPNA o různé koncentraci podle tabulky.
CVIČENÍ Z ENZYMOLOGIE 1) Stanovení Michaelisovy konstanty trypsinu pomocí chromogenního substrátu. Aktivita trypsinu se určí změřením rychlosti hydrolýzy chromogenního substrátu BAPNA (Nα-benzoyl-L-arginin-p-nitroanilid)
1. Chemický turnaj. kategorie mladší žáci 30.11. 2012. Zadání úloh
1. Chemický turnaj kategorie mladší žáci 30.11. 2012 Zadání úloh Vytvořeno v rámci projektu OPVK CZ.1.07/1.1.26/01.0034,,Zkvalitňování výuky chemie a biologie na GJO spolufinancovaného Evropským sociálním
5. Nekovy sı ra. 1) Obecná charakteristika nekovů. 2) Síra a její vlastnosti
5. Nekovy sı ra 1) Obecná charakteristika nekovů 2) Síra a její vlastnosti 1) Obecná charakteristika nekovů Jedna ze tří chemických skupin prvků. Nekovy mají vysokou elektronegativitu. Jsou to prvky uspořádané
Kyseliny a zásady měření ph indikátory a senzorem ph Vernier Laboratorní práce
Kyseliny a zásady měření ph indikátory a senzorem ph Vernier Laboratorní práce VY_52_INOVACE_204 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8.,9. Kyseliny a zásady měření ph indikátory
Neutralizační (acidobazické) titrace
Neutralizační (acidobazické) titrace Neutralizační titrace jsou založeny na reakci mezi kyselinou a zásadou. V podstatě se vždy jedná o reakci iontů H + s ionty OH - podle schematu: H + + OH - H O V průběhu
Chelatometrie. Stanovení tvrdosti vody
Chelatometrie Stanovení tvrdosti vody CHELATOMETRIE Cheláty (vnitřně komplexní sloučeniny; řecky chelé = klepeto) jsou komplexní sloučeniny, kde centrální ion je členem jednoho nebo více vznikajících kruhů.
Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii
Datum: Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Laboratorní cvičení č. Tlak vzduchu: Teplota vzduchu: Vodík a kyslík Vlhkost
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Bílkoviny Pro potřeby projektu
Návod k laboratornímu cvičení. Kovy a elektrochemická(beketovova) řada napětí kovů
Návod k laboratornímu cvičení Kovy a elektrochemická(beketovova) řada napětí kovů Úkol č. 1: Barvení plamene Pomůcky: kahan, zápalky, tuha upevněná ve verzatilce nebo platinový drátek Chemikálie: nasycené
ODDĚLOVÁNÍ SLOŽEK SMĚSÍ, PŘÍPRAVA ROZTOKU URČITÉHO SLOŽENÍ
ODDĚLOVÁNÍ SLOŽEK SMĚSÍ, PŘÍPRAVA ROZTOKU URČITÉHO SLOŽENÍ PaedDr. Ivana Töpferová Střední průmyslová škola, Mladá Boleslav, Havlíčkova 456 CZ.1.07/1.5.00/34.0861 MODERNIZACE VÝUKY Anotace: laboratorní
1. VÝROBA OBALOVÉ FOLIE Z BRAMBOR
1. VÝRBA BALVÉ FLIE Z BRAMBR Úkol: Z brambor získejte škrob a z něho vyrobte tenkou folii. Pokus proveďte dvakrát, jednou s přídavkem a jednou bez přídavku plastifikátoru. Vlastnosti folie vyhodnoťte a
Stanovení celkové kyselosti nápojů potenciometrickou titrací
Stanovení celkové kyselosti nápojů potenciometrickou titrací Princip metody U acidobazických titrací se využívají dva druhy indikace bodu ekvivalence - vizuální a instrumentální. K vizuální indikaci bodu
Podklady pro cvičení: USEŇ A PERGAMEN. Určení živočišného původu kolagenového materiálu. Úkol č. 1
Podklady pro cvičení: USEŇ A PERGAMEN Úkol č. 1 Určení živočišného původu kolagenového materiálu Během technologického zpracování surové kůže na useň nebo pergamen jsou odstraňovány podkožní vrstvy kůže
J. Kubíček FSI Brno 2018
J. Kubíček FSI Brno 2018 Fosfátování je povrchová úprava, kdy se na povrch povlakovaného kovu vylučují nerozpustné fosforečnany. Povlak vzniká reakcí iontů z pracovní lázně s ionty rozpuštěnými z povrchu
ÚLOHA 1: Stanovení koncentrace kyseliny ve vzorku potenciometrickou titrací
UPOZORNĚNÍ V tabulkách pro jednotlivé úlohy jsou uvedeny předpokládané pomůcky, potřebné pro vypracování experimentální části úlohy. Některé pomůcky (lžička, váženka, stopky, elmag. míchadélko, tyčinka
LP č.1: FILTRACE A KRYSTALIZACE
LP č.1: FILTRACE A KRYSTALIZACE Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 29. 5. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Směsi 1 Anotace: Žáci vypočítají složení roztoku.
