Systémy řízení proudů dat
|
|
- Sabina Blažková
- před 6 lety
- Počet zobrazení:
Transkript
1 Systémy řízení proudů dat Tomáš Herceg Dotazovací jazyky I MFF UK 2011
2 Agenda Motivace Dotazování nad proudy dat a problémy STanford StREam DatA Manager
3 Datový proud (Data Stream) data přicházejí průběžně (on-line) není kontrola nad pořadím zpracování ať už v rámci 1 nebo více proudů potenciálně neomezená velikost proudu typicky mnohem větší než operační paměť po zpracování se data zahazují nebo archivují nemůžeme se k nim vracet (rozumně rychle)
4 Motivace nové typy aplikací práce s daty "v reálném čase" Příklady finanční aplikace sledování sítí webové aplikace sítě senzorů
5 Příklad v každé místnosti jsou 3 pohybová čidla pokud všechna 3 čidla v intervalu 10 sekund zjistí pohyb, v místnosti někdo je pokud během 20 sekund 1 čidlo 2x zjistí pohyb, ale ostatní čidla ve stejné místnosti ne, pak se čidlo porouchalo
6 Aplikace Traderbot webový vyhledávač nad finančními ukazateli vyhledává v reálném čase ipolicy Networks firewall, detekce útoků a vetřelců v sítích, filtrování na základě URL Clickstream sledování pohybu uživatelů ve velkých webových aplikacích
7 Zásadní otázka Vyžaduje tento problém specifické řešení? Nestačí použít relační databázi?
8 Potíže při použití relační databáze Příchozích dat je mnoho velké množství INSERT operace Mají dočasnou platnost velké množství DELETE operací Neustále musíme kontrolovat velké množství SELECT operací
9 Potíže při použití relační databáze Klasické relační databáze nejsou pro toto chování optimalizovány Zpracování proudů dat vyžaduje dlouhotrvající dotazy nepřetržité dotazy aproximace některé dotazy vyžadují neomezené množství paměti
10 Příklad Poskytovatel připojení k Internetu B linka v rámci sítě ISP C linka od zákazníka do sítě ISP Paket src IP odesílatele dest... IP příjemce time čas id unikátní ID paketu len délka paketu
11 Příklad upozornit operátora, pokud za minutu proteče více než dané množství dat SELECT notifyoperator(sum(len)) FROM B GROUP BY getminute(time) HAVING sum(len) > t
12 Příklad Spočítat data přenesená v rámci "spojení" SELECT flowid, src, dest, sum(len) AS flowlen FROM ( SELECT src, dest, len, time FROM B ORDER BY time) GROUP BY src, dest, getflowid(src, dest, time) AS flowid Agregace a třídění jsou "blokující" operátory
13 Příklad Počet paketů, které prošly linkami C i B SELECT count(*) FROM C, B WHERE C.src = B.src AND C.dest = B.dest AND C.id = B.id JOIN přes velké sady dat může požadovat neomezené množství paměti pokud chceme přesnou odpověď Přitom drtivá většina paketů se v síti nezdržela
14 Příklad 5% cest, které přenesly nejvíce dat WITH Load AS ( SELECT src, dest, sum(len) AS traffic FROM B GROUP BY src, dest) SELECT src, dest, traffic FROM Load AS L1 WHERE (SELECT count(*) FROM Load AS L2 WHERE L2.traffic < L1.traffic) > (SELECT 0.95 * count(*) FROM Load) ORDER BY traffic
15 Existující projekty Tapestry prohledávání ové komunikace podmnožina SQL XFilter filtrování XML dokumentů dotazy v XPath STREAM projekt Stanfordské univerzity
16 Agenda Motivace Dotazování nad proudy dat a problémy STanford StREam DatA Manager
17 Typy dotazů Podle délky trvání jednorázové dotazy vrací výsledek ihned výsledek reflektuje okamžitý stav dat dlouhotrvající dotazy výsledek průběžně aktualizuje někdy jej publikuje jako další proud dat výsledek zohledňuje jen data, která již přišla nevrací "absolutní minimum", ale "dosavadní minimum" atd.
