STŘEDNÍ ŠKOLA, HAVÍŘOV-ŠUMBARK, SÝKOROVA 1/613 příspěvková organizace ASYNCHRONNÍ MOTOR Ing. Eva Navrátilová
Asynchronní motory Jsou kotrukčně nejjednodušší a v praxi nejrozšířenější točivé elektrické stroje. Kotrukce 1. Stator stojící část motoru. Elektrotechnické plechy naskládané na sebe do tvaru dutého válce, v dutině válce jsou po celé délce drážky, v nich je uloženo trojfázové měděné izolované vinutí. Vinutí jednotlivých fází je posunuto o 120 o. Začátky i konce vinutí jsou vyvedeny na svorkovnici, kde se spojují do hvězdy nebo do trojúhelníku. (Jednotlivé fáze se popisují písmeny U, V, W, začátky se označují 1, konce 2. ) 2. Rotor (také se mu říká kotva) rotující část motoru. Na hřídeli je nasunut válec, který je složen z elektrotechnických plechů. Na vnějším obvodu jsou po celé délce drážky. Vinutí je provedeno dvojím způsobem: a) Kotva nakrátko neboli klecové vinutí vinutí je vstříknuto do drážek, na obou koncích je spojeno nakrátko kruhy tvoří klec. Materiál vodičů hliník nebo měď, ale může být i mosaz nebo jiné materiály. 2
b) Kroužkový rotor - v drážkách je uloženo měděné izolované třífázové vinutí. Vinutí jednotlivých fází je navzájem posunuto o 120 o. Začátky vinutí jsou spojeny do hvěždy, konce vinutí jsou vyvedeny ke třem kroužkům na hřídeli. Ke kroužkům dosedají uhlíkové kartáče (kontakty), od nich jsou vyvedeny vodiče na svorkovnici. Ke svorkovnici se připojuje sada spouštěcích rezistorů (přívody k rotoru neslouží k napájení, ale ke spouštění. Asynchronní motory se napájí pouze do statoru!). Princip činnosti Asynchronní motor využívá tyto principy: a) Vytvoření točivého magnetické pole b) Vznik indukovaného napětí pohybem vodiče v magnetickém poli nebo pohybem magnetického pole kolem vodiče c) Silové působení magnetického pole na vodič s proudem Točivé magnetické pole (dále jen TMP) vzniká přivedením třífázového proudu do třífázového vinutí posunutého o 120 o. Velikost výsledného magnetického toku je stále stejná, mění se jeho směr (magnetické pole se uvnitř statoru točí) Indukované napětí - vzniká v rotorovém vinutí změnou směru magnetického toku. TMP se točí v dutině statoru kolem rotoru, tím se v rotorovém vinutí indukuje napětí. Protože je vinutí rotoru propojeno, prochází jím proud. Proto se těmto motorům říká indukční. Silové působení magnetického pole na vodič s proudem TMP působí na rotorové vodiče, kterými prochází proud, strhává je za sebou rotor se roztočí. Po připojení statoru ke zdroji 3f napětí začne statorovým vinutím procházet 3f střídavý proud, který uvnitř statoru vytvoří točivé magnetické pole. Toto pole způsobí indukování napětí v rotorovém vinutí, rotorovým vinutím prochází proud a TMP statoru působí na rotor silou začne otáčet rotorem. 3
Synchronní a asynchronní otáčky, skluz f TMP se otáčí tzv. synchronní otáčkami n s n s = 60 p n s otáčky TMP (min -1 ), f frekvence přivedeného proudu (Hz = s -1 ), p počet pólových dvojic magnetického pole Asynchronní otáčky n otáčky rotoru, uvádějí se na štítku motoru, jsou menší než synchronní otáčky TMP Skluz s je rozdíl mezi synchronními a asynchronními otáčkami. Udává se jako poměrná n hodnota (od 0 do 1) s = n n nebo jako procentní hodnota (od 0 do 100%) s = 100 Asynchronní motor musí stále pracovat se skluzem, tzn. s rozdílem otáček mezi TMP a rotorem. Pokud by se rotor a TMP otáčeli stejně rychle, nedocházelo by k indukování napětí v rotoru a rotor by se zastavil. Otáčky rotoru se blíží otáčkám TMP, když motor pracuje naprázdno, tzn. na hřídeli není připojena zátěž (např. cirkulárka, když zrovna neřežeme dřevo). Pokud je motor připojen k síti a zasekne se (např. cirkulárka narazí na suk a kotouč se nemůže otáčet), je motor ve stavu nakrátko, pokud je v tomto stavu dlouho, může se zničit. Momentová charakteristika s Momentová charakteristika udává závislost momentu síly (otáčivého momentu) na skluzu. Moment síly síla, která působí na rotor M = F.r (F- síla působící na rotor, r poloměr rotoru) 4
