O náhodě a pravděpodobnosti
|
|
- Marek Macháček
- před 6 lety
- Počet zobrazení:
Transkript
1 O náhodě a pravděpodobnosti 13. kapitola. Metoda maximální věrohodnosti neb o tom, jak odhadnout počet volně žijících divokých zvířat In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček (illustrator): O náhodě a pravděpodobnosti. (Czech). Praha: Mladá fronta, pp Persistent URL: Terms of use: Adam Flocki, 1982 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library
2 13. kapitola METODA MAXIMÁLNÍ VĚROHODNOSTI ANEB O TOM, JAK ODHADNOUT POČET VOLNĚ ŽIJÍCÍCH DIVOKÝCH ZVÍŘAT Jest zcela nepochybným faktem, že nemůžeme-li poznat nejpravdivější soudy, musíme se řídit soudy nejpravděpodobnějšími". (Deacartea, Pojednání o metodě) Fyzik vyvozuje často různé hypotézy o složení hmoty, struktuře atomu atd. Z těchto teorií jsou některé více pravděpodobné, jiné méně pravděpodobné. Fyzik přijímá hypotézu nejpravděpodobnější jako pravdě nejbližší (nejvěrohodnější). Podobně uvažuje chemik, astronom, ekonom. Princip, o nějž se opírají jejich úvahy, je prostý: Nejvěrohodnější je to, co je nejpravděpodobnější. Teorie pravděpodobnosti nás učí určovat, počítat pravděpodobnost jevu. Teorie pravděpodobnosti umožňuje odhadnout šanci pro realizaci toho jevu, a tedy v jistém smyslu předpovídat budoucnost. Mnohem větší význam má však jiné předpovídání budoucnosti". Opírá se o následující zásadu: Existují-li v praxi dva jevy, první s velkou, druhý s malou pravděpodobností, budeme očekávat, že nastane jev s velkou pravděpodobností. Můžeme věřit, že jev s malou pravděpodobností nenastane. Podstata tohoto postupu, zvaného metoda maximální věrohodnosti, je formulována Descartesovými slovy. Z této metody vyplývá, že v případě dvou jevů, z nichž některý potom nastal (my nevíme který), dáme přednost tomu jevu, 165
3 jehož pravděpodobnost je větší. Říkáme, že je věrohodnější. Na metodě maximální věrohodnosti je založena metoda odhadování četnosti populace volně žijících zvířat (např. počet ryb v jezeře, zubrů v pralese, zajíců v určeném prostoru atd.). Příklad V určitém jezeře žije neznámý počet ryb. Abychom tento počet (označme jej n) odhadli, budeme postupovat takto: Vylovíme m ryb, označkujeme je a pustíme zpátky do jezera. Počkáme, až se všechny ryby promíchají, a potom vylovíme r ryb. Toto vylovení r ryb sítí je náhodné vybírání ryb. Jeho výsledky zakódujeme r-prvkovými podmnožinami množiny všech n ryb. Jsou to kombinace r-té třídy z prvků této množiny. Prostor výsledků tedy obsahuje prvků. Je to klasický prostor. Každý výsledek je třeba pokládat za stejně pravděpodobný. Nechť A\ označuje jev: Z těchto r náhodně vybraných ryb bude právě k ryb označkovaných. Jevu A* je příznivých tolik výsledků, kolik je možných způsobů vylovení právě k kusů označkovaných ryb při vylovení r ryb. Tento počet se rovná &)(:=:) kde n m je počet neoznačených ryb, je počet způsobů, jak vybrat k označených ryb, ^ ~ je počet možností, jak k nim přidat zbývajících r k neoznačených ryb. Z věty o klasickém prostoru vyplývá, že 166
4 Došlo k jevu tj. vylovili jsme právě k označených ryb. Známe r,m&k. Ptáme se, jaké je n. Metoda maximální věrohodnosti říká, že n bude takové, pro které je P(.4J;) největší. Nyní je tedy třeba vyhledat největší člen posloupnosti P(A*). Je to posloupnost s kladnými členy. Maximum můžeme vyhledat tak, že zkoumáme, jaký je podíl n-tého členu se členem předcházejícím vzhledem k 1. Doporučujeme vám propočítat si to. Odpověď zní: P(A*) je největší pro takové n, které Ťíb Jc splňuje podmínku =. Dal se takový výsledek předpokládat? Popsaná metoda