18 Typy dotazů Podle vzniku předdefinované dotazy známé hned od začátku ještě před tím, než přijdou první data ad hoc dotazy zadávány až v průběhu komplikace přesné vyhodnocení může vyžadovat data, která jsme již zpracovali a zahodili
19 Neomezená paměť Neomezené nároky na paměť nemůžeme si dovolit používat pomalá paměťová média (např. disk) dat je příliš mnoho a není čas typicky když chceme výsledek přesně problém: jak poznat, jestli dotazu stačí omezená paměť JOIN pokud nejsou jednotlivé sady výsledků omezené, můžeme se v budoucnu spojovat s daty, která ještě nevidíme
20 Řešení aproximace výsledek není úplně přesný ale pro potřeby aplikace dostačuje techniky histogramy vzorkování (sampling) dávkové zpracování (batch processing) posuvné okénko (sliding window)
21 Posuvné okénko Vyhodnocuje se pouze nad určitým časovým intervalem v nedávné minulosti např. vytížení sítě nás zajímá jen týden nazpět V mnoha situacích lepší co se dělo před 5 lety není tak zajímavé co se dělo před 2 dny má větší vypovídací hodnotu Problém: co když se data v okénku nevejdou do paměti
22 Vzorkování a dávkové zpracování Proudové zpracování operace update(tuple) a computeanswer() Dávkové zpracování update rychlý, computeanswer pomalý computeanswer se nevolá pokaždé Vzorkování update pomalý update se nevolá na každý záznam, některé se ignorují
23 Blokující operátory Blokující operátor nemůže začít vracet výsledky, dokud nevidí celý vstup například ORDER BY i agregace AVG, SUM, COUNT, MIN, MAX obtížně realizovatelné vstup je nekonečný Agregace ale potřebujeme velmi často
24 Blokující operátory Pokud je v kořeni stromu dotazu, řešitelné dotaz vrací stream, výsledek se neustále zpřesňuje Problém: co když ale hodnota sumy závisí na jiném blokujícím operátoru nepřesnosti se násobí operátor musí sledovat, jestli se hodnota jeho operandů nezměnila
25 Blokující operátory Juggle neblokující třídění snaží se záznamy třídit, ale samozřejmě občas udělá chybu Punctuation speciální podmínky musíme něco vědět o datech, která přijdou např. že datum již bude vždy větší než
26 Potřeba dat z minulosti ad hoc dotazy již z definice nemusí odpovědět přesnou odpověď většina aplikací se spokojí s tím, že dotaz sleduje jen data od okamžiku, kdy byl položen lze řešit uchováváním statistik o datech v minulosti na jejich základě lze vracet přibližné výsledky je to částečně podobné chybějícímu indexu u relační databáze
27 Agenda Motivace Dotazování nad proudy dat a problémy STanford StREam DatA Manager
28 STranford StREam DatA Manager implementace systému pro řízení proudových dat ze Stanfordské univerzity upravený jazyk SQL podpora posuvných okének
29 Časová razítka implicitní záznamy nemají své vlastní čas záznamu není důležitý, jde jen o rozlišení novějších a starších záznamů, určení pořadí atd. explicitní záznam obsahuje pole s časem události problém: záznamy nemusí přijít ve správném pořadí typicky se řeší bufferingem
30 Okénka Fyzická odvíjí se od počtu řádků výsledků syntaxe ROWS 50 PRECEDING Logická od časového razítka syntaxe RANGE 15 MINUTES PRECEDING
31 Příklad datový proud Calls customer_id ID zákazníka type typ hovoru minutes účtovaných minut timestamp doba, kdy hovor skončil
32 Příklad SELECT avg(s.minutes), S.customer_id FROM Calls S [ PARTITION BY S.customer_id ROWS 10 PRECEDING WHERE S.type = 'Long Distance'] Vrátí průměrnou délku posledních 10 meziměstských hovorů každého zákazníka
33 Příklad SELECT avg(s.minutes), S.customer_id FROM (SELECT S.minutes, S.customer_id FROM Calls S, Customers T WHERE S.customer_id = T.customer_id AND T.tier = 'VIP') V [ROWS 1000 PRECEDING] Vrátí průměrnou délku posledních 1000 hovorů všech VIP zákazníků
34 Časová razítka a JOIN Jaké časové razítko má mít záznam, který je vytvořen spojením záznamů ze dvou proudů? buď čas "vytvoření" záznamu operací spojení jednoduché na implementaci přijdeme ale o přesně definované časové okno přidělené časové razítko závisí na aktuálním zatížení systému a mnoha dalších faktorech operace nebude deterministická nebo časové razítko prvního proudu záleží na pořadí proudů v klauzuli FROM potíž se řazením, více záznamů může mít stejné razítko pak se rozlišuje podle časového razítka druhého proudu atd. problém, pokud chceme výsledek operace JOIN setřídit blokující operátor
