DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY



Podobné dokumenty
Stanovení účinnosti chemické dezinfekce vody ( chemické aspekty )

Základní fyzikálně-chemické procesy úpravy podzemních a povrchových vod pro hromadné zásobování pitnou vodou

NOVÉ TECHNOLOGIE V UŽÍVÁNÍ DEZINFEKČNÍCH PROSTŘEDKŮ V ČESKÉ REPUBLICE

Chemikálie pro úpravu bazénové vody, privátní a veřejná správa. GHC Invest, s.r.o. Korunovační Praha 7

Halogeny 1

DESINFEKCE PITNÉ VODY CHLORDIOXIDEM NA ÚPRAVNĚ VODY V NÝRSKU

Potenciál vyuţití ferrátů v sanačních technologiích

Technologie pro úpravu bazénové vody

Alternativní možnosti hygienického zabezpečení pitné vody na ÚV Podolí

Manganový zeolit MZ 10

Normy pro chemické výrobky používané k úpravě vody a pro vliv materiálů na vodu určenou k lidské spotřebě

Chemicko-fyzikální úprava bazénové vody

Udržitelný rozvoj v průmyslových prádelnách. Desinfekce čisté vody. Leonardo da Vinci Project. Modul 1 Voda v prádelnách.

Hygienické zabezpečení - desinfekce

Martin Hynouš gsm:

Hygienické zabezpečení - desinfekce

Umělá koupaliště. Hodnocení rozborů vody Konzultační den. RNDr. Jaroslav Šašek

AQUATEST a.s. Zkušební laboratoře. Co znamenají naměřené hodnoty v pitné vodě?

CHLOROVÁ A BEZCHLOROVÁ DESINFEKCE NA BAZÉNECH

Obsah Chemická reakce... 2 PL:

Desinfekce chlordioxidem pomocí zařízení EASYZON od firmy Jesco

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT

OPTIMALIZACE CHEMICKY PODPOROVANÝCH METOD IN SITU REDUKTIVNÍ DEHALOGENACE CHLOROVANÝCH ETHYLENŮ.

Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR

Úprava podzemních vod

kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita

kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita

Hygienické zabezpečení pitné vody

MORAVSKÁ VODÁRENSKÁ, a.s. Oddělení kontroly kvality vody Dolní novosadská, Olomouc

UV zařízení Dulcodes. OZONFILT a BonoZon - ozonizátory. BelloZon - generátory chlordioxidu. Dulco Zon - elektrolýzní generátory chloru

DUM č. 2 v sadě. 24. Ch-2 Anorganická chemie

Zkušenosti a aplikací směsných oxidantů pro oxidaci, dezinfekci a hygienické zabezpečení vody v ČR

) se ve vodě ihned rozpouští za tvorby amonných solí (iontová, disociovaná forma NH 4+ ). Vzájemný poměr obou forem závisí na ph a teplotě.

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)

Gymnázium Jiřího Ortena, Kutná Hora

Sešit pro laboratorní práci z chemie

N A = 6, mol -1

CELKOVÝ AKTIVNÍ CHLOR - VÝZNAM A INTERPRETACE

MASTITIDY KLINICKÉ SUBKLINICKÉ 20-40%

Dusík a fosfor. Dusík

Ing. Milan Vodehnal, AITEC s.r.o., Ledeč nad Sázavou

Udržitelný rozvoj v průmyslových prádelnách

OXID CHLORIČITÝ A CHLOREČNANY

Bakteriologické ukazatele. Koliformní bakterie. Escherichia coli. Enterokoky. Počty kolonií při 22 C a 36 C. 1 Co znamenají parametry pitné vody

PŘEDMLUVA...ii. OBSAH...ii 1. ÚVOD...1

Desinfekce a sterilizace. MUDr. Lenka Černohorská, Ph.D.