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat
LP č. 2 - ALKOHOLY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 26. 10. 2012. Ročník: devátý
LP č. 2 - ALKOHOLY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 26. 10. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci si prakticky vyzkouší
P + D PRVKY Laboratorní práce Téma: Reakce mědi, stříbra a jejich sloučenin
P + D PRVKY Laboratorní práce Téma: Reakce mědi, stříbra a jejich sloučenin Úkol 1: Stanovte obsah vody v modré skalici. Modrá skalice patří mezi hydrát, což jsou látky, nejčastěji soli, s krystalicky
NEUTRALIZAČNÍ ODMĚRNÁ ANALÝZA (TITRACE)
NEUTRALIZAČNÍ ODMĚRNÁ ANALÝZA (TITRACE) Cíle a princip: Stanovit TITR (přesnou koncentraci) odměrného roztoku kyseliny nebo zásady pomocí známé přesné koncentrace již stanoveného odměrného roztoku. Podstatou
Ústřední komise Chemické olympiády. 55. ročník 2018/2019 KRAJSKÉ KOLO. Kategorie E ZADÁNÍ PRAKTICKÉ ČÁSTI (50 BODŮ)
Ústřední komise Chemické olympiády 55. ročník 2018/2019 KRAJSKÉ KOLO Kategorie E ZADÁNÍ PRAKTICKÉ ČÁSTI (50 BODŮ) Úloha 1 Stanovení Bi 3+ a Zn 2+ ve směsi 50 bodů Chelatometricky lze stanovit ionty samostatně,
Výukový materiál zpracován v rámci projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0996
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_INOVACE_CHE_417 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková
Sada Látky kolem nás Kat. číslo 104.0020
Sada Kat. číslo 104.0020 Strana 1 z 68 Strana 2 z 68 Sada pomůcek Obsah Pokyny k uspořádání pokusu... 4 Plán uspořádání... 5 Přehled jednotlivých součástí... 6, 7 Přehled drobných součástí... 8, 9 Popisy
STANOVENÍ CHLORIDŮ. Odměrné argentometrické stanovení chloridů podle Mohra
STANOVENÍ CHLORIDŮ Odměrné argentometrické stanovení chloridů podle Mohra Cíl práce Stanovte titr odměrného standardního roztoku dusičnanu stříbrného titrací 5 ml standardního srovnávacího roztoku chloridu
Sešit pro laboratorní práci z chemie
Sešit pro laboratorní práci z chemie téma: Příprava oxidu měďnatého autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační číslo
Sacharidy - důkaz organických látek v přírodních materiálech pomocí žákovské soupravy pro chemii
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Sacharidy - důkaz organických látek v přírodních materiálech pomocí žákovské soupravy pro chemii (laboratorní práce)
Téma: Bengálské ohně (provádí studenti SPŠCH)
Téma: Bengálské ohně (provádí studenti SPŠCH) Úkol: Připravte bengálské ohně rozdílných barev. Teorie: Bengálský oheň je druh pyrotechnické směsi. V závislosti na dodané příměsi má různé barvy. Škrob slouží
Podstata krápníkových jevů. Ch 8/07
Inovace výuky Chemie Podstata krápníkových jevů Ch 8/07 Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a příroda Chemie Anorganické sloučeniny