35 PRECEDING vs. RECENT U fyzických okének ROWS 1000 PRECEDING striktně vyžadováno řazení podle časového razítka druhý způsob, časově náročnější ROWS 1000 RECENT na pořadí nám tolik nezáleží první způsob, efektivnější Logická okénka vždy používají PRECEDING
36 Vyhodnocování dotazů
37 Vyhodnocování dotazů Práce operátorů je přidělována plánovačem jak často provádět vyhodnocování operátoru buď podle času nebo podle počtu záznamů na vstupu operátory jsou adaptivní přesnost vs. dostupná paměť různé politiky plánovače
38 Shrnutí Motivace Dotazování nad proudy dat a problémy STanford StREam DatA Manager
39 Zdroje [1] Babcock B., Babu S., Datar M., Motwani R., Widom J.: Models and Issues of Data Stream Systems Dept. of Computer Science, Stanford University,
Možnosti dotazování nad proudy dat. Jan Pešek
Možnosti dotazování nad proudy dat Jan Pešek Datové proudy: použití - Monitor sítě - Monitor dopravy - Vyhledávání na webu Model datových proudů - (celá) data nejsou uložena a nejsou dostupná z disku či
Operátory ROLLUP a CUBE
Operátory ROLLUP a CUBE Dotazovací jazyky, 2009 Marek Polák Martin Chytil Osnova přednášky o Analýza dat o Agregační funkce o GROUP BY a jeho problémy o Speciální hodnotový typ ALL o Operátor CUBE o Operátor
Dotazovanie nad data streams. Juraj Hámorník, Jan Pešek
Dotazovanie nad data streams Juraj Hámorník, Jan Pešek Data stream - Monitor siete kde každý sieťový prvok posiela štatistiku - Dopravná situácia... Data stream model - všetky alebo niektoré dáta niesú
SQL SQL-SELECT. Informační a znalostní systémy. Informační a znalostní systémy SQL- SELECT
-SELECT Informační a znalostní systémy 1 - Structured Query Language norma pro dotazování nad relačními databáze díky přenositelnosti- rozmach relačních databází zahrnuje jak dotazování na data, tak změny
KIV/ZIS - SQL dotazy. stáhnout soubor ZIS- 04_TestovaciDatabaze250312.accdb. SQL dotazy. budeme probírat pouze SELECT
KIV/ZIS - SQL dotazy stáhnout soubor ZIS- 04_TestovaciDatabaze250312.accdb SQL dotazy textové příkazy pro získání nebo manipulaci s daty SELECT - výběr/výpis INSERT - vložení UPDATE - úprava DELETE - smazání
Úvod do databázových systémů
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů Cvičení 5 Ing. Petr Lukáš petr.lukas@vsb.cz Ostrava, 2014 Opakování K čemu se používají
Kurz Databáze. Obsah. Dotazy. Zpracování dat. Doc. Ing. Radim Farana, CSc.
1 Kurz Databáze Zpracování dat Doc. Ing. Radim Farana, CSc. Obsah Druhy dotazů, tvorba dotazu, prostředí QBE (Query by Example). Realizace základních relačních operací selekce, projekce a spojení. Agregace
Ukládání a vyhledávání XML dat
XML teorie a praxe značkovacích jazyků (4IZ238) Jirka Kosek Poslední modifikace: $Date: 2014/12/04 19:41:24 $ Obsah Ukládání XML dokumentů... 3 Ukládání XML do souborů... 4 Nativní XML databáze... 5 Ukládání
6. blok část C Množinové operátory
6. blok část C Množinové operátory Studijní cíl Tento blok je věnován problematice množinových operátorů a práce s množinovými operátory v jazyce SQL. Čtenáři se seznámí s operátory, UNION, a INTERSECT.
Úvod do databázových systémů
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů Cvičení 3 Ing. Petr Lukáš petr.lukas@vsb.cz Ostrava, 2014 Opakování 4 fáze vytváření
6. blok část B Vnořené dotazy
6. blok část B Vnořené dotazy Studijní cíl Tento blok je věnován práci s vnořenými dotazy. Popisuje rozdíl mezi korelovanými a nekorelovanými vnořenými dotazy a zobrazuje jejich použití. Doba nutná k nastudování
Informační systémy 2008/2009. Radim Farana. Obsah. Dotazy přes více tabulek
5 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Jazyk SQL, Spojení tabulek, agregační dotazy, jednoduché a složené
8.2 Používání a tvorba databází
8.2 Používání a tvorba databází Slide 1 8.2.1 Základní pojmy z oblasti relačních databází Slide 2 Databáze ~ Evidence lidí peněz věcí... výběry, výpisy, početní úkony Slide 3 Pojmy tabulka, pole, záznam
