Návod pro laboratorní úlohu: Detekce plynů a par pomocí připravených vodivostních senzorů

Rozměr: px
Začít zobrazení ze stránky:

Download "Návod pro laboratorní úlohu: Detekce plynů a par pomocí připravených vodivostních senzorů"

Transkript

1 Návod pro laboratorní úlohu: Detekce plynů a par pomocí připravených vodivostních senzorů Úkol měření: 1. Seznamte se s laboratorním plynovým senzorem, jeho uspořádáním, způsobem jeho přípravy a využitím. 2. Připravte plynné směsi: vzduch-vodík, vzduch-methan, vzduch-ethanol, vzduch-butanol, vzduch-voda. 3. Pro dva laboratorní vzorky senzorů s anorganickou a organickou aktivní vrstvou proměřte postupně změny elektrického odporu v závislosti na složení atmosféry. 4. Jako referenční atmosféru použijte čistý vzduch. 5. Vyhodnoťte tlivost senzoru na jednotlivé plyny a páry. 6. Proveďte diskuzi naměřených výsledků. 1. Teoretický úvod Chemické plynové senzory nahrazují při měření plynů ve speálních případech drahé a složité analytické přístroje (např. v hlásičích úniku nebezpečných plynů, detektory alkoholu v dechu, detektory methanu v dolech, lambda sonda pro měření parálního tlaku kyslíku ve výfukových plynech. Jejich výhodou je relativně jednoduchá výroba, instalace a provoz, dále malé rozměry, snadná přenosnost a nižší pořizovací cena. 1.1.Chemické vodivostní senzory Pro chemické vodivostní senzory, jak již sám název napovídá, je charakteristická změna vodivosti tlivé (tzv. aktivní vrstvy v závislosti na koncentra analytu. Proces detekce molekul zahrnuje řadu postupných reakčních kroků: fyzikální adsorp, chemisorp, povrchové reakce, reakce katalyzované deponovaným kovem, reakce na rozhraní zrn, difúzi reaktantů do nosného materiálu aktivní vrstvy, reakce v objemu nosného materiálu, difúzi a desorp produktů. Vodivostní plynový senzor využívá změny vodivosti polovodiče v důsledku chemických vlivů - přítomnosti redukční nebo oxidační složky v atmosféře. Citlivá část senzoru polovodič - může mít tvar keramické perličky nebo je ve formě polovodivé vrstvy 1 nanesené na elektricky nevodivém substrátu. Polovodič musí být chemicky stálý, tj. nesmí chemicky reagovat se žádnou složkou obsaženou v měřené atmosféře. Proto se pro konstruk senzoru nepoužívá např. křemík, který se na vzduchu pokrývá vrstvou nevodivého oxidu. Nejčastěji tvoří tlivou část polovodivé vrstvy oxidy Sn 2, In 2 3, Zn, Fe 2 3 aj. které již nemohou dále oxidovat a měnit tím své elektrické vlastnosti. bvyklým materiálem, především pro svoji optimální hodnotu měrného elektrického odporu, je Sn 2. Sn 2 obsahuje za normálních podmínek kyslíkové vakance (defit kyslíkových atomů, je tedy nestechiometrický, takže správnějšízápis je Sn 2-x. Kyslíkové vakance se chovají jako elektronové donory, oxid cíničitý je tudíž přirozeně polovodič typu n. Pro ovlivnění vodivosti polovodiče v senzoru musí docházet ke kontaktu polovodiče a plynné fáze. Interakce mezi pevnou a plynou látkou se děje obecně na základě dějů: adsorpce, absorpce a chemisorpce. Adsorpce představuje zachycování plynných molekul na povrchu pevné látky pomocí slabých interakcí (fyzikálních sil, např. Van der Waalsových sil, molekuly plynu jsou na povrchu vázány slabě, může tedy snadno dojít k jejich uvolnění - desorp. 1 Polovodiče základní pojmy a prinpy naleznete v elektronickém návodu úlohy P v Laboratořích měřicí a řídicí techniky 1