odhadování počtu ryb patří k metodám postupného odchytu s pouštěním. První ji použil Lincoln v r k odhadu počtu volně žijících divokých zvířat. Úloha K odhadu počtu kaprů v rybníce bylo chyceno 300 kusů, označkováno a puštěno zpět do rybníka. Po promísení ryb bylo chyceno znovu 200 kaprů, mezi nimiž bylo 50 předtím označkovaných. Jaký je odhad počtu kaprů v tomto rybníku? Příklad Továrna vyprodukovala sérii n kusů určitého zboží (např. žárovek, praček, televizorů, konzerv apod.). Než se toto zboží dostane na pulty obchodů, je třeba tuto sérii zboží podrobit kontrole jakosti. Mluvili jsme o tom již v odst Předpokládejme, že série má n kusů a že náhodný reprezentativní vzorek jsme vybrali pomocí náhodného výběru bez vracení. Náhodně vybra- 167
5 ných r kusů zboží podrobíme důkladné kontrole. Nechť mezi těmito r kusy je právě k kusů vadných. Předpokládejme, že v celé sérii n kusů je m kusů vadných. Označme Bjev, že těch k vadných kusů bylo vybráno ze série n kusů, která má m kusů vadných. Obdobně jako v předcházejícím příkladě jsme hledali takové n, při kterém?(a k n) byla maximální, musíme nyní nalézt m, pro které je?(b k m) největší. Úloha Dokažte, že P(i?íí,) nabývá maxima pro m, 7Tb které vyhovuje vztahu =. n r Na základě metody maximální věrohodnosti jsme určili, že nejpravděpodobnějším počtem vadných kusů v této sérii zboží je číslo m, vyhovující vztahu =. 71» fc Je to výsledek, který jsme očekávali. Vyjadřuje, že poměr počtu m vadných kusů k n, což je počet všech kusů, je stejný jako poměr počtu k vadných kusů v náhodně vybraném vzorku k počtu r všech kusů ve vzorku. K. takovému závěru nás jistě vedla i naše intuice. Náhodný výběr kusů pro reprezentativní vzorek zaručuje, že se vzorek podobá" celé populaci. Význam zde prakticky popsané metody je veliký. Nechť tyto skromné příklady potvrdí, jak značná je úloha matematiky a zvláště teorie pravděpodobnosti. Naše pátrání zakončeme citátem: Nejpřesvědčivější argumenty pro to, jakou hodnotu matematika skutečně má, poskytuje teorie pravděpodobnosti." To jsou slova slavného holandského didaktika matematiky Hanse Freudenthala. Jc 168
Funkcionální rovnice
Funkcionální rovnice Úlohy k procvičení In: Ljubomir Davidov (author); Zlata Kufnerová (translator); Alois Kufner (translator): Funkcionální rovnice. (Czech). Praha: Mladá fronta, 1984. pp. 88 92. Persistent
O nerovnostech a nerovnicích
O nerovnostech a nerovnicích Kapitola 3. Množiny In: František Veselý (author); Jan Vyšín (other); Jiří Veselý (other): O nerovnostech a nerovnicích. (Czech). Praha: Mladá fronta, 1982. pp. 19 22. Persistent
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 13. Homomorfní zobrazení (deformace) grupoidů In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962.
O dynamickém programování
O dynamickém programování 9. kapitola. Cauchy-Lagrangeova nerovnost In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 65 70. Persistent URL: http://dml.cz/dmlcz/403801
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.
Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869
O dělitelnosti čísel celých
O dělitelnosti čísel celých 6. kapitola. Nejmenší společný násobek In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 73 79. Persistent URL: http://dml.cz/dmlcz/403569
PANM 16. List of participants. http://project.dml.cz. Terms of use:
PANM 16 List of participants In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
Co víme o přirozených číslech
Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent
Kombinatorika. In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, pp. 3 [6].