Motor se rozbíhá se záběrným momentem M z, až do maximálního momentu M m je v nestabilním stavu. Malá změna zatížení způsobí velkou změnu otáček a motor se může zastavit. Po překonání maximálního momentu (momentu zvratu) se dostává motor do stabilního stavu a pracuje ve svém jmenovitém stavu jmenovitý moment M N, se jmenovitými otáčkami n N. Na změnu zatížení v tomto stavu zareaguje motor malou změnou otáček. Se záběrným momentem souvisí záběrný proud. Při spouštění je motor připojen k síti, ale rotor se ještě netočí začíná se rozbíhat. Motor je v tzv. zkratu, odebírá ze sítě velký zkratový proud. Motory jsou na tento proud dimenzovány, ale zkratový proud zatěžuje síť, proto se musí motory spouštět tak, aby se tento zkratový proud omezil. Spouštění motorů s kotvou nakrátko Při spouštění motorů je nutné omezit záběrný proud, ale zároveň potřebujeme, aby záběrný moment zůstal co největší. a) Přímé připojení motoru k síti je nejjednodušší, motor se zapne pomocí stykače. Protože záběrný proud je velký, mohou se tímto způsobem připojovat jen malé motory do příkonu max. 3kW. b) Přepínač hvězda-trojúhelník motor v zapojení do hvězdy je připojen na fázové napětí, které je 3 krát menší než sdružené, proud je v zapojení do hvězdy 3x menší. Po rozběhu se motor přepne do zapojení v trojúhelníku. Tímto způsobem se spouštějí motory, které můžou běžet v zapojení do trojúhelníku. Při tomto rozběhu je ale také menší záběrný moment, proto se spouštějí jen motory bez zatížení (pily, ventilátory, obráběcí stroje). c) Spouštěcí autotraformátor má několik odboček pro volbu vhodného převodu a napětí. Tím se volí i vhodný záběrný moment a záběrný proud. d) Rozběhová spojka motor se rozbíhá naprázdno, po dosažení určitých otáček se pomocí rozběhové spojky připojí poháněné zařízení. Záběrný proud se sice nezmenší, ale zkrátí se doba rozběhu. e) Speciální klece rotor se vyrobí se speciální klecí - odporová, dvojitá, vírová. Zlepšují momentové charakteristiky a zároveň dochází k poklesu záběrného proudu Spouštění kroužkových motorů K rotorovému vinutí se připojí odporový spouštěč = spouštěcí rezistor, jehož odpor můžeme v několika stupních měnit, tím měníme odpor rotorového vinutí. Změnou odporu rotorového vinutí měníme i velikost proudu. Při rozběhu je zařazen celý odpor spouštěč = velký odpor, malý proud. Jednotlivé stupně spouštěče se postupně odpojují, tím se postupně zmenšuje odpor vinutí a zvyšuje proud. Po spuštění motoru se spouštěč odpojí. Řízení otáček asynchronního motoru n Z rovnice pro skluz s = si můžeme odvodit vztah pro otáčky rotoru asynchronního motoru: 60 f n = ( 1 s) = (1 s) p Otáčky rotoru tedy závisí na frekvenci přivedeného proudu f, na počtu pólových dvojic magnetického pole p a na skluzu s. a) Řízení otáček změnou skluzu lze použít pouze u motoru s kroužkovou kotvou. Místo spouštěče se použije reostat, kterým měníme odpor vinutí kotvy a tím se mění také skluz. 5
b) Řízení otáček změnou počtu pólů ve statoru je několik skupin cívek, přepínáním mezi jednotlivými skupinami cívek se mění počet pólových dvojic magnetického pole a mění se otáčky. Tento způsob umožňuje změnu otáček skokem. Používá se jen u motorů s kotvou nakrátko, u kroužkových motorů by se muselo přepínat i rotorové vinutí c) Řízení otáček změnou frekvence v dnešní době se používají polovodičové (tyristorové) měniče frekvence, která se mění od 10 do 100Hz. To umožňuje plynulou změnu otáček. Kontrolní otázky: 1. Popiš kotrukci statoru 2. Popiš kotrukci kotvy nakrátko 3. Popiš kotrukci kroužkové kotvy 4. Vysvětli princip činnosti asynchronního motoru 5. Vysvětli pojmy skluz, synchronní otáčky, asynchronní otáčky. 6. Proč se musí kotva otáčet pomaleji než točivé magnetické pole? 7. Popiš momentovou charakteristiku asynchronního motoru 8. Vysvětli stabilní a nestabilní stav asynchronního motoru. 9. Vysvětli stav asynchronního motoru naprázdno a nakrátko. 10. Proč nemůžeme velké motory spouštět přímým připojením k síti. 11. Jaké jsou možnosti spouštění motorů? 12. Proč se vyrábí motor s kroužkovou kotvou? 13. Jakým způsobem lze řídit otáčky asynchronního motoru? Učební materiál určený studentům SŠ Havířov - slouží pouze pro vnitřní potřebu školy. Neprodejné. Použitá literatura a obrázky: Ing. Josef Říha: Elektrické stroje a přístroje, SNTL Praha 1986 Klaus Tkotz a kol.: Příručka pro elektrotechnika, Europa Sobotáles cz., Praha 2002 Verze 1//2009, zpracovala: Ing. Eva Navrátilová 6