Kontrola Měření Regulace Dávkování

Technický list FUKA 5V. Vertikální provzdušňovač / Stripovací věž. VODÁRENSKÉ TECHNOLOGIE s.r.o. K vodojemu 140 Rudná u Prahy Rev.

Klasifikace přípravků na základě konvenční výpočtové metody

VYUŽITÍ UV ZÁŘENÍ A OZONIZACE PŘI ODSTRAŇOVÁNÍ LÉČIV

ABSTRAKTY A KLÍČOVÁ SLOVA

Vodovody a kanalizace Přerov, a.s. Laboratoř pitných vod Šířava 482/21, Přerov I - Město, Přerov

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pořadí DUMu v sadě 07

Technický list BUBLA 25V. Horizontální provzdušňovač. VODÁRENSKÉ TECHNOLOGIE s.r.o. Chrášťany 140 Rudná u Prahy Rev. 0

INECO průmyslová ekologie, s.r.o. Zkušební laboratoř INECO průmyslová ekologie s.r.o. náměstí Republiky 2996, Dvůr Králové nad Labem

Příloha č.: 1 ze dne: je nedílnou součástí osvědčení o akreditaci č.: 96/2012 ze dne:

Složení a vlastnosti přírodních vod

Organické látky. Organická geochemie a rozpuštěný organický uhlík

Předmět: CHEMIE Ročník: 8. ŠVP Základní škola Brno, Hroznová 1. Výstupy předmětu

VYHODNOCENÍ ZKUŠEBNÍHO PROVOZU ÚV LEDNICE PO REKONSTRUKCI

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Kyslík a vodík. Bezbarvý plyn, bez chuti a zápachu, asi 14krát lehčí než vzduch. Běžně tvoří molekuly H2. hydridy (např.

Péče o vodu: Řešení problémů - tipy, triky a podpora

ČIŠTĚNÍ A PŘEDÚPRAVA PROCESNÍCH A ODPADNÍCH VOD Z VÝROBY PAPÍRU ELEKTROCHEMICKÝM - FENTONOVÝM PROCESEM

Alkalické kovy. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín

TECHNICKÉ UKAZATELE PRO PLÁN KONTROL JAKOSTI VOD V PRŮBĚHU VÝROBY PITNÉ VODY

Úprava podzemních vod ODKYSELOVÁNÍ

Voda vlastnosti, rozložení v hydrosféře, chemické rozbory vody

GEOCHEMICKÁ REAKTIVNÍ BARIÉRA PERSPEKTIVNÍ PRVEK IN - SITU SANAČNÍCH TECHNOLOGIÍ

Kovy I. A skupiny alkalické kovy

Laboratoř CHVaK. č posouzená u ASLAB dle ČSN EN ISO/IEC 17025:2005

IONOSEP v analýze vody. Využití analyzátorů IONOSEP pro analýzu vod. Doc. Ing. František KVASNIČKA, CSc.

Název opory DEKONTAMINACE

AMINOKYSELINY REAKCE

Oxidační účinek ferátů na autotrofní a heterotrofní mikroorganismy

ČÁST DEVÁTÁ UKAZATELÉ JAKOSTI SUROVÉ VODY ODEBÍRANÉ Z POVRCHOVÝCH VODNÍCH ZDROJŮ NEBO Z PODZEMNÍCH VODNÍCH ZDROJŮ PRO ÚČELY ÚPRAVY NA VODU PITNOU

1. nitrosloučeniny R-NO 2 CH 3 -NO aminosloučeniny R-NH 2 CH 3 -NH 2

Koloběh látek v přírodě - koloběh dusíku

6. Nekovy chlor a vodí k

BROMIČNANY V PITNÉ VODĚ

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Vodovody a kanalizace Břeclav, a.s. Strana č. 1 Ceník výrobků, výkonů a služeb platný od

HYDROXYDERIVÁTY. Alkoholy Fenoly Bc. Miroslava Wilczková

Požadavky na jakost pitné vody

ČISTÍCÍ ENERGIE SVĚTLA

Sada Životní prostředí UW400 Kat. číslo Stanovení obsahu kyslíku, nasycení kyslíkem a hodnoty BSK5