Kombinatorika Předmluva In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, 1980. pp. 3 [6]. Persistent URL: http://dml.cz/dmlcz/403963 Terms of use: Antonín Vrba, 1080 Institute of
O dynamickém programování
O dynamickém programování 7. kapitola. O jednom přiřazovacím problému In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 55 59. Persistent URL: http://dml.cz/dmlcz/403799
Úvod do neeukleidovské geometrie
Úvod do neeukleidovské geometrie Obsah In: Václav Hlavatý (author): Úvod do neeukleidovské geometrie. (Czech). Praha: Jednota československých matematiků a fysiků, 1926. pp. 209 [212]. Persistent URL:
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vladimír Kořínek Poznámky k postgraduálnímu studiu matematiky učitelů škol 2. cyklu Pokroky matematiky, fyziky a astronomie, Vol. 12 (1967), No. 6, 363--366 Persistent
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Ferdinand Pietsch Výpočet cívky pro demonstraci magnetoindukce s optimálním využitím mědi v daném prostoru Časopis pro pěstování matematiky a fysiky, Vol. 62 (1933),
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých
Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti
Kongruence 1. kapitola. Opakování základních pojmů o dělitelnosti In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 3 9. Persistent URL: http://dml.cz/dmlcz/403653 Terms
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 27. Cyklické grupy In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 198--202. Persistent
O náhodě a pravděpodobnosti
O náhodě a pravděpodobnosti 2. kapitola. Stromy neboli grafické znázornění průběhů a výsledků náhodného pokusu In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček (illustrator): O
O dělitelnosti čísel celých
O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572
Polynomy v moderní algebře
Polynomy v moderní algebře 2. kapitola. Neutrální a inverzní prvek. Grupa In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 15 28. Persistent URL: http://dml.cz/dmlcz/403713
Základy teorie matic
Základy teorie matic 7. Vektory a lineární transformace In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 43--47. Persistent URL: http://dml.cz/dmlcz/401335 Terms of
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Počítání se zlomky In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987 Zdeněk Horský Písemnosti z pozůstalosti prof. dr. A. Seydlera In: Libor Pátý (editor): Jubilejní almanach Jednoty čs. matematiků a fyziků 1862
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Josef B. Slavík; B. Klimeš Hluk jako methodická pomůcka při zjišťování příčin chvění v technické praxi Pokroky matematiky, fyziky a astronomie, Vol. 2 (957), No.
Malý výlet do moderní matematiky
Malý výlet do moderní matematiky Úvod [též symboly] In: Milan Koman (author); Jan Vyšín (author): Malý výlet do moderní matematiky. (Czech). Praha: Mladá fronta, 1972. pp. 3 6. Persistent URL: http://dml.cz/dmlcz/403755
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Emil Calda; Oldřich Odvárko Speciální třídy na SVVŠ v Praze pro žáky nadané v matematice a fyzice Pokroky matematiky, fyziky a astronomie, Vol. 13 (1968), No. 5,
Booleova algebra. 1. kapitola. Množiny a Vennovy diagramy
Booleova algebra 1. kapitola. Množiny a Vennovy diagramy In: Oldřich Odvárko (author): Booleova algebra. (Czech). Praha: Mladá fronta, 1973. pp. 5 14. Persistent URL: http://dml.cz/dmlcz/403767 Terms of
O rovnicích s parametry
O rovnicích s parametry 3. kapitola. Kvadratické rovnice In: Jiří Váňa (author): O rovnicích s parametry. (Czech). Praha: Mladá fronta, 1964. pp. 45 [63]. Persistent URL: http://dml.cz/dmlcz/403496 Terms
Co víme o přirozených číslech
Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438
Úvod do filosofie matematiky
Úvod do filosofie matematiky Axiom nekonečna In: Otakar Zich (author): Úvod do filosofie matematiky. (Czech). Praha: Jednota československých matematiků a fysiků, 1947. pp. 114 117. Persistent URL: http://dml.cz/dmlcz/403163
Základy teorie matic
Základy teorie matic 23. Klasifikace regulárních párů matic In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 162--168. Persistent URL: http://dml.cz/dmlcz/401352 Terms
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi Rejstřík In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp.