2 Absorpce znamená pronikání plynných molekul, případně jejich fragmentů - atomů, do objemu pevné fáze. Plynové polovodičové senzory využívají tzv. chemisorpce, při které dochází k vázání molekul plynu na povrch pevné látky chemickou vazbou. Chemická vazba při chemisorp je daleko pevnější než fyzikální interakce v případě adsorpce, její vznik je doprovázen přenosem elektronů. Předání elektronů mezi dvěma činidly se nazývá oxidačněredukční (nebo též redoxní děj, při němž oxidační činidlo elektrony přijímá, tím se samo redukuje (tj. snižuje oxidační číslo. Na druhou stranu redukční činidlo elektrony odevzdává, oxidační číslo se u něj zvyšuje, tj. oxiduje se. Ve vzduchové atmosféře se na povrch polovodiče typu n chemisorbuje kyslík (oxidačníplyn za vzniku aniontů 2 - nebo Molekulární anionty vznikají tak, že odčerpají volné elektrony z polovodiče. xidační plyn tedy působí jako povrchový akceptor, vodivost n polovodiče snižuje pod povrchem na minimum. U polovodiče typu P by se vodivost vlivem oxidačního plynu naopak zvyšovala. V případě, že se ve vzduchové atmosféře objeví redukční plyn, například methan, dochází za určitých podmínek k jeho reak s chemisorbovaným kyslíkem za vzniku plynných produktů - oxidu uhličitého a vody. Produkty reakce jsou elektroneutrální, přebytečný záporný náboj se vrací ve formě volných elektronů zpět do polovodiče. Vodivost polovodiče se tím zvýší. Nárůst vodivosti je tím vyšší, čím vyšší je koncentrace a reaktivita redukčního plynu. Změna vodivosti je vratná, při snížení koncentrace redukčního plynu na nulu se obnoví počáteční stav, tj. opětovně se naváže kyslík na povrch polovodiče a vodivost se vrátí na původní hodnotu. Měřením vodivosti resp. elektrického odporu polovodiče lze tedy určit koncentra plynu oxidačně-redukční povahy. Pro správnou funk obsahuje senzor kromě polovodiče ještě topný element. Senzor je temperován na provozní teplotu (běžně 100 až 1000 C. Vyhřívání usnadňuje překonávání aktivační energie chemických reakcí, které na povrchu polovodivé části senzoru probíhají. Vzhledem k zrnité polykrystalické struktuře látky deponované na povrchu nosného elementu (planární nebo trubičkový tvar vznikají na hranicích zrn potenálové bariéry, bránící volnému pohybu elektronů. Přítomnost bariéry se projeví poklesem vodivosti polovodiče. Pokud se po ustavení rovnováhy objeví v atmosféře redukující plyn (např. H 2, C, CH 4, H 2 S, C 2 H 5 H, který reaguje s adsorbovaným kyslíkem, dojde k uvolnění vázaných elektronů a vodivost polovodiče vzroste. Pokud se naopak v atmosféře vyskytne oxidující plyn (např. 3, N 2, vede to při jeho absorp na povrchu k dalšímu vázání elektronů, rozšíření vyprázdněné oblasti a tím i poklesu vodivosti. Změna vodivosti funguje reverzibilně, v případě, že v okolní atmosféře poklesne koncentrace sorbovaných molekul, částice vázané na povrchu desorbují a vodivost aktivní vrstvy se vrací na původní úroveň. Jestliže se aktivní vrstva chová jako polovodič typu n, pak jeho vodivost roste v přítomnosti redukujících plynů a klesá v přítomnosti oxidujících. U polovodiče typu P by tomu bylo opačně. Reakce mezi plyny a povrchovým kyslíkem jsou závislé nejen na teplotě senzoru (tedy aktivní vrstvy ale i na aktivitě materiálu vrstvy. Pro snížení aktivační energie povrchových reakcí bývá polovodič pokryt vhodným katalyzátorem. Redoxně indiferentní plyny (např. Ar, N 2 nelze uvedeným způsobem detekovat, neboť jejich absorpce není spjatá s výměnou elektronů. U tzv. organických polovodičů je přenos náboje a tím i detekční mechanismus komplikovanější a závisí na molekulární struktuře, struktuře materiálu, čistotě a prostředí ve kterém se nachází. Pro aktivní vrstvy laboratorních vzorků senzorů byly použity anorganické (oxid cíničitý i organické (acetylacetonáty cínu a india - viz obr. 1 materiály. 2

3 H 3 C CH 3 2+ Sn 2+ H 3 C CH 3 br. 1 Acetylacetonát cínu (chlorid bis(pentan-2,4-dionato cíničitý Základními parametry senzoru jsou tlivost k detekovanému plynu, selektivita, rychlost odezvy, práh detekce a stabilita předcházejících parametrů. Citlivost S je definována tak, aby její hodnota byla větší než 1. Pro oxidační plyny se definuje: Rplyn ( tm, S ( tm, =, (1 Rvzd ( tm a pro redukční: Rvzd ( tm S ( tm, =, (2 Rplyn ( tm, kde t m je teplota senzoru, c i je koncentrace detekovaného plynu i, R plyn je odpor (v Ω aktivní vrstvy v přítomnosti detekovaného plynu a R vzd je odpor (v Ω aktivní vrstvy za absence detekovaného plynu (referenční atmosféra. 1.2 Praktické provedení polovodičových chemických senzorů Chemické vodivostní senzory se vyrábějí i laboratorně připravují v různých konstrukčních variantách. Mohou se lišit tvarem a uspořádáním elektrod, v tloušťkách detekčních vrstev, v materiálech použitých na detekční vrstvy a v použití rozdílných katalyzátorů. V současné době je uspořádání senzoru obvykle planární. Není to uspořádání jediné možné, oproti ostatním (trubičkové a perličkové však má výhodu kompatibility technologie s elektronickými systémy. Nosičem senzoru (substrát je malá destička z korundové keramiky nebo safíru o rozměrech v řádu milimetrů. Na vrchní straně jsou platinové elektrody (nejčastěji v interdigitálním - prstovém - uspořádání na něž je nadeponována aktivní detekční vrstva. Na opačné straně destičky je topný platinový rezistor. Uspořádání tenkovrstvého chemického senzoru je patrné ze schématu na obr. 2. br. 3 ukazuje skutečný vzorek senzoru, který byl připraven na VŠCHT Praha. br. 2 Scématické uspořádání chemického vodivostního senzoru a strana s aktivní vrstvou (interdigitální uspořádání elektrod b topný platinový rezistor - zadní strana 3

