Časopis pro pěstování mathematiky a fysiky



Podobné dokumenty
Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování matematiky a fysiky

Pokroky matematiky, fyziky a astronomie

Časopis pro pěstování mathematiky a fysiky

Základy teorie grupoidů a grup

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Plochy stavebně-inženýrské praxe

Pokroky matematiky, fyziky a astronomie

Časopis pro pěstování matematiky a fysiky

Plochy stavebně-inženýrské praxe

Základy teorie matic

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, pp

Časopis pro pěstování matematiky a fysiky

Funkcionální rovnice

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Základy teorie grupoidů a grup

Časopis pro pěstování matematiky a fysiky

PANM 16. List of participants. Terms of use:

O dynamickém programování

Časopis pro pěstování mathematiky a fysiky

O dělitelnosti čísel celých

O dělitelnosti čísel celých

Determinanty a matice v theorii a praxi

Zlatý řez nejen v matematice

O dynamickém programování

Základy teorie grupoidů a grup

Nerovnosti v trojúhelníku

Časopis pro pěstování matematiky a fysiky

Staroegyptská matematika. Hieratické matematické texty

Pokroky matematiky, fyziky a astronomie

Úvod do neeukleidovské geometrie

Polynomy v moderní algebře

Shodná zobrazení v konstruktivních úlohách

Aritmetické hry a zábavy

Časopis pro pěstování mathematiky a fysiky

Základy teorie matic

Staroegyptská matematika. Hieratické matematické texty

Co víme o přirozených číslech

Pokroky matematiky, fyziky a astronomie

O nerovnostech a nerovnicích

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Pokroky matematiky, fyziky a astronomie

Dějepis Jednoty českých mathematiků

Konvexní útvary. Kapitola 4. Opěrné roviny konvexního útvaru v prostoru

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Časopis pro pěstování matematiky a fysiky

Jubilejní almanach Jednoty čs. matematiků a fyziků

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování matematiky a fysiky

Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918

Časopis pro pěstování mathematiky a fysiky

Staroegyptská matematika. Hieratické matematické texty

Determinanty a matice v theorii a praxi

Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Několik úloh z geometrie jednoduchých těles

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Jednota českých matematiků a fyziků ve 150. roce aktivního života

Časopis pro pěstování matematiky a fysiky

Pokroky matematiky, fyziky a astronomie

Aplikace matematiky. Terms of use: Aplikace matematiky, Vol. 3 (1958), No. 5, Persistent URL:

Jan Sobotka ( )

Časopis pro pěstování mathematiky a fysiky

Matematicko-fyzikálny časopis

Pokroky matematiky, fyziky a astronomie

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Symetrické funkce. In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, pp

Základy teorie grupoidů a grup

Pokroky matematiky, fyziky a astronomie

PANM 14. List of participants. Terms of use:

Časopis pro pěstování mathematiky a fysiky

Aplikace matematiky. Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky

Základy teorie grupoidů a grup

Časopis pro pěstování matematiky a fysiky

Booleova algebra. 1. kapitola. Množiny a Vennovy diagramy

Pokroky matematiky, fyziky a astronomie

Matematicko-fyzikálny časopis

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování matematiky

Aritmetické hry a zábavy

Matematicko-fyzikálny časopis

Matematika v 19. století

Transkript:

Časopis pro pěstování mathematiky a fysiky Matyáš Lerch K didaktice veličin komplexních. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 5, 265--269 Persistent URL: http://dml.cz/dmlcz/108855 Terms of use: Union of Czech Mathematicians and Physicists, 1891 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