Nerovnosti v trojúhelníku
Nerovnosti v trojúhelníku Úvod In: Stanislav Horák (author): Nerovnosti v trojúhelníku. (Czech). Praha: Mladá fronta, 1986. pp. 5 12. Persistent URL: http://dml.cz/dmlcz/404130 Terms of use: Stanislav
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jan Novák Aritmetika v primě a sekundě Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D254--D257 Persistent URL: http://dml.cz/dmlcz/120798
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Zdeněk Češpíro Výbojový vakuoměr bez magnetického pole Pokroky matematiky, fyziky a astronomie, Vol. 3 (1958), No. 3, 299--302 Persistent URL: http://dml.cz/dmlcz/137111
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [V.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 2-3, 158--163 Persistent URL: http://dml.cz/dmlcz/122325
PANM 14. List of participants. http://dml.cz. Terms of use:
PANM 14 List of participants In: Jan Chleboun and Petr Přikryl and Karel Segeth and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
Jan Sobotka (1862 1931)
Jan Sobotka (1862 1931) Martina Kašparová Vysokoškolská studia Jana Sobotky In: Martina Kašparová (author); Zbyněk Nádeník (author): Jan Sobotka (1862 1931). (Czech). Praha: Matfyzpress, 2010. pp. 231--234.
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 5. kapitola. Několik otázek z matematické statistiky In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 964. pp. 50 59. Persistent URL:
Rovinné grafy. III. kapitola. Tři domy, tři studně a muří noha aneb věta Kuratowského
Rovinné grafy III. kapitola. Tři domy, tři studně a muří noha aneb věta Kuratowského In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, 1977. pp. 43 50. Persistent URL: http://dml.cz/dmlcz/403907
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 10. Plochy šroubové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 99 106.
Časopis pro pěstování matematiky
Časopis pro pěstování matematiky Jiří Bečvář; Miloslav Nekvinda Poznámka o extrémech funkcí dvou a více proměnných Časopis pro pěstování matematiky, Vol. 81 (1956), No. 3, 267--271 Persistent URL: http://dml.cz/dmlcz/117194
Konvexní útvary. Kapitola 4. Opěrné roviny konvexního útvaru v prostoru
Konvexní útvary Kapitola 4. Opěrné roviny konvexního útvaru v prostoru In: Jan Vyšín (author): Konvexní útvary. (Czech). Praha: Mladá fronta, 1964. pp. 49 55. Persistent URL: http://dml.cz/dmlcz/403505
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Antonín Bohun Elektronová emise, luminiscence a zbarvení iontových krystalů Pokroky matematiky, fyziky a astronomie, Vol. 6 (1961), No. 3, 150--153 Persistent URL:
Shodná zobrazení v konstruktivních úlohách
Shodná zobrazení v konstruktivních úlohách II. část. Shodná zobrazení v rovině In: Jaroslav Šedivý (author): Shodná zobrazení v konstruktivních úlohách. (Czech). Praha: Mladá fronta, 1962. pp. 14 24. Persistent
Symetrické funkce. In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, pp
Symetrické funkce Kapitola III. Symetrické funkce n proměnných In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, 1982. pp. 24 33. Persistent URL: http://dml.cz/dmlcz/404069 Terms
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Matyáš Lerch K didaktice veličin komplexních. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 5, 265--269 Persistent URL: http://dml.cz/dmlcz/108855
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 12. Základní pojmy o grupoidech In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 94--100.
Aritmetické hry a zábavy
Aritmetické hry a zábavy 1. Doplnění naznačených výkonů In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 5 9. Persistent URL: http://dml.cz/dmlcz/4329
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Jan Sommer Pokus vysvětliti Machův klam optický Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 2, 101--105 Persistent URL: http://dml.cz/dmlcz/109224
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Stanovení kvality piva a chleba In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický
Jaká je logická výstavba matematiky?
Jaká je logická výstavba matematiky? 2. Výrokové vzorce In: Miroslav Katětov (author): Jaká je logická výstavba matematiky?. (Czech). Praha: Jednota československých mathematiků a fysiků, 1946. pp. 15
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 2. Rozklady v množině In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 22--27. Persistent
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Výpočet objemu tělesa In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
Jednota českých matematiků a fyziků ve 150. roce aktivního života
Jednota českých matematiků a fyziků ve 150. roce aktivního života Organizace JČMF In: Jiří Dolejší (editor); Jiří Rákosník (editor): Jednota českých matematiků a fyziků ve 150. roce aktivního života. (Czech).