B0M33BDT Technologie pro velká data. Supercvičení SQL, Python, Linux
B0M33BDT Technologie pro velká data Supercvičení SQL, Python, Linux Sergej Stamenov, Jan Hučín 18. 10. 2017 Osnova cvičení Linux SQL Python 2 SQL pro uživatele aneb co potřebuje znát a umět bigdatový uživatel:
KIV/ZIS cvičení 5. Tomáš Potužák
KIV/ZIS cvičení 5 Tomáš Potužák Úvod do SQL (1) SQL (Structured Query Language) je standardizovaný strukturovaný dotazovací jazyk pro práci s databází Veškeré operace v databázi se dají provádět pomocí
XMW4 / IW4 Pokročilé SELECT dotazy. Štefan Pataky
XMW4 / IW4 Pokročilé SELECT dotazy Štefan Pataky TOP, OFFSET-FETCH Konverze datových typů Logické funkce Práce s řetězci Poddotazy a množinové dotazy SQL Windowing Agenda TOP TOP omezení počtu vrácených
Analýza a modelování dat. Přednáška 8
Analýza a modelování dat Přednáška 8 OLAP, datová kostka, dotazování nad kostkou Motivace většina DB relační zaznamenání vztahů pomocí logicky provázaných tabulek jakou mají velmi často vztahy povahu vztah
Analýza a modelování dat 6. přednáška. Helena Palovská
Analýza a modelování dat 6. přednáška Helena Palovská Historie databázových modelů Jak je řešena temporalita? Temporalita v databázích Možnosti pro platnost faktu (valid time): platí nyní, je to aktuální
Databázové systémy. Cvičení 6: SQL
Databázové systémy Cvičení 6: SQL Co je SQL? SQL = Structured Query Language SQL je standardním (ANSI, ISO) textovým počítačovým jazykem SQL umožňuje jednoduchým způsobem přistupovat k datům v databázi
Relační DB struktury sloužící k optimalizaci dotazů - indexy, clustery, indexem organizované tabulky
Otázka 20 A7B36DBS Zadání... 1 Slovníček pojmů... 1 Relační DB struktury sloužící k optimalizaci dotazů - indexy, clustery, indexem organizované tabulky... 1 Zadání Relační DB struktury sloužící k optimalizaci
Analýza a modelování dat. Přednáška 9
Analýza a modelování dat Přednáška 9 Další dotazování nad kostkou Rozšíření SQL99 rozšíření SQL99 (minulá přednáška): seskupovací operátory za GROUP BY CUBE statistiky dle řezů ROLLUP statistiky dle rolování
KIV/ZIS - SELECT, opakování
KIV/ZIS - SELECT, opakování soubor 4_databaze.accdb (lze použít ten z minula) http://home.zcu.cz/~krauz/zis/4_databaze.accdb minule: SELECT FROM WHERE ORDER BY SELECT sloupce jaké sloupce chceme vybrat
TimescaleDB. Pavel Stěhule 2018
TimescaleDB Pavel Stěhule 2018 O výkonu rozhodují Algoritmy Datové struktury 80-90 léta - vize univerzálních SQL databází Po roce 2000 - specializované databáze Relační SQL databáze Běžně optimalizována
Databáze SQL SELECT. David Hoksza http://siret.cz/hoksza
Databáze SQL SELECT David Hoksza http://siret.cz/hoksza Osnova Úvod do SQL Základní dotazování v SQL Cvičení základní dotazování v SQL Structured Query Language (SQL) SQL napodobuje jednoduché anglické
Dotazovací jazyky I. Datová krychle. Soběslav Benda
Dotazovací jazyky I Datová krychle Soběslav Benda Obsah Úvod do problematiky Varianty přístupu uživatelů ke zdrojům dat OLTP vs. OLAP Datová analýza Motivace Vytvoření křížové tabulky Datová krychle Teorie
Úvod do databázových systémů
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky Database Research Group Úvod do databázových systémů Cvičení 3 Ing. Petr Lukáš petr.lukas@vsb.cz
Využití XML v DB aplikacích
Využití XML v DB aplikacích Michal Kopecký Výběr ze slajdů k 7. přednášce předmětu Databázové Aplikace (DBI026) na MFF UK Komunikace aplikace s okolím Databázová aplikace potřebuje často komunikovat s
Databáze I. 5. přednáška. Helena Palovská
Databáze I 5. přednáška Helena Palovská palovska@vse.cz SQL jazyk definice dat - - DDL (data definition language) Základní databáze, schemata, tabulky, indexy, constraints, views DATA Databáze/schéma
Spark SQL, Spark Streaming. Jan Hučín
Spark SQL, Spark Streaming Jan Hučín 22. listopadu 2017 Osnova 1. Spark SQL 2. Další rozšíření Sparku Spark streaming GraphX Spark ML 2 Spark SQL Spark SQL a DataFrames (DataSets) Rozšíření k tradičnímu
Databáze. Velmi stručný a zjednodušený úvod do problematiky databází pro programátory v Pythonu. Bedřich Košata