4 br. 3 Detail vzorku laboratorně připraveného senzoru a strana s aktivní vrstvou (interdigitální uspořádání elektrod b topný platinový rezistor - zadní strana Na materiál substrátu senzoru je kladen požadavek chemické a tepelné odolnosti, dobré tepelné vodivosti a zároveň musí být elektrickým izolantem. Zdaleka nejčastěji používaný materiál je slinutý korund (Al alumina, dalšími používanými materiály jsou objemový Si s tenkou izolační vrstvou Si 2 nebo Si 3 N 4, polyimid nebo karbid křemíku. Příprava aktivních vrstev pro senzory je komplexním problémem, neboť jejich detekční vlastnosti jsou silně závislé na použitém materiálu a na metodě přípravy. Důležitými vlastnostmi jsou struktura, fázové složení a elektronové stavy polovodiče (materiál aktivní vrstvy. 1.3 Technologie přípravy aktivních vrstev Tlustovrstvými technologiemi lze vytvořit aktivní vrstvu s tloušťkou v řádech mikrometrů až milimetrů. Patří sem například sítotisk.tlustovrstvá technologie je převzata z hybridní technologie integrovaných obvodů. Aktivní vrstvy se nanáší ve formě dodatečně tepelně zpracovávané pasty. Výhoda tlustovrstvých technologií spočívá ve větší stabilitě parametrů detekčních vrstev. V porovnání s tenkými vrstvami se však tlustovrstvé senzory vyznačují nižší tlivostí. Tenkovrstvými technologiemi se vytváří vrstvy s tloušťkou v řádech desítek až tisíců nanometrů. Mezi tyto technologie patří například nereaktivní napařování, katodové naprašování, RF (radiofrekvenční naprašování, metoda CVD, epitaxe s nebo bez následné oxidace (RGT, metoda sol-gel, prepitace, fázová polymerace, aerosolová sprayová pyrolýza a namáčení (dip coating. Výhodou tenkovrstvých technologií je velmi dobrá reprodukovatelnost, možná miniaturizace a následná integrace s CMS technologií (např. patentovaná technologie CMSens firmy Sensirion. Vhodným výběrem materiálů lze dosáhnout vysoké tlivosti a rychlosti odezvy senzoru. 2. Vlastní měření 2.1 Popis aparatury Měřicí aparatura je složena z měřicí cely (obr. 4, zdroje proudu, měřidel napětí a proudu a plynového hospodářství. Průtok plynu zajišťuje vibrační čerpadlo s výkonem až 120 l/h. Měřicí cela, ve které je umístěn senzor (obr. 5, umožňuje přepínání protékající atmosféry. K nastavení průtoku se používá průtokoměrů firmy mega. Sběr dat je zajištěn pomocí měřicí karty firmy National Instruments. Aktuální odpor je snímán přes měřicí blok počítačem. Počítač je vybaven systémem LabVIEW pro programování měřicích (případně řídicích systémů nebo zásuvných měřicích desek. 4

5 br. 4 Schématický průřez měřící celou 1 - přívod plynu, 2 - hliníkový plech, 3 - teflonová komora, 4 - průchodka ze sklolaminátu, 5 - vodiče spojené s aktivní vrstvou, 6 - vodiče spojené s topným meandrem, 7 - patice se senzorem, 8 - vlastní senzor, 9 - odvod plynu. br. 5 Senzor přiletovaný na pětikolíkovou pati 2.2. Nastavení teploty senzoru Senzor je vytápěn proudem který prochází platinovým odporovým meandrem (viz obr. 2b,3b. Vztah mezi teplotou a protékajícím proudem je určen v kalibračním grafu (viz obr. 6. Podmínkou je průtok plynu 40 ml/min. Požadovanou hodnotu proudu se vypočítá přesněji z rovnice 4. Po nastavení topného proudu je nutné počkat na ustálení hodnoty úbytku napětí na voltmetru (ustaluje se teplotní rovnováha mezi vstupem tepla z topného rezistoru a přestupem tepla do okolního prostředí konvekcí, kondukcí a radiací. Doba ustálení výrazně závisí na velikosti topného proudu a aktuálním průtoku plynu. Pro nízké teploty do cca 300 C je doba ustálení (při konstantním průtoku 40ml za minutu přibližně 30 vteřin. 5