Příloha č. 1 k MP č. 04/14. Datum účinnosti. Identifikace metody (SOP) Zk.č. 1 M-CH 01 Stanovení teploty ČSN

Pitná voda: Znečištění zdrojů a technologie úpravy. Martin Pivokonský. Ústav pro hydrodynamiku AV ČR, v. v. i., Pod Paťankou 30/5, Praha 6

4 Elektrolýzní zařízení CHLORINSITU

GALAVANICKÝ ČLÁNEK. V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek.

4.01 Barevné reakce manganistanu draselného. Projekt Trojlístek

Pilotní aplikace Fentonova činidla v prostředí se směsnou kontaminací. Pavel Hrabák, Hana Koppová, Andrej Kapinus, Miroslav Černík, Eva Kakosová

NOVÉ NÁMĚTY PRO DEMONSTRAČNÍ POKUSY. Ondřej Maca, Tereza Kudrnová

PODPOROVANÁ ATENUACE V PRAXI. Vít Matějů, ENVISAN-GEM, a.s. Tomáš Charvát, VZH, a.s. Robin Kyclt, ENVISAN-GEM, a.s.

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

J. Kubíček FSI Brno 2018

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ

Gymnázium Jiřího Ortena, Kutná Hora. Pojmy Metody a formy Poznámky

Transkript:

DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY.1Úvod Autor: Ing. František Svoboda Csc. Zvážení rizik tvorby vedlejších produktů desinfekce (DBP) pro úpravu konkrétní vody je podmíněno návrhem technologie úpravy vody, která by snížila jejich vznik na co možná nejnižší hodnotu. Znečištění vnášená do bazénové vody ať již od návštěvníků či z vnějšího prostředí nebo vznikají v průběhu procesu úpravy vody podléhají oxidaci či vstupují do interakcí s aplikovanými chemickými činidly. Při těchto procesech mohou vznikat zejména vedlejší produkty (D /DBP) a to: na bázi dusíku (amonné látky) na bázi organického uhlíku - jedná se o halogenové uhlovodíky, které vznikají především při chloraci některých látek přítomných v upravované vodě některé dusíkaté organické sloučeniny (guanin, adenin, cytosin apod.), řasy či jiné sloučeniny vytvářející v procesu chlorace chloroformy (jsou karcinogenní) Desinfekce a oxidace je nejběžnějším způsobem používaným při úpravě vody. Zařazením procesu oxidace na začátek technologického procesu se sleduje převážně oxidační účinek a to jak látek organických tak i anorganických. Zařazením oxidace na konec technologického procesu se obvykle sleduje desinfekční účinek. Téměř v každé upravované vodě bývají přítomny anorganické a organické látky různého původu. Oxidací vody se obecně sleduje zabránění organoleptických závad po případě se likvidují látky, které procházejí konvenční úpravou. Všechny chemické látky používané pro oxidaci a desinfekci vody vyvolávají po smíšení s vodou oxidační proces, při kterém dochází k odstranění organické hmoty aktivním kyslíkem vznikajícím za mokra. Na průběh reakce má rozhodující vliv povaha a koncentrace použité chemikálie, fyzikální a chemické složení vody, obsah všech organických látek podléhající oxidaci (včetně odstraňovaných mikroorganismů oxidační efekt, který je označován jako desinfekce). Doba styku oxidačního činidla s vodou má spolu s koncentrací příslušného činidla rozhodující vliv na průběh oxidace a to s ohledem na požadovaný stupeň odstraněného znečištění. Existence rozdílných látek rozpuštěných ve vodě ohraničuje možnosti použití oxidačního prostředku. Činidla používaná k oxidaci jsou buď deriváty chloru (HClO, NaCl, NaClO, ClO2), ozonu (O3) nebo peroxid vodíku (H2O2). Desinfekční činidla jsou buď silná oxidační činidla nebo vytváří oxidanty jako vedlejší produkty. Má li dojít k minimalizaci DBP mají použité oxidanty obsahovat kyslík. Sám kyslík je pomalým oxidačním činidlem. Mírou schopnosti oxidace příslušného činidla je jeho standardní redukčně oxidační potenciál. K nejúčinnějším oxidačním prostředkům, jak vyplývá z hodnot standardních redukčně oxidačních potenciálů, patří ozon. Nejběžnější způsob oxidace chlorem je vhodný jen tehdy vede-li k účinné likvidaci pachotvorných látek nebo organismů vyvolávajících jinak pachové vjemy.