Databáze Velmi stručný a zjednodušený úvod do problematiky databází pro programátory v Pythonu Bedřich Košata K čemu jsou databáze Ukládání dat ve strukturované podobě Možnost ukládat velké množství dat
Dotazovací jazyk pro řazená data
Dotazovací jazyk pro řazená data NDBI006 2011 Martin Chytil Motivace - dotazy závislé na pořadí Úvod do jazyka AQuery Datový model Algebra Transformace dotazů - optimalizace Výsledky experimentů Podobné
Maturitní témata Školní rok: 2015/2016
Maturitní témata Školní rok: 2015/2016 Ředitel školy: Předmětová komise: Předseda předmětové komise: Předmět: PhDr. Karel Goš Informatika a výpočetní technika Mgr. Ivan Studnička Informatika a výpočetní
Spark SQL, Spark Streaming. Jan Hučín
Spark SQL, Spark Streaming Jan Hučín 21. listopadu 2018 Osnova 1. Spark SQL 2. Další rozšíření Sparku Spark streaming GraphX Spark ML 2 Spark SQL Spark SQL a DataFrames (DataSets) Rozšíření k tradičnímu
Co bude výsledkem mého SELECTu? RNDr. David Gešvindr MVP: Data Platform MCSE: Data Platform MCSD: Windows Store MCT
Co bude výsledkem mého SELECTu? RNDr. David Gešvindr MVP: Data Platform MCSE: Data Platform MCSD: Windows Store MCT david@wug.cz @gesvindr Logické zpracování dotazu Jazyk T-SQL je deklarativní Popisujeme,
4. blok část A Logické operátory
4. blok část A Logické operátory Studijní cíl Tento blok je věnován představení logických operátorů AND, OR, NOT v jazyce SQL a práce s nimi. Doba nutná k nastudování 1-2 hodiny Průvodce studiem Při studiu
Úvod do databází. Modelování v řízení. Ing. Petr Kalčev
Úvod do databází Modelování v řízení Ing. Petr Kalčev Co je databáze? Množina záznamů a souborů, které jsou organizovány za určitým účelem. Jaké má mít přínosy? Rychlost Spolehlivost Přesnost Bezpečnost
Informační systémy ve zdravotnictví. 6. cvičení
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Informační systémy ve zdravotnictví 6. cvičení Ing. Petr Lukáš petr.lukas@nativa.cz Ostrava, 2014 Opakování Relace
Tvorba informačních systémů
Tvorba informačních systémů Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Tvorba informačních systémů, 2006/2007 c 2006 2008 Michal Krátký Tvorba informačních systémů 1/17 Úvod XML
Databázové systémy I
Databázové systémy I Přednáška č. 8 Ing. Jiří Zechmeister Fakulta elektrotechniky a informatiky jiri.zechmeister@upce.cz Skupinové a souhrnné dotazy opakování Obsah Pohledy syntaxe použití význam Vnořené
Základní přehled SQL příkazů
Základní přehled SQL příkazů SELECT Základní použití Příkaz SELECT slouží k získání dat z tabulky nebo pohledu v požadované podobě. Získání všech řádků a sloupců z tabulky SELECT * FROM Person.Contact
PG 9.5 novinky ve vývoji aplikací
PG 9.5 novinky ve vývoji aplikací P2D2 2016 Antonín Houska 18. února 2016 Část I GROUPING SETS, ROLLUP, CUBE Agregace Seskupení řádků tabulky (joinu) do podmnožin podle určitého kĺıče. Za každou podmnožinu
Informační systémy ve zdravotnictví. 10. cvičení
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Informační systémy ve zdravotnictví 10. cvičení Ing. Petr Lukáš petr.lukas@nativa.cz Ostrava, 2014 Opakování K čemu
KIV/ZIS cvičení 6. Tomáš Potužák
KIV/ZIS cvičení 6 Tomáš Potužák Pokračování SQL Klauzule GROUP BY a dotazy nad více tabulkami Slučování záznamů do skupin (1) Chceme zjistit informace obsažené ve více záznamech najednou Klauzule GROUP
Administrace Oracle. Práva a role, audit
Administrace Oracle Práva a role, audit Filip Řepka 2010 Práva (privileges) Objekty (tabulky, pohledy, procedury,...) jsou v databázi logicky rozděleny do schémat. Každý uživatel má přiděleno svoje schéma
Michal Krátký. Tvorba informačních systémů, 2008/2009. Katedra informatiky VŠB Technická univerzita Ostrava. Tvorba informačních systémů
Tvorba informačních systémů 1/18 Tvorba informačních systémů Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Tvorba informačních systémů, 2008/2009 Tvorba informačních systémů 2/18 Úvod
Architektury databázových
Univerzita Pardubice Fakulta elektrotechniky a informatiky Semestrální práce na Architektury databázových systémů Matěj Trakal Poslední úprava: 8. listopadu 2010 INADS 2010 (Žák) OBSAH Obsah 1 Zadání 2
Optimalizace plnění a aktualizace velkých tabulek. Milan Rafaj, IBM