6 t ( C I (ma br. 6 Závislost aktuální teploty senzoru na topném proudu při průtoku plynu 40 ml/min - kalibrační graf vychází z kalibrační rovnice (3 pro I v ma a t v C Kalibrační rovnice (3 vychází z kalibračního grafu na obr.6: t = -8, I + 3, I 2, I + 0,53328 I + 20,830 (3 kde je I v ma a t ve C. pačná závislost je vyjádřena rovnicí (4: I = -3, t + 5, t 3, t + 0,87739 t + -6,3529 (4 kde je také I v ma a t ve C. 2.3 Příprava plynných vzorků Plynné směsi připravte do chromatografických vaků opatřených ventilem a septem. Požadována koncentrace plynu (vodíku nebo metanu v syntetickém vzduchu se připravuje pomocí směšovače plynů Sonimix (nastavuje se různý poměr průtoků syntetického vzduchu a směsi syntetického vzduchu s ppm vodíku. Směs páry se vzduchem se připraví tak, že vak se nejprve naplní vzduchem o objemu 5 l pomocí rotametru, ze známého průtoku se vypočítá doba plnění. Vypočítaný objem tekutiny se vpraví přes septum do vaku chromatografickou stříkačkou. Kapalná fáze se pak ve vaku odpaří ohřevem pod stolní lampou. Směsi par jsou charakterizovány relativním nasycením vzduchové atmosféry v procentech. Jestliže parální tlak páry P i (P i = P páry /P atm = V páry /V celk, platí pro nízké tlaky na úrovni tlaku atmosférického by se pro danou látku rovnal tenzi par, jednalo by se o 100 %-ní nasycení. Tenze par dané látky se určí z Antoinovy rovnice: B log P = A, (5 T + C 6

7 kde P je tenze par (jednotka 1 bar = Pa kde T je termodynamická teplota (K, A, B a C jsou konstanty tabelované pro danou látku (viz tab. 1. A (1 B (K C (K teplotní rozmezí (K voda 3, , , ethanol 4, ,526-61, ,8-513,91 butanol 4, ,878-98, ,36-398, Postup měření Tab. 1 Konstanty Antoinovy rovnice pro vybrané látky (NIST, Při měření se jako referenční plyn používá tzv. syntetický vzduch (složení: 20% obj. 2, zbytek N 2, obsah uhlovodíků pod 0,1 ppm obj.. Testovaným plynem je syntetický vzduch obsahující zadaný plyn nebo páru. Při testování tlivosti senzoru je vždy zapojen v jedné větvi vak s měřeným plynem a v druhé srovnávací atmosféra (syntetický vzduch. Tyto plyny se střídavě nasávají čerpadlem do cely se senzorem. bjemový průtok (40 ml/min plynu se nastavuje regulačním ventilem za měrnou celou, jeho hodnota se měří průtokoměrem. Po začátku měření je třeba nejprve senzor 15 min. temperovat na požadovanou teplotu, přičemž celou musí protékat syntetický vzduch. Během této doby se elektrický odpor vrstvy dostatečně ustálí. Následuje přepnutí na atmosféru prvního plynného vzorku a po ustálení odporu (náběh je atmosféra opět přepnuta na syntetický vzduch, po ustálení (zotavení následuje přepnutí na druhý plynný vzorek a po ustálení je opět návrat na referenční atmosféru. Takto se pokračuje tak dlouho, dokud není proměřena odezva na všechny připravené plynné směsi, měření končí ustálením odporu senzoru v syntetickém vzduchu. Pro výpočet tlivosti podle rovnice (2 se R vzd vypočítá jako aritmetický průměr z ustálených hodnot odporu v referenční atmosféře před a po expozi měřeným plynem. 3. Pokyny pro měření a vypracování 1. Připravte plynné směsi dle zadání asistenta. Potřebné údaje vypočtěte. 2. Umístěte senzor do měřicí cely. Měření se provádí postupně se dvěma senzory (s anorganickou a organickou aktivní vrstvou. 3. Zkompletujte elektrický obvod a plynové hospodářství. 4. Nastavte průtok plynu na 40 ml/min. 5. Teplotu senzoru nastavte vypočtenou hodnotou topného proudu dle zadání asistenta. 6. Spusťte měření elektrického odporu senzoru, ustálení odporu senzoru trvá minimálně 15 min. 7. Provádějte střídání atmosfér v souladu s pokyny (kapitola Postup měření. 8. Po ukončení měření zpracujte grafy závislostí elektrického odporu na čase. 9. Vyhodnoťte tlivosti vybraných senzorů na měřené plyny a páry. 10. Diskutujte výsledky měření (reaktivita plynů, rozdíly mezi tlivostmi na dané plyny a páry, rozdíly v tlivostech obou senzorů, rychlosti odezev, náběhů a zotavení. 7

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Náplní laboratorní úlohy je proměření základních parametrů plynových vodivostních senzorů: i) el. odpor a ii)

Více

Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování

Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování Úkol měření: 1) Proměřte závislost citlivosti senzoru TGS na koncentraci vodíku 2) Porovnejte vaši citlivostní charakteristiku s charakteristikou

Více

Návod pro laboratorní úlohu: Impedanční měření na vodivostním senzoru plynů

Návod pro laboratorní úlohu: Impedanční měření na vodivostním senzoru plynů Návod pro laboratorní úlohu: Impedanční měření na vodivostním senzoru plynů Náplní laboratorní úlohy je detekce plynů pomocí tzv. vodivostních senzorů s využitím vf střídavého signálu. Cílem je pochopit