265 K didaktice veličin komplexních. Napsal M. Lerch, docent pří české vysoké škole technické v Praze. Mathematika jest v povaze své složitější, než jak se zdá povrchnímu pozorovateli. Během věků podařilo se uděliti methodám a výsledkům algebry jistou formální jednoduchost, nutnou k dalšímu pokroku, která však u začátečníka bývá na újmu jasnosti. Který z nás nebyl se kdy pozastavil nad theorií čísel záporných a veličin komplexních? A všecky tyto útvary povahy ryze formální nemají jiného významu, než vésti k formálně nejkratší cestě při řešení algebraických problémů a k nejstručnějšímu popisu vlastností obyčejných čísel. Co se tkne čísel záporných, pojednal jsem o nich obšírně ve 4. ročníku Athenaea" a mohu zde o nich pomlčeti i z toho důvodu, že začátečníku poskytují menší obtíže než veličiny pomyslné, o nichž tuto jednati chceme. V algebře se vyskytne při řešení rovnice druhého stupně x 2 -\-2ax-\-b=0 často případ, že rovnici té nelze vyhověti žádnou hodnotou veličiny x\ a sice nastane tato okolnost tehdy, kdy v rovnici upravené (x + ay + Q) a 2 ) = 0 jest druhý člen b a 1 kladný; píšeme-li zde x -f- a = z, l a % =: c, zní tato rovnice a patrně nebude splněna pro žádné z, poněvadž druhá mocnost každé veličiny je kladnou. Symbol z rz \f c, který by pro případ záporného c rovnici vyhovoval, nemá. žádného významu. Mathematikovó nicméně podrželi tento v podstatě bezvýznamný symbol \f c, a píšíce c = c ( 1), kladli \f c = \fc \f 1, takže absurdita \f c redukována na absurditu jednodušší \f 1, vše ovšem toliko formálně vzato.

266 Přesvědčivše se, že lze do počtu zavésti formalismy tvaru c -f- d V 1, a že jimi lze docíliti mnohých zajímavých správných výsledků, považovali mathematikovó tento nový tvar za přípustný při úvahách algebraických, aniž se starali o vlastní příčinu a podstatu algebraických zjevů tímto spňsobem se naskytších. Tuto podstatu nalézti a objasniti bude účelem následujících řádků. 1. Literami řecké abecedy a, /3, y... znamenati budeme obyčejné veličiny kladné neb záporné. Z libovolných dvou takých veličin a, j3 sestavme symbol (<*, 0), který nemá nic jiného vyjadřovati, než že máme na zřeteli dvě čísla, z nichž první jest a, druhé ; my uvažujeme soustavu aneb komplex (a, /S). A budeme psáti (a, 0) = 0>, ď), jsou-li obě soustavy identické, t. j. je-li a = y, /? = ó. Soustavu (/í, a) dlužno považovati za rozdílnou od (a, /?), pokud jsou a, 8 vespolek různý. Máme-li dvě soustavy (komplexy) (a, 0), (y, ď), pak nazýváme soustavu («+ y, /S + *) součtem komplexů (a, 0) - ~ (y, ď), («.» + fri*) = (y í «+ («,». Mějme na zřeteli několik komplexů a utvořme komplexy a = («,«'), & = (/J,n 0 = 0^'),... (a + 6) + c = («+ ft«' + /8') + (y l /) = («+ /í + y l a'+^+ } /j 1 a + (6- -c), (a-j-c) + b, atd., jež všecky mají tutéž hodnotu (a -f 0 -j- y, ď -f 0' -f y'); kterou pak znamenáme prostě a-f-6 + c. Odtud pak také jasno, co dlužno : rozuměti součtem a + i + c-f-d, a + 6 + c + d + e etc, a že zde platí základní vlastnosti součtu, neměniti se s pořádkem sčítanců. Z definice, součtu plyne přímo definice rozdílu ve tvaru který má vlastnost a-b = (a /?, «' /*'), b + (a b) = a,

267 podobně jako u čísel. Zde se odporučuje psáti za a a zz (0, 0) prostě 0. 2. Mějme opět komplexy a = (a,a>), b zz (/?, /*'), c zz (y, y>\... a utvořme z libovolných dvou a, b komplex třetí m zz («3 a'/?', a/3' + a'/í), který znamenejme ab; bude patrně (1) ab zz ba. Vypočtěme nyní komplex (ab)c, t j. (afi ďp, ap + a>fi)(y,y>) zz (apy a>j}>y a$>y> a>(iy', a$y> a>py> + apy + a>(iy\ podobně a (bc) = (a, a') (fir - PY, W + Pr) zz (a/jy «j8y a>py> a'/3'y, «0y' -f a/9'y + <ť/3y «'0y), takže máme identitu (2) (ab) c = a (bc) pro libovolné komplexy a, 6, c. Z této plyne vzhledem k větě ab zz ba: (ba) c zz a (bc) zz a (cb) atd., takže napíšeme-li kteroukoli přestavu liter abc, na př. cab, a spojíme-li kterékoli dvě sousední litery závorkou, na př. (ca) b, obdržíme komplex, jehož hodnota rovná se (ab)c. Dokažme to v našem případě, užívajíce vět (1) a (2): Dle (2) máme (ca)b zzc(ab) a dle (1) bude tento výraz zz (ab) c, jak tvrzeno. Společnou hodnotu těchto výrazů znamenejme kterýmkoli ze spůsobů: abc, bac, cba... Uvažujme nyní čtyři komplexy a, b, c, d; pak bude dle (2) (abc) d = [(ab) c] d zz (ab). (cd) zz a [b (cd)] zz a (bcd) zz... Volme na př. (ca) (bd). Tento výraz můžeme psáti též [(ca) b] d zz (abc) d; to lze dokázati o všech přestavách liter a, b, c, d při libovolném rozkladu v závorky.