Optimalizace plnění a aktualizace velkých tabulek Milan Rafaj, IBM Agenda OLTP vs DSS zpracování Optimalizace INSERT operací Optimalizace DELETE operací Optimalizace UPDATE operací Zdroje Dotazy OLTP vs
Návrh a tvorba WWW stránek 1/14. PHP a databáze
Návrh a tvorba WWW stránek 1/14 PHP a databáze nejčastěji MySQL součástí balíčků PHP navíc podporuje standard ODBC PHP nemá žádné šablony pro práci s databází princip práce s databází je stále stejný opakované
Inovace a zkvalitnění výuky prostřednictvím ICT Databázové systémy MySQL základní pojmy, motivace Ing. Kotásek Jaroslav
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Databázové systémy MySQL základní
DATA CUBE. Mgr. Jiří Helmich
DATA CUBE Mgr. Jiří Helmich Analytické kroky formulace dotazu analýza extrakce dat vizualizace Motivace n-sloupcová tabulka v Excelu vs. sloupcový graf Dimensionality reduction n dimenzí data obecně uspořádána
Úvod do databázových systémů 3. cvičení
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů 3. cvičení Ing. Petr Lukáš petr.lukas@nativa.cz Ostrava, 2012 Klauzule příkazu Klauzule
DJ2 rekurze v SQL. slajdy k přednášce NDBI001. Jaroslav Pokorný
DJ2 rekurze v SQL slajdy k přednášce NDBI001 Jaroslav Pokorný 1 Obsah 1. Úvod 2. Tvorba rekurzívních dotazů 3. Počítaní v rekurzi 4. Rekurzívní vyhledávání 5. Logické hierarchie 6. Zastavení rekurze 7.
Platforma Java. Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. Petr Krajča (UP) KMI/PJA: Seminář V. 27. říjen, / 15
Platforma Java Objektově relační mapování II Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci Petr Krajča (UP) KMI/PJA: Seminář V. 27. říjen, 2016 1 / 15 Dotazování vyhledání objektu podle
INDEXY JSOU GRUNT. Pavel Stěhule
INDEXY JSOU GRUNT Pavel Stěhule Indexy bez indexu čteme vše a zahazujeme nechtěné s indexem čteme pouze to co nás zajímá POZOR - indexy vedou k random IO, navíc se čtou dvě databázové relace (index a heap)
Zápisování dat do databáze
Zápisování dat do databáze Informační a znalostní systémy 1 2 záznamů Pro vkládání záznamů do tabulky- příkaz INSERT INSERT INTO tabulka VALUES ( výčet hodnot záznamu ) záznamů Pro vkládání záznamů do
Základy informatiky. 08 Databázové systémy. Daniela Szturcová
Základy informatiky 08 Databázové systémy Daniela Szturcová Problém zpracování dat Důvodem je potřeba zpracovat velké množství dat - evidovat údaje o nějaké skutečnosti. o skupině lidí (zaměstnanců, studentů,
Databázové systémy a SQL
Databázové systémy a SQL Lekce 2 Daniel Klimeš Autor, Název akce 1 Operátory a funkce +,- Sčítání, odečítání *,/ Násobení, dělení =, , >=,
Univerzita Palackého v Olomouci Radek Janoštík (Univerzita Palackého v Olomouci) Základy programování 4 - C# 10.4.
Základy programování 4 - C# - 9. cvičení Radek Janoštík Univerzita Palackého v Olomouci 10.4.2017 Radek Janoštík (Univerzita Palackého v Olomouci) Základy programování 4 - C# 10.4.2017 1 / 13 Reakce na
Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava
Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_038.ICT.34 Tvorba webových stránek SQL stručné minimum OA a JŠ Jihlava, VY_32_INOVACE_038.ICT.34 Číslo
Databáze Bc. Veronika Tomsová
Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána
Oracle XML DB. Tomáš Nykodým
Oracle XML DB Tomáš Nykodým xnykodym@fi.muni.cz Osnova Oracle XML DB Architektura Oracle XML DB Hlavní rysy Oracle XML DB Hlavní rysy Oracle XML DB - pokračování XMLType XML Repository Využívání databázových
Materializované pohledy
Materializované pohledy Pavel Baroš, 2010 Obsah Materializované pohledy Co přináší? Řešení ostatních DBS syntaxe a semantika pro: Oracle, MS SQL, DB2 ostatní Možné řešení pro PostgreSQL PostgreSQL 2 Materializované
Základní informace o co se jedná a k čemu to slouží
Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové
Použití databází na Webu
4IZ228 tvorba webových stránek a aplikací Jirka Kosek Poslední modifikace: $Date: 2010/11/18 11:33:52 $ Obsah Co nás čeká... 3 Architektura webových databázových aplikací... 4 K čemu se používají databázové
DUM 15 téma: Příkazy pro řízení přístupu