PANM 17. List of participants. http://project.dml.cz. Terms of use:
PANM 17 List of participants In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Bílek Pythagorova věta ve třetí třídě středních škol Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D265--D268 Persistent URL: http://dml.cz/dmlcz/123381
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 1, 25--31 Persistent URL: http://dml.cz/dmlcz/124004
Kongruence. 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly
Kongruence 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 55 66. Persistent URL: http://dml.cz/dmlcz/403657
Dějepis Jednoty českých mathematiků
Dějepis Jednoty českých mathematiků II. Změna stanov; studentský spolek se rozšiřuje na Jednotu českých mathematiků In: Václav Posejpal (author): Dějepis Jednoty českých mathematiků. K padesátému výročí
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Cyril Dočkal Automatické elektromagnetické váhy Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Kongruence. 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence
Kongruence 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 43 54. Persistent URL: http://dml.cz/dmlcz/403656
Komplexní čísla a funkce
Komplexní čísla a funkce 3. kapitola. Geometrické znázornění množin komplexních čísel In: Jiří Jarník (author): Komplexní čísla a funkce. (Czech). Praha: Mladá fronta, 1967. pp. 35 43. Persistent URL:
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Astronomická zpráva na květen a červen 1909 Časopis pro pěstování mathematiky a fysiky, Vol. 38 (1909), No. 4, 525--528 Persistent URL: http://dml.cz/dmlcz/121459
Jak vytváří statistika obrazy světa a života. II. díl
Jak vytváří statistika obrazy světa a života. II. díl Předmluva In: Jaroslav Janko (author): Jak vytváří statistika obrazy světa a života. II. díl. (Czech). Praha: Jednota českých matematiků a fysiků,
Aplikace matematiky. Terms of use: Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375. Persistent URL: http://dml.cz/dmlcz/102630
Aplikace matematiky František Šubart Odvození nejvýhodnějších dělících tlaků k-stupňové komprese, při ssacích teplotách lišících se v jednotlivých stupních Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375
Historický vývoj geometrických transformací
Historický vývoj geometrických transformací Věcný rejstřík In: Dana Trkovská (author): Historický vývoj geometrických transformací. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2015. pp. 171 174.
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, pp
Neurčité rovnice 2. Lineární rovnice o dvou neznámých In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 10 14. Persistent URL: http://dml.cz/dmlcz/402867
Aritmetické hry a zábavy
Aritmetické hry a zábavy 3. Soustavy číselné In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 12 15. Persistent URL: http://dml.cz/dmlcz/403031
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vítěslav Jozífek Poznámky k teorii vyučování matematice Pokroky matematiky, fyziky a astronomie, Vol. 14 (1969), No. 3, 148--151 Persistent URL: http://dml.cz/dmlcz/139905
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jindřich Procházka Pokusy o interferenci a odrazu zvuku Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D197--D200 Persistent URL: http://dml.cz/dmlcz/120811
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Janoušek O nepravidelném rozkladu světla Časopis pro pěstování mathematiky a fysiky, Vol. 1 (1872), No. 5, 256--261 Persistent URL: http://dml.cz/dmlcz/122691
PANM 18. List of participants. Terms of use:
PANM 18 List of participants In: Jan Chleboun and Pavel Kůs and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Příloha A In: Vlasta Chmelíková (author): Zlatý řez nejen v matematice. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2009. pp. 157 166. Persistent URL: http://dml.cz/dmlcz/400805
Úlohy o maximech a minimech funkcí
Úlohy o maximech a minimech funkcí 1. kapitola. Základní pojmy a nejjednodušší úlohy In: Jaromír Hroník (author): Úlohy o maximech a minimech funkcí. (Czech). Praha: Mladá fronta, 1967. pp. 5 15. Persistent
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 4. Speciální rozklady In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 35--40. Persistent
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 26. Deformace a věty izomorfismu grup In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 192--197.