.2Desinfekce vody chemickými prostředky Pro desinfekci vod se využívá celá řada chemických desinfekčních prostředků. Účinek aplikovaných chemických prostředků používaných pro oxidaci a desinfekci vody a jejich užití je ovlivněn: Vlastnostmi a koncentrací chemického činidla Druhem a množstvím mikroorganismů zjištěných ve vodě, Obsahu oxidaci podléhajících organických a anorganických látek Fyzikálně chemickými vlastnostmi vody Homogenizací dávkovaného prostředku s upravovanou vodou Dobou kontaktu chemického prostředku s vodou Hydraulickými parametry Rozhodující při stanovení optimální dávky desinfekčního a oxidačního prostředku při úpravě vody je obsah látek podléhající oxidaci, množství a druhy mikroorganismů, fyzikální a chemické vlastnosti upravované vody. Doba kontaktu aplikovaného chemického prostředku má rozhodující vliv na konečný účinek procesu a je nutné ji zohlednit jak při volbě vhodného činidla tak i jeho koncentraci. Baktericidní účinek má: - koncentrace 0,1 až 0,2 mg/l volného chloru působícího po dobu 10 až 15 minut. - Dávka 0,1, až 0,2 mg/l oxidu chloričitého působícího po dobu 10 minut - Dávka 0,1 až 0,2 mg/l ozonu působícího po dobu 2 minut. Virucidní účinek má: - ozon při koncentraci 0,4 mg/l který je s upravovanou vodou ve styku po dobu 4 minut. - volný chlor k dosažení tohoto účinku musí mít dávku 0,3 až 0,5 mg/l a dobou zdržení po dobu 45 minut. - Oxid chloričitý(clo 2 ) - tohoto efektu je dosaženo při dávce 0,3 až 0,5 mg/ l a době zdržení 30 minut. Účinek chemických prostředků je ovlivněn řadou okolností podmiňujících jejich volbu pro konkrétní způsob jejich využití a aplikace. Zatímco ozon se ve vodě rozkládá v průběhu několika minut a to v závislosti na fyzikálně chemických vlastnostech vody a charakteru prostředí, je chlor a oxid chloričitý ve vodě poměrně stálý. Chlor, oxid chloričitý a ozon oxidují ve vodách. Rozpuštěné železo a mangan se srážejí ve formě hydroxidů. Chlor působí na amonné látky za vzniku chloraminů. Důležitý je jeho účinek na organické látky. Všechny vody obsahují organické látky buď přírodního původu nebo umělého (vnos od návštěvníků), které způsobují organoleptické závady (zápach, zbarvení). Při vyšších dávkách chloru vznikají sloučeniny halometanů (těkavé sloučeniny chloru s metanem) a chloroformů. Nebezpečí tvorby těchto zdraví škodlivých látek je zabraňováno odstraňováním prekursorů, to je organických látek náchylných k tvorbě halometanů. Trichlorhalogenmetany (THM) vznikají jako vedlejší produkt při chloraci vody a vyznačují se kancerogenními účinky. To platí nejen pro aplikaci samotného chloru, ale i jeho derivátů. Vzniku těchto zdraví nebezpečných látek lze zabránit využitím jiných chemických prostředků používaných v technologických procesech oxidace a