DUM 15 téma: Příkazy pro řízení přístupu ze sady: 3 tematický okruh sady: III. Databáze ze šablony: 7 Kancelářský software určeno pro: 4. ročník vzdělávací obor: 18-20-M/01 Informační technologie vzdělávací
Fyzické uložení dat a indexy
Fyzické uložení dat a indexy Michal Valenta Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze c Michal Valenta, 2016 BI-DBS, LS 2015/16 https://edux.fit.cvut.cz/courses/bi-dbs/
DUM 12 téma: Příkazy pro tvorbu databáze
DUM 12 téma: Příkazy pro tvorbu databáze ze sady: 3 tematický okruh sady: III. Databáze ze šablony: 7 Kancelářský software určeno pro: 4. ročník vzdělávací obor: 18-20-M/01 Informační technologie vzdělávací
Databázové systémy Cvičení 5
Databázové systémy Cvičení 5 Dotazy v jazyce SQL SQL jako jazyk pro manipulaci s daty Aktualizace dat v SQL úprava záznamů v relacích (tabulkách) vložení záznamu INSERT INTO oprava záznamu UPDATE vymazání
OBJECT DEFINITION LANGUAGE. Jonáš Klimeš NDBI001 Dotazovací Jazyky I 2013
OBJECT DEFINITION LANGUAGE Jonáš Klimeš NDBI001 Dotazovací Jazyky I 2013 ODL a OQL ODL Objektové Object Definition Language popis objektového schéma SQL DDL Relační Data Definition Language příkazy CREATE,
Jazyk SQL 1. Michal Valenta. Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2012 BI-DBS, ZS 2011/12
Jazyk SQL 1 Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2012 BI-DBS, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-dbs/ Michal Valenta (FIT
IDS optimalizátor. Ing. Jan Musil, IBM ČR Community of Practice for
IDS optimalizátor Ing. Jan Musil, IBM ČR Community of Practice for CEEMEA Agenda Optimalizační plán dotazu Typy přístupových plánů Metody pro spojení tabulek Určení optimalizačního plánu Vyhodnocení přístupových
Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Kapitola 4. Úvod 11. Stručný úvod do relačních databází 13. Platforma 10g 23
Stručný obsah 1. Stručný úvod do relačních databází 13 2. Platforma 10g 23 3. Instalace, první přihlášení, start a zastavení databázového serveru 33 4. Nástroje pro administraci a práci s daty 69 5. Úvod
Úvod do databázových systémů
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů Cvičení 4 Ing. Petr Lukáš petr.lukas@vsb.cz Ostrava, 2014 Opakování Klauzule příkazu
Michal Krátký, Miroslav Beneš
Databázové a informační systémy Michal Krátký, Miroslav Beneš Katedra informatiky VŠB Technická univerzita Ostrava 5.12.2005 2005 Michal Krátký, Miroslav Beneš Databázové a informační systémy 1/24 Obsah
Multi-dimensional expressions
Multi-dimensional expressions Query sent to cube / returned from cube jazyk pro multidimenzionální dotazy ekvivalent SQL pro multidimenzionální databáze je jen prostředkem pro přístup k datům jako SQL
PRG036 Technologie XML
PRG036 Technologie XML Přednáší: Irena Mlýnková (mlynkova@ksi.mff.cuni.cz) Martin Nečaský (necasky@ksi.mff.cuni.cz) LS 2010 Stránka přednášky: http://www.ksi.mff.cuni.cz/~mlynkova/prg036/ 1 Osnova předmětu
Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR):
Mezi příkazy pro manipulaci s daty (DML) patří : 1. SELECT 2. ALTER 3. DELETE 4. REVOKE Jaké vlastnosti má identifikující relace: 1. Je relace, která se využívá pouze v případě modelovaní odvozených entit
WWW dotazovací služby pro prostorová data URM. Jiří Čtyroký Útvar rozvoje hl. m. Prahy
WWW dotazovací služby pro prostorová data URM Jiří Čtyroký Útvar rozvoje hl. m. Prahy Zpřístupnění geodat hl. m. Prahy 1. Mapové aplikace Zpřístupnění geodat hl. m. Prahy 1. Mapové aplikace 2. Geoportál
5. blok Souhrnné a skupinové dotazy
5. blok Souhrnné a skupinové dotazy Studijní cíl Tento blok je věnován základům při vytváření souhrnných a skupinových dotazů s využitím agregačních funkcí SUM(), AVG(), MIN(), MAX() a COUNT() a klauzulí
Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_01_ACCESS_P2 Číslo projektu: CZ 1.07/1.5.00/34.1077
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Anotace: CZ.1.07/1.5.00/34.0410
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Anotace: CZ.1.07/1.5.00/34.0410
Programování v jazyku C# II. 5.kapitola