Více

VODIVOSTNÍ SENZOR PLYNŮ

VODIVOSTNÍ SENZOR PLYNŮ VODIVOSTNÍ SENZOR PLYNŮ 1 Vodivostní senzory V současnosti jsou k dispozici vodivostní (polovodičové) senzory pro detekci více než 150 různých plynů, včetně takových, které mohou být jinak detekovány pouze

Více

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Detekce nízkých koncentrací plynů pomocí chemických vodivostních senzorů Úvod Chemické vodivostní senzory

Více

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Měření plynem indukovaných změn voltampérových charakteristik chemických vodivostních senzorů 1. Úvod

Více

Principy chemických snímačů

Principy chemických snímačů Principy chemických snímačů Název školy: SPŠ Ústí nad Labem, středisko Resslova Autor: Ing. Pavel Votrubec Název: VY_32_INOVACE_05_AUT_99_principy_chemickych_snimacu.pptx Téma: Principy chemických snímačů

Více

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením

Více

Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály

Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály Elektrochemie rovnováhy a děje v soustavách nesoucích elektrický náboj Krystal kovu ponořený do destilované vody + +

Více

Galvanický článek. Li Rb K Na Be Sr Ca Mg Al Be Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb Bi As CU Hg Ag Pt Au

Galvanický článek. Li Rb K Na Be Sr Ca Mg Al Be Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb Bi As CU Hg Ag Pt Au Řada elektrochemických potenciálů (Beketova řada) v níž je napětí mezi dvojicí kovů tím větší, čím větší je jejich vzdálenost v této řadě. Prvek více vlevo vytěsní z roztoku kov nacházející se vpravo od

Více

P1, P2 - SPOJENÍ POLOVODIČOVÉHO SENZORU S PC

P1, P2 - SPOJENÍ POLOVODIČOVÉHO SENZORU S PC P1, P2 - SPOJENÍ POLOVODIČOVÉHO SENZORU S PC Úvod Od samého počátku své existence sleduje měřicí technika dva základní směry vývoje. První směr hledá nové měřicí principy, druhý se snaží dosáhnout stále

Více

Bezpečnostní inženýrství. - Detektory požárů a senzory plynů -

Bezpečnostní inženýrství. - Detektory požárů a senzory plynů - Bezpečnostní inženýrství - Detektory požárů a senzory plynů - Úvod 2 Včasná detekce požáru nebo úniku nebezpečných látek = důležitá součást bezpečnostního systému Základní požadavky včasná detekce omezení

Více

E1 - Měření koncentrace kyslíku magnetickým analyzátorem

E1 - Měření koncentrace kyslíku magnetickým analyzátorem E1 - Měření koncentrace kyslíku magnetickým analyzátorem Funkční princip analyzátoru Podle chování plynů v magnetickém poli rozlišujeme plyny paramagnetické a diamagnetické. Charakteristickou konstantou

Více

Separační metody v analytické chemii. Plynová chromatografie (GC) - princip

Separační metody v analytické chemii. Plynová chromatografie (GC) - princip Plynová chromatografie (GC) - princip Plynová chromatografie (Gas chromatography, zkratka GC) je typ separační metody, kdy se od sebe oddělují složky obsažené ve vzorku a které mohou být převedeny do plynné

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,

Více

LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce:

LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce: LABORATOŘ OBORU I F Testování katalyzátorů pro přípravu prekurzorů vonných látek Vedoucí práce: Umístění práce: Ing. Eva Vrbková F07, F08 1 ÚVOD Hydrogenace je uplatňována v nejrůznějších odvětvích chemických

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie 2. ročník a sexta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

U = E a - E k + IR Znamená to, že vložené napětí je vyrovnáváno

U = E a - E k + IR Znamená to, že vložené napětí je vyrovnáváno Voltametrie a polarografie Princip. Do roztoku vzorku (elektrolytu) jsou ponořeny dvě elektrody (na rozdíl od potenciometrie prochází obvodem el. proud) - je vytvořen elektrochemický článek. Na elektrody

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

7. Elektrický proud v polovodičích

7. Elektrický proud v polovodičích 7. Elektrický proud v polovodičích 7.1 Elektrické vlastnosti polovodičů Kromě vodičů a izolantů existují polovodiče. Definice polovodiče: Je to řada minerálů, rud, krystalů i amorfních látek, řada oxidů

Více

Měření charakteristik fotocitlivých prvků

Měření charakteristik fotocitlivých prvků Měření charakteristik fotocitlivých prvků Úkol : 1. Určete voltampérovou charakteristiku fotoodporu při denním osvětlení a při osvětlení E = 1000 lx. 2. Určete voltampérovou charakteristiku fotodiody při

Více

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory Mikrosenzory a mikroelektromechanické systémy Odporové senzory Obecné vlastnosti odporových senzorů Odporové senzory kontaktové Měřící potenciometry Odporové tenzometry Odporové senzory teploty Odporové

Více

TEPELNÉ ÚČINKY EL. PROUDU

TEPELNÉ ÚČINKY EL. PROUDU Univerzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 1 TEPELNÉ ÚČINKY EL. POUDU Jméno(a): Mikulka oman, Havlíček Jiří Stanoviště: 6 Datum: 19.