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, pp
Neurčité rovnice 3. Neurčité rovnice 1. stupně o 3 neznámých In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 15 20. Persistent URL: http:dml.czdmlcz402868
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Šafránek Některé fysikální pokusy s katodovou trubicí Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D285--D289 Persistent URL: http://dml.cz/dmlcz/123398
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 3. kapitola. Kombinace In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 27 35. Persistent URL: http://dml.cz/dmlcz/403518
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 7. kapitola. Různé In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 72 81. Persistent URL: http://dml.cz/dmlcz/403522 Terms
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Ferdinand Pietsch O pokroku v osvětlování elektřinou. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 39 (1910), No. 5, 529--533 Persistent URL: http://dml.cz/dmlcz/123804
O náhodě a pravděpodobnosti
O náhodě a pravděpodobnosti 3. kapitola. Jev In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček (illustrator): O náhodě a pravděpodobnosti. (Czech). Praha: Mladá fronta, 82. pp.
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky F. Císař Kinematografie při vyučování matematice. [II.] Časopis pro pěstování matematiky a fysiky, Vol. 60 (1931), No. 3, D39--D43 Persistent URL: http://dml.cz/dmlcz/123948
Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918
Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918 Jednoroční učební kurs (JUK) In: Jiří Mikulčák (author): Nástin dějin vyučování v matematice (a také školy) v českých zemích
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Václav Petržílka Demonstrační pokus měření rychlosti zvuku v plynech Časopis pro pěstování matematiky a fysiky, Vol. 61 (1932), No. 6, 254--258 Persistent URL:
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky M. Jahoda; Ivan Šimon Užití sodíkového světla pro Ramanův zjev Časopis pro pěstování matematiky a fysiky, Vol. 69 (1940), No. 3-4, 187--190 Persistent URL: http://dml.cz/dmlcz/123324
PANM 12. List of participants. http://dml.cz. Terms of use:
PANM 12 List of participants In: Jan Chleboun and Petr Přikryl and Karel Segeth (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June 6-11, 2004. Institute
Aplikace matematiky. Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní
Aplikace matematiky Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní (2m + 1) diagonální maticí Aplikace matematiky, Vol. 17 (1972), No. 4, 321--324 Persistent
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Aleš Fořt Několik poznámek o dosavadním vývoji palivových článků Pokroky matematiky, fyziky a astronomie, Vol. 5 (1960), No. 6, 697--700 Persistent URL: http://dml.cz/dmlcz/138258
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Evžen Říman Vyučování matematice bez tabule Časopis pro pěstování matematiky a fysiky, Vol. 70 (1941), No. Suppl., D289--D292 Persistent URL: http://dml.cz/dmlcz/121810
O mnohoúhelnících a mnohostěnech
O mnohoúhelnících a mnohostěnech I. Úhly a mnohoúhelníky v rovině In: Bohuslav Hostinský (author): O mnohoúhelnících a mnohostěnech. (Czech). Praha: Jednota československých matematiků a fysiků, 1947.
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Jan Šlégr Předpověď a pozorování radiových emisí z planety Jupiter Pokroky matematiky, fyziky a astronomie, Vol. 55 (2010), No. 4, 297--301 Persistent URL: http://dml.cz/dmlcz/141973
Přímky a křivky. Úvod. Úvodní úlohy. Terms of use:
Přímky a křivky Úvod. Úvodní úlohy In: N. B. Vasiljev (author); V. L. Gutenmacher (author); Leo Boček (translator); Alena Šarounová (illustrator): Přímky a křivky. (Czech). Praha: Mladá fronta, 1982. pp.
Rozhledy matematicko-fyzikální
Rozhledy matematicko-fyzikální Rudolf Klepáček; Martin Macháček Chemická analýza pomocí optických vláken Rozhledy matematicko-fyzikální, Vol. 80 (2005), No. 2, 21 24 Persistent URL: http://dml.cz/dmlcz/146100
O dělitelnosti čísel celých
O dělitelnosti čísel celých 10. kapitola. Některé staré i nové problémy číselné teorie In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 106 115. Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Ladislav Klír Příspěvek ke geometrii trojúhelníku Časopis pro pěstování mathematiky a fysiky, Vol. 44 (1915), No. 1, 89--93 Persistent URL: http://dml.cz/dmlcz/122380