Programování v jazyku C# II. 5.kapitola Obsah O ADO.NET Spojení s DB Příkazy Jednoduché čtení DataSet 2/28 ADO.NET ADO - ActiveX Data Object Orientováno na webové aplikace neexistence stavu v HTTP Obecný
Databázové systémy Cvičení 5.3
Databázové systémy Cvičení 5.3 SQL jako jazyk pro manipulaci s daty SQL jako jazyk pro manipulaci s daty Aktualizace dat v SQL úprava záznamů v relacích (tabulkách) vložení záznamu INSERT INTO oprava záznamu
PostgreSQL. Podpora dědičnosti Rozšiřitelnost vlastní datové typy. Univerzální nasazení ve vědecké sféře
PostgreSQL Vzniká jako akademický projekt Experimentální vlastnosti Podpora dědičnosti Rozšiřitelnost vlastní datové typy Univerzální nasazení ve vědecké sféře Obsahuje podporu polí (časové řady) Geotypy
Patrik Pasterčík MFF UK 2016
Patrik Pasterčík MFF UK 2016 Motivace Představení DSMS Dotazovací jazyk Reprezentace datových proudů Nepřetržité dotazování, okna Časová razítka, pořadí Datová kvalita, kvalita služeb Existující řešení
Klíčová slova: dynamické internetové stránky, HTML, CSS, PHP, SQL, MySQL,
Anotace sady: Dynamické internetové stránky, VY_32_INOVACE_PRG_PHP_01 Klíčová slova: dynamické internetové stránky, HTML, CSS, PHP, SQL, MySQL, Stupeň a typ vzdělávání: gymnaziální vzdělávání, 4. ročník
Databáze v MS ACCESS
1 z 14 19.1.2014 18:43 Databáze v MS ACCESS Úvod do databází, návrh databáze, formuláře, dotazy, relace 1. Pojem databáze Informací se data a vztahy mezi nimi stávají vhodnou interpretací pro uživatele,
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Zjednodušené schéma systému z základ hardware pro mainframe tvoří: operační pamět - MAIN / REAL STORAGE jeden
Průběžné sledování průchodů zaměstnanců přes vrátnici
ANeT gate Průběžné sledování průchodů zaměstnanců přes vrátnici Další důležitou součástí je průběžné sledování průchodů vlastních zaměstnanců přes terminály spadající pod vrátnici. Údaje o průchodech se
Monitoring výkonu PostgreSQL
Monitoring výkonu PostgreSQL Tomáš Vondra http://www.fuzzy.cz A jedééééém... Monitoring výkonu PostgreSQL Můj SQL dotaz běží strašně pomalu! Chci vědět proč a chci aby běžel rychle! Use
2. blok část B Základní syntaxe příkazů SELECT, INSERT, UPDATE, DELETE
2. blok část B Základní syntaxe příkazů SELECT, INSERT, UPDATE, DELETE Studijní cíl Tento blok je věnován základní syntaxi příkazu SELECT, pojmům projekce a restrikce. Stručně zde budou představeny příkazy
Healtcheck. databáze ORCL běžící na serveru db.tomas-solar.com pro
Ukázka doporučení z health checku zaměřeného na PERFORMANCE. Neobsahuje veškeré podkladové materiály, proto i obsah píše špatné odkazy. Healtcheck databáze ORCL běžící na serveru db.tomas-solar.com pro
Inovace a zkvalitnění výuky prostřednictvím ICT. Základní seznámení s MySQL Ing. Kotásek Jaroslav
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Databáze Základní seznámení s MySQL
On line analytical processing (OLAP) databáze v praxi
On line analytical processing (OLAP) databáze v praxi Lukáš Matějovský Lukas.Matejovsky@CleverDecision.com Jan Zajíc Jan.Zajic@CleverDecision.com Obsah Představení přednášejících Základy OLAP Příklady
RELAČNÍ DATABÁZOVÉ SYSTÉMY
RELAČNÍ DATABÁZOVÉ SYSTÉMY VÝPIS KONTROLNÍCH OTÁZEK S ODPOVĚDMI: Základní pojmy databázové technologie: 1. Uveďte základní aspekty pro vymezení jednotlivých přístupů ke zpracování hromadných dat: Pro vymezení
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Anotace: CZ.1.07/1.5.00/34.0410
Architektura Pentia úvod
Architektura Pentia úvod 1 Co je to superskalární architektura? Minimálně dvě fronty instrukcí. Provádění instrukcí je možné iniciovat současně, instrukce se pak provádějí paralelně. Realizovatelné jak
RNDr. Michal Kopecký, Ph.D. Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague
seminář: Administrace Oracle (NDBI013) LS2017/18 RNDr. Michal Kopecký, Ph.D. Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague Zvyšuje výkon databáze
Uživatelské preference v prostředí webových obchodů. Ladislav Peška, MFF UK
Uživatelské preference v prostředí webových obchodů Ladislav Peška, MFF UK Disclaimer Obsah Uživatelské preference Získávání UP Využití UP Doporučování na webových obchodech Proč doporučovat? Jak doporučovat?