268 Tyto vlastnosti výrazů ab, (ab) c,... jsou zcela podobny vlastnostem součinů «/J, (ap) p,... My z té příčiny nazveme operaci ab komposicí či skládáním komplexů a, 6; výraz ab sluje pak součinem, a, b činiteli při této komposici, a výsledky nalezené dají se takto vysloviti: Při komposici dvou, tří, čtyř..., komplexů jest hodnota součinu nezávislá na pořádku činitelů. Tak bude na př. pro pět činitelů (ab) (cde) = (abc) (de) = abcde. 3. Existuje jediný komplex /, který má povahu jednotky násobící, t. j. dobře vyjádřeno, který nemá vliv na hodnotu součinu, takže pro všecky komplexy a aj = a. Položíme-li totiž a = (a, «'), j = (i, i'), bude rovnice aj = a zníti (ai av, ai' -j- a't) = (a, cť), t j. ai a'i f = a ai ř a'i = a' při všech a,a. Rovnice a(i 1) a'i' = 0, ať a'(i l)=0 mají obstáti při všech hodnotách a, a'; to vyžaduje, aby i 1 = 0, ť = 0, takže bude j=(l,0) jediným komplexem hovícím naší podmínce. a dále Tento komplex nazývati budeme jednotkovým. Zaveďme mimo j ještě komplex i = (O,1). Značí-li (i libovolnou veličinu, pišme (pa, pď) = ft (a, a') = pa. Pak plyne přímo z výměru komposice vztah (p,a) (vb) = [iv.ab fia -f- va = ((i -f- v) a, pa -f- lib = n (a -f- 6).

Při tomto označení pak bude 269 (3) («, «') = ccj + «'i, neboť pravá strana zní «(1,0) + «' (0,1) = (a, 0) + (O, «') = (a, «'). Vzorec (3) lze slovy takto vyjádřiti: Každý komplex lze vyjádřiti lineárně pomocí dvou základních komplexů: j = (1,0), i = (0,1). 4. Komposice má další základní vlastnost násobení: (4) (a-\-b)cz=z ac-{- bc. Levá strana je totiž («+ ft «' + /}') 0^0 = (ccy + /ty «'/ /íy, «y' + py' + «V + /J'y) = («r - «Y, «/ + «'r) + (^ - VY* W + Pr) a poslední výraz jest identicky ac-\-bc. Z toho plyne pak obyčejným způsobem (a + 6) (c + d) = ac + bc + aa* + ba\ Součin (komposiční) dvou, tří, čtyř... stejných činitelů a znamenáme a 2, a 3, a 4,.., takže máme («, «') 2 = («2 «' 2, 2««') («, «') 3 = («3 3««'*, 3á V «'*) atd. Zvláště bude f =j, a obecně j w =j, kdežto i a = (0,l) 2 = (-l,0) = -j. Ve vzorcích i 2 = y, pzzj jsou obsaženy všecky komposiční zákony komplexův. Neboť dle předešlé věty bude («, «') (/J, ČO = (aj + «'i) (# + pi) = «/í; 2 + cc'p'i 2 + («j3' + «' 3) i) = («/3 «'j3') j + («j3' + «'/í) i = («^ «' S', «j3' + «'0), což právě jest výměrem komposice. Úlohy. (Dokončeni.) Řešení úlohy 13. (Zaslal p. Karel Rosa, stud. VII. tř. g. městské střední školy na Malé Straně v Praze.) Položme a + b = ce, b + c =?l, c-\-a = z, potom výraz daný bude J 18