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. XXII. Název: Diferenční skenovací kalorimetrie

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. XXII. Název: Diferenční skenovací kalorimetrie Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. XXII Název: Diferenční skenovací kalorimetrie Pracoval: Jakub Michálek stud. skup. 15 dne: 15. května 2009 Odevzdal

Více

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. V1. Hallův jev Úkoly měření: 1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. Použité přístroje a pomůcky:

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě nízkofrekvenční nevýkonový tranzistor KC 639. Mezní hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě nízkofrekvenční nevýkonový tranzistor KC 639. Mezní hodnoty jsou uvedeny v tabulce: RIEDL 3.EB 10 1/11 1.ZADÁNÍ a) Změřte statické hybridní charakteristiky tranzistoru KC 639 v zapojení se společným emitorem (při měření nesmí dojít k překročení mezních hodnot). 1) Výstupní charakteristiky

Více

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru Předmět: Vícefázové reaktory Jméno: Veronika Sedláková 3-fázové reakce Autoklávy (diskontinuální) Trubkové reaktory (kontinuální) Probublávané

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více

TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III.

TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III. TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III. NANÁŠENÍ VRSTEV V mikroelektronice se nanáší tzv. tlusté a tenké vrstvy. a) Tlusté vrstvy: Používají se v hybridních integrovaných obvodech. Nanáší

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

9. ČIDLA A PŘEVODNÍKY

9. ČIDLA A PŘEVODNÍKY Úvod do metrologie - 49-9. ČIDLA A PŘEVODNÍKY (V.LYSENKO) Čidlo (senzor, detektor, receptor) je em jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování ) je to člen

Více

Spalování CÍL EXPERIMENTU MODULY A SENZORY POMŮCKY MATERIÁL. Experiment C-5

Spalování CÍL EXPERIMENTU MODULY A SENZORY POMŮCKY MATERIÁL. Experiment C-5 Experiment C-5 Spalování CÍL EXPERIMENTU Studium procesu hoření a spalování. Měření hladiny kyslíku v průběhu hoření svíčky. MODULY A SENZORY PC + program NeuLog TM USB modul USB 200 Oxymetr NUL 205 POMŮCKY

Více

ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ

ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ Polovodič - prvek IV. skupiny, v elektronice nejčastěji křemík Si, vykazuje vysokou čistotu (10-10 ) a bezchybnou strukturu atomové mřížky v monokrystalu.

Více

VY_32_INOVACE_6/15_ČLOVĚK A PŘÍRODA. Předmět: Fyzika Ročník: 6. Poznámka: Vodiče a izolanty Vypracoval: Pták

VY_32_INOVACE_6/15_ČLOVĚK A PŘÍRODA. Předmět: Fyzika Ročník: 6. Poznámka: Vodiče a izolanty Vypracoval: Pták VY_32_INOVACE_6/15_ČLOVĚK A PŘÍRODA Předmět: Fyzika Ročník: 6. Poznámka: Vodiče a izolanty Vypracoval: Pták Izolant je látka, která nevede elektrický proud izolant neobsahuje volné částice s elektrický

Více

2.3 Elektrický proud v polovodičích

2.3 Elektrický proud v polovodičích 2.3 Elektrický proud v polovodičích ( 6 10 8 10 ) Ωm látky rozdělujeme na vodiče polovodiče izolanty ρ ρ ( 10 4 10 8 ) Ωm odpor s rostoucí teplotou roste odpor nezávisí na osvětlení nebo ozáření odpor

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 9 Název úlohy: Charakteristiky termistoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 16.11.2015 Datum odevzdání:... Připomínky opravujícího:

Více

Reaktory pro systém plyn-kapalina

Reaktory pro systém plyn-kapalina Reaktory pro systém plyn-kapalina Vypracoval : Jan Horáček FCHT, ústav 111 Prováděné reakce Rychlé : všechen absorbovaný plyn zreaguje již na fázovém rozhraní (př. : absorpce kyselých plynů : CO 2, H 2

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

Název: Beketovova řada kovů

Název: Beketovova řada kovů Název: Beketovova řada kovů Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, biologie, fyzika Ročník: 3. Tématický celek:

Více

Testování fotokatalytické aktivity nátěrů FN z hlediska jejich schopnosti odbourávání polutantů ze vzduchu dle následujících ISO standardů:

Testování fotokatalytické aktivity nátěrů FN z hlediska jejich schopnosti odbourávání polutantů ze vzduchu dle následujících ISO standardů: Laboratorní protokol: TPK 570/13/2016 Testování otokatalytické aktivity nátěrů FN z hlediska jejich schopnosti odbourávání polutantů ze vzduchu dle následujících ISO standardů: a) odbourávání NOx: ISO

Více

Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku

Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Teorie První termodynamický zákon je definován du dq dw (1) kde du je totální diferenciál vnitřní energie a dq a dw jsou neúplné

Více

Elektřina a magnetizmus závěrečný test

Elektřina a magnetizmus závěrečný test DUM Základy přírodních věd DUM III/2-T3-20 Téma: závěrečný test Střední škola Rok: 2012 2013 Varianta: TEST - A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník TEST Elektřina a magnetizmus závěrečný