desinfekce (ozon, ClO 2 ) či kombinacemi chemických prostředků a jejich aplikacemi v průběhu procesu úpravy vody. Při uplatnění ozonu se sice halogeny netvoří, ale velká dávka ozonu může způsobit nárůst prekursorů - to je výchozích látek, ze kterých THM vznikají. Při použití oxidu chloričitého pro oxidaci a desinfekci vod se prakticky žádné THM nevytvářejí. Je prokázáno, že oxid chloričitý působí převážně oxidačně a nevykazuje tak zvaný chlorační efekt. To znamená, že nereaguje s amonnými látkami a nevytváří chloraminy. Z uvedeného vyplývá, že ClO 2 může plně působit na ostatní složky přítomné v upravované vodě. Nízké dávky aplikovaného oxidu chloričitého jsou s ohledem na výše uvedené zcela postačující. Desinfekční účinek oxidu chloričitého není ovlivněn reakcí vody (ph). Ve vodě je oxid chloričitý velmi stabilní a vykazuje se dlouhotrvajícím účinkem..3příprava oxidu chloričitého, jeho spotřeba a užití Pro přípravu roztoku oxidu chloričitého je využíváno dvou postupů : Chlor chloritanový způsob přípravy ClO 2 Pro přípravu roztoku oxidu chloričitého je použito chloritanu sodného NaClO 2 a plynného chloru Cl 2. Při tomto procesu dochází k reakci chloritanu sodného a chloru v kyselém prostředí a rozkladu kyseliny chlorité. Reakce chloritanu s chlorem je dána reakční rovnicí NaClO 2 + Cl 2 = 2ClO 2 + 2NaCl 2 U zařízení využívajících pro přípravu oxidu chloričitého chlorové vody a její reakce s chloritanem probíhají tyto reakce Cl 2 + H 2 O = HClO + H + + Cl - 2NaClO 2 + HClO = 2ClO 2 + NaCl + NaOH Kyselino chloritanový způsob přípravy ClO2 5 NaClO 2 + 4HCl = 4ClO 2 + 5NaCl + H 2 O Spotřeba chlordioxidu - rychlost spotřeby je závislá na složení vody a na obsahu a charakteru organických látek. Oxid chloričitý nereaguje s organickými látkami a nevytváří trichlorhalogenmetany jako při užití chloru. Oxidačně redukční potenciál (který má přímou souvislost s rychlostí s jakou jsou z vody odstraňovány nežádoucí sloučeniny) při růstu hodnot reakce vody ph zůstává při užití oxidu chloričitého konstantní zatím co při použití chloru rychle klesá. Ze srovnání prostředků používaných pro desinfekci a oxidaci chloru a oxidu chloričitého vyplývají výhody ve prospěch oxidu chloričitého. Při použití ClO 2 se: Netvoří chlorfenoly Nereaguje s (NH 4+ ) a aminosloučeninami Netvoří se THM V minimální míře tvoří netěkavé organické halogenové sloučeniny (TOX) Vykazuje velmi silný oxidační a desinfekční účinek v širokém rozsahu ph Při dlouhotrvajícím desinfekčním účinku vykazuje velká stabilita Vykazuje vysoká účinnost vůči spórám, virům a řasám