Více

Zapojení odporových tenzometrů

Zapojení odporových tenzometrů Zapojení odporových tenzometrů Zadání 1) Seznamte se s konstrukcí a použitím lineárních fóliových tenzometrů. 2) Proveďte měření na fóliových tenzometrech zapojených do můstku. 3) Zjistěte rovnici regresní

Více

Analýza kofeinu v kávě pomocí kapalinové chromatografie

Analýza kofeinu v kávě pomocí kapalinové chromatografie Analýza kofeinu v kávě pomocí kapalinové chromatografie Kofein (obr.1) se jako přírodní alkaloid vyskytuje v mnoha rostlinách (např. fazolích, kakaových bobech, černém čaji apod.) avšak nejvíce je spojován

Více

Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Část 16 Iontová chromatografie Iontová chromatografie je speciální technika vyvinutá pro separaci anorganických iontů a organických

Více

Chemie - 5. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 5. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 5. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.2., 2.1., 2.2., 2.4., 3.3. 1. Přeměny chemických soustav chemická

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

Učební texty Diagnostika II. snímače 7.

Učební texty Diagnostika II. snímače 7. Předmět: Ročník: Vytvořil: Datum: Praxe 4. ročník Fleišman Luděk 28.5.2013 Název zpracovaného celku: Učební texty Diagnostika II. snímače 7. Snímače plynů, měřiče koncentrace Koncentrace látky udává, s

Více

Nezkreslená věda Vodí, nevodí polovodič? Kontrolní otázky. Doplňovačka

Nezkreslená věda Vodí, nevodí polovodič? Kontrolní otázky. Doplňovačka Nezkreslená věda Vodí, nevodí polovodič? Ve vašich mobilních zařízeních je polovodičů mraky. Jak ale fungují? Otestujte své znalosti po zhlédnutí dílu. Kontrolní otázky 1. Kde najdeme polovodičové součástky?

Více

Stanovení fotokatalytické aktivity vzorků FN1, FN2, FN3 a P25 dle metodiky ISO :2013

Stanovení fotokatalytické aktivity vzorků FN1, FN2, FN3 a P25 dle metodiky ISO :2013 Stanovení fotokatalytické aktivity vzorků FN, FN2, FN3 a P25 dle metodiky ISO 2297-4:23 Vypracováno za základě objednávky č. VSCHT 7-2-5 pro Advanced Materials-JTJ s.r.o. Vypracovali: Ing. Michal Baudys

Více

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Roman Snop

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Roman Snop Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru Roman Snop Charakteristika Zkrápěné reaktory jsou nejvhodněji aplikovatelné na provoz heterogenně katalyzovaných reakcí. Nacházejí uplatnění

Více

Měření spotřeby tepla

Měření spotřeby tepla Měření spotřeby tepla Úkol: Změřte jaké množství tepla je spotřebováno a přeneseno na laboratorním přípravku v daném čase. Použijte tři způsoby měření spotřeby tepla měřením množství spotřebované elektrické

Více

Využití faktorového plánování v oblasti chemických specialit

Využití faktorového plánování v oblasti chemických specialit LABORATOŘ OBORU I T Využití faktorového plánování v oblasti chemických specialit Vedoucí práce: Ing. Eliška Vyskočilová, Ph.D. Umístění práce: FO7 1 ÚVOD Faktorové plánování je optimalizační metoda, hojně

Více

6. STUDIUM SOLÁRNÍHO ČLÁNKU

6. STUDIUM SOLÁRNÍHO ČLÁNKU 6. STUDIUM SOLÁRNÍHO ČLÁNKU Měřicí potřeby 1) solární baterie 2) termoelektrická baterie 3) univerzální měřicí zesilovač 4) reostat 330 Ω, 1A 5) žárovka 220 V / 120 W s reflektorem 6) digitální multimetr

Více

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ CHARAKTERISTIKY VÝVĚV vývěva = zařízení snižující tlak plynu v uzavřeném objemu parametry: mezní tlak čerpací rychlost pracovní tlak výstupní tlak

Více

Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti

Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti Cíl práce: Cílem laboratorní úlohy Elektrochemické metody stanovení korozní rychlosti je stanovení korozní rychlosti oceli v prostředí

Více

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se

Více

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky.

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Polovodičové prvky V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku

Více

III. Stacionární elektrické pole, vedení el. proudu v látkách

III. Stacionární elektrické pole, vedení el. proudu v látkách III. Stacionární elektrické pole, vedení el. proudu v látkách Osnova: 1. Elektrický proud a jeho vlastnosti 2. Ohmův zákon 3. Kirhoffovy zákony 4. Vedení el. proudu ve vodičích 5. Vedení el. proudu v polovodičích

Více

Technická měření v bezpečnostním inženýrství. Elektrická měření proud, napětí, odpor

Technická měření v bezpečnostním inženýrství. Elektrická měření proud, napětí, odpor Technická měření v bezpečnostním inženýrství Čís. úlohy: 6 Název úlohy: Elektrická měření proud, napětí, odpor Úkol měření a) Změřte v propustném i závěrném směru voltampérovou charakteristiku - křemíkové

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.

Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář

Více

Základy vakuové techniky

Základy vakuové techniky Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní

Více

Měřící a senzorová technika

Měřící a senzorová technika VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Měřící a senzorová technika Semestrální projekt Vypracovali: Petr Osadník Akademický rok: 2006/2007 Semestr: zimní Původní zadání úlohy

Více

Látky, jejich vlastnosti, skupenství, rozpustnost

Látky, jejich vlastnosti, skupenství, rozpustnost - zná zásady bezpečné práce v laboratoři, poskytne první pomoc a přivolá pomoc při úrazech - dokáže poznat a pojmenovat chemické nádobí - pozná skupenství a jejich přeměny - porovná společné a rozdílné

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů

Více

Vysoká škola chemicko technologická v Praze Ústav fyziky a měřicí techniky. Detekce hořlavých a toxických plynů OLDHAM MX32

Vysoká škola chemicko technologická v Praze Ústav fyziky a měřicí techniky. Detekce hořlavých a toxických plynů OLDHAM MX32 Vysoká škola chemicko technologická v Praze Ústav fyziky a měřicí techniky Detekce hořlavých a toxických plynů OLDHAM MX32 Návod k laboratorní práci Bc. Jan Vlček, Doc. Ing. Karel Kadlec CSc. Praha září

Více

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí. 1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A

Více

Elektrody pro snímání biologických potenciálů. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů

Elektrody pro snímání biologických potenciálů. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů Elektrody pro snímání biologických potenciálů X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Spojení elektroda elektrolyt organismus vodič 2. třídy (ionty) přívodní

Více

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s

Více

Laboratorní úloha č. 2 - Vnitřní odpor zdroje

Laboratorní úloha č. 2 - Vnitřní odpor zdroje Laboratorní úloha č. 2 - Vnitřní odpor zdroje Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu R i zdroje včetně

Více

Elektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů

Elektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů Elektrický proud Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů Vodivé kapaliny : Usměrněný pohyb iontů Ionizované plyny: Usměrněný pohyb iontů

Více

Sol gel metody, 3. část

Sol gel metody, 3. část Sol gel metody, 3. část Zdeněk Moravec (hugo@chemi.muni.cz) V posledním díle se podíváme na možnosti, jak připravené materiály charakterizovat a také na možnosti jejich využití v praxi. Metod umožňujících

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

MINIATURIZACE PRŮTOKOVÝCH ELEKTROCHEMICKÝCH CEL PRO GENEROVÁNÍ TĚKAVÝCH SLOUČENIN. Jakub Hraníček

MINIATURIZACE PRŮTOKOVÝCH ELEKTROCHEMICKÝCH CEL PRO GENEROVÁNÍ TĚKAVÝCH SLOUČENIN. Jakub Hraníček MINIATURIZACE PRŮTOKOVÝCH ELEKTROCHEMICKÝCH CEL PRO GENEROVÁNÍ TĚKAVÝCH SLOUČENIN Jakub Hraníček Katedra analytické chemie, Přírodovědecká fakulta, Univerzita Karlova, Albertov 6, 128 43 Praha 2 E-mail:

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

Zapojení teploměrů. Zadání. Schéma zapojení

Zapojení teploměrů. Zadání. Schéma zapojení Zapojení teploměrů V této úloze je potřeba zapojit elektrickou pícku a zahřát na požadovanou teplotu, dále zapojit dané teploměry dle zadání a porovnávat jejich dynamické vlastnosti, tj. jejich přechodové

Více

Elektrický proud v polovodičích

Elektrický proud v polovodičích Elektrický proud v polovodičích Polovodič Látka, jejíž měrný elektrický odpor je při obvyklých teplotách mnohem menší než u izolantů, ale zase mnohem větší než u kovů. Polovodič Látka, jejíž měrný elektrický

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

7. Elektrický proud v polovodičích

7. Elektrický proud v polovodičích 7. Elektrický proud v polovodičích 7.1 Elektrické vlastnosti polovodičů Kromě vodičů a izolantů existují polovodiče. Definice polovodiče: Je to řada minerálů, rud, krystalů i amorfních látek, řada oxidů

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Počet atomů a molekul v monomolekulární vrstvě

Počet atomů a molekul v monomolekulární vrstvě Počet atomů a molekul v monomolekulární vrstvě ϑ je stupeň pokrytí ϑ = N 1 N 1p N 1 = ϑn 1p ν 1 = 1 4 nv a ν 1ef = γν 1 = γ 1 4 nv a γ je koeficient ulpění () F6450 1 / 23 8kT v a = πm = 8kNa T π M 0 ν

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Charakteristika fotovoltaického panelu, elektrolyzéru a palivového článku

Charakteristika fotovoltaického panelu, elektrolyzéru a palivového článku Charakteristika fotovoltaického panelu, elektrolyzéru a palivového článku Fotovoltaické panely a palivové články v současné době představují perspektivní oblast alternativních zdrojů elektrické energie

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Tepelně vlhkostní posouzení

Tepelně vlhkostní posouzení Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více