Projevují účinky zlepšení organoleptických vlastností upravované vody Vykazují oxidační vlastnosti vůči Fe a Mn Projevuje nezávislost redox potenciálu na hodnotách reakce vody ph Vykazuje vysoká schopnost odstraňování mikrobiologických nánosů a úsad v rozvodném systému Místo dávkování oxidu chloričitého pro oxidaci závisí na kvalitativních ukazatelích vody, na záměrech využití oxidu chloričitého, na úpravě vody. Většina úpraven vody využívá dosud pro desinfekci a oxidaci vody plynného chloru nebo chlornanu sodného. Často se vyskytuje kombinace oxidace a desinfekce, kdy k oxidaci je využíváno ozonu a desinfekci chloru. K výraznému nárůstu uplatnění ClO2 k oxidaci a desinfekci na úpravnách vody dochází od 90 tých let 20 století. Pokud budeme hodnotit provozní problémy vznikající při použití chloru spočívají tyto především: V tvorbě hygienických a senzoricky závadných látek (alifatické a aromatické chlorované uhlovodíky,chlorfenoly) V reakcích prekursorů s chlorem a k tvorbě THM (huminové látky a metabolity činnosti mikroorganismů), které vznikají při předchloraci vod organicky zatížených vyššími dávkami chloru V nehodné použité metodě technologie úpravy vody či chlorací nedokonale upravené vody V rychlé spotřebě chemického prostředku použitého k desinfekci, kdy z důvodu krátké kontaktní doby nedojde k úplné likvidaci mikroorganismů a takto neúplně desinfikovaná voda může být hygienicky závadná Proces desinfekce vyžaduje rovněž i dostatečnou kontrolu. Zjišťuje se nejen obsah volného, ale i vázaného a celkového chloru, při uplatnění jiného desinfekčního činidla např. oxidu chloričitého pak zbytkový obsah. Provádí se odběry vzorků a jejich rozbory dle příslušných norem a předpisů. Prostředek Výhody Nevýhody Cl 2, NaClO Menší provozní náklady Závislost účinnosti na ph, vznik THM a senzorických závadných látek Chloraminace Menší tvorba THM a senzor. závadných látek Menší desinfekční účinnost ve srovnání s Cl 2 ClO 2 Účinnost není závislá na Vyšší provozní náklady ve O 3 UV hodnotách ph Vysoká oxidační a desinfekční účinnost Nevznikají hygienicky závadné produkty srovnání s Cl 2 Vysoké provozní náklady, nebezpečí sekundární kontaminace Nebezpečí sekundární kontaminace, nelze použít k oxidaci.4uplatnění oxidu chloričitého při úpravě bazénových vod Přestože při úpravě pitných vod je uplatnění oxidu chloričitého zcela běžné jeho použití pro úpravu bazénových vod se v našich podmínkách nevyskytuje (při tom voda přiváděná k plnění soustav a doplňování systémů je zabezpečena ClO 2 ).

Z hodnot standardních redox potenciálů je zřejmé, že oxidace oxidem chloričitým v neutrální nebo alkalické oblasti HClO + H + + 2e - = Cl - + H 2 O ClO - + H 2 O + 2e - = Cl - + 2 OH E o = 1,49 V E o = 0,94 V Oxid chloričitý je ve studené vodě lépe rozpustný než je tomu u chloru. Obvyklé koncentrace ClO 2 ve vodných roztocích jsou v rozmezí od 2 do 10 g/l. Pro své oxidační schopnosti je spotřeba oxidu chloričitého v průběhu procesu preoxidace větší než je tomu u chloru při stejných zbytkových hodnotách. Rychlost spotřeby je závislá na složení vody a to především na povaze obsažených organických látek. Snížení oxidovatelnosti vody při desinfekci je při uplatnění oxidu chloričitého mnohem větší než při desinfekci chlorem. Obdobně jako u chloru je i u oxidu chloričitého rychlost spotřeby a účinnost procesu oxidace odvislá od množství a charakteru přítomných organických látek. Účinnost oxidačních činidel při úpravě vody Použité prostředky pro oxidaci a desinfekci vody Použit činidlo Chlor Oxid chloričitý ozon UV Účinek střední silný Velmi silný střední desinfekce Doba působení hodiny dny minuty žádná Závislost na ph Velmi vysoká žádná střední žádná Vedlejší produkty THM,AOX chloritany Možné bromičnany, ozonoidy Náklady Nízké až vysoké střední Střední až vysoké střední Údržba střední střední střední nízké Možné dusitany

Uplatnění oxidačních činidel při úpravě vody