Jaká je logická výstavba matematiky?
|
|
- Dana Mašková
- před 8 lety
- Počet zobrazení:
Transkript
1 Jaká je logická výstavba matematiky? 2. Výrokové vzorce In: Miroslav Katětov (author): Jaká je logická výstavba matematiky?. (Czech). Praha: Jednota československých mathematiků a fysiků, pp Persistent URL: Terms of use: Jednota československých mathematiků a fysiků Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library
2 2. VÝROKOVÉ VZORCE 2"1. Výrokové vzorce. V běžném životě se setkáváme často (na př. v úředních formulářích) s výrazy jako: podepsaný se narodil dne..." V matematice se zase vyskytují velmi často výrazy jako: čtverec čísla x je sudý", y x 2 + oc". Výrazy tohoto druhu nejsou výroky; nemůžeme říci: je pravda, že podepsaný se narodil dne..." nebo je pravda, že čtverec čísla x je sudý", ani nemůžeme říci, že to pravda není. Takové výrazy prostě nejsou úplné a proto nic netvrdí. Dosadíme-li však ve výraze podepsaný se narodil dne..." do mezery, vyznačené tečkami, jakékoli datum, pak vznikne výrok, ať již pravdivý nebo nepravdivý. Stejně tak netvrdí nic výraz čtverec čísla x je sudý" (lěda že by symbol x vystupoval jako označení určitého čísla, tak jako na příklad a označuje číslo 3,14...); dosadíme-li však za symbol x nějaké určité číslo, pak vznikne výrok, na příklad čtverec čísla 2 je sudý" (správný výrok) nebo čtverec čísla 3 je sudý" (nesprávný výrok). Místo, případně několik míst, kde má být takový neúplný výraz doplněn, může být, jak jsme viděli, označeno buď mezerou (tečkováním) nebo jak je to zvykem v matematice tak zvanou neurčitou (na př. x, y, z atd.), t. j. symbolem, který má právě naznačit, že za něj můžeme a máme něco doplnit. Výrazy, jejichž příklady jsme zde uvedli, mají úlohu jakési předlohy nebo vzorce, jejíž vhodným doplněním vznikne výrok. Nazveme je proto výrokovými vzorci. Výrokový vzorec je tedy výraz, jenž sám není výrokem, avšak obsahuje neurčité, jejichž vhodným nahra- 15
3 zením vznikne výrok.*) Toto nahrazení se provede jak je ostatně samozřejmé tak, že za každcu neurčitou se dosadí všude tentýž výraz; nesmíme tedy ve výrokovém vzorci nahradit x na jednom místě a, na druhém b. Všimněme si znovu výrokového vzorce čtverec čísla x je sudý"; tento výrokový vzorec vyjadřuje určitou vlastnost čísel, totiž míti sudý čtverec". Dosadíme-li totiž za x číslo, které tuto vlastnost má, dostaneme správný výrok, dosadíme-li však číslo, které tuto vlastnost nemá, dcstaneme výrok nesprávný. Ve stejném smyslu můžeme říci, že výrokový vzorec x > y" vyjadřuje vztah větší" atd. Každou vlastnost a každý vztah můžeme tedy vyjádřit výrokovým vzorcem s jednou nebo několika neurčitými, a naopak každý výrokový vzorec můžeme považovat za vyjádření vlastnosti nebo vztahu. 2'2. Dosazení. Mluvíme zde o vhodném, čili dovoleném nahrazení (dosazení). Je jasné, že nesmíme dosazovat za neurčitou cokoliv, neboť mohli bychom dostat nesmyslnou snůšku slov; drastický příklad: kdybychom dosadili do výrokového vzorce čtverec čísla x je sudý" slovo kočka", dostali bychom snůšku slov: čtverec čísla kočka je sudý". Za neurčitou smíme dosadit pcuze takový výraz, aby po dosazení skutečně vznikl výrok, případně dosazujeme-li výraz, který sám zase obsahuje neurčité aby vznikl znovu výrokový vzorec. Příklad: do výrokového vzorce sin 2 C + + cos 2 x = 1" dcsadíme za x výraz a-\-2y, tím vznikne znovu výrokový vzorec sin 2 {a + 2y) + cos 2 (a + 2y) = 1". *) Obvyklý termín pro výrokový vzorec je výroková funkce. Užíváme zde jiného slova, abychom se vyhnuli záměně s matematickým pojmem funkce. Místo neurčitá se zpravidla říká proměnná. Tento termín si rovněž reservujeme pro matematický pojem proměnné veličiny. 16
4 Kromě tohoto základního omezení je ještě jedno další. Smluvili-li jsme na příklad, že budeme uvažovat pouze o reálných číslech, pak nesmíme do výrokového vzorce čtverec čísla x není záporný" dosadit za x číslo ]/ 1, ač čtverec čísla V 1 není záporný" je správně utvořený výrok (ovšem nepravdivý); imaginární čísla jsme totiž vyloučili ze svých úvah, takže tento výraz pro nás vskutku nemá smysl obrazně řečeno, nepatří do řeči, kterou chceme užívat, neboť ta nezná komplexních čísel. 2'3. Rovnice a otázka. Nyní si všimněme dvou velmi důležitých druhů výrazů, které jsou vlastně výrokovými vzorci. Jsou to rovnice a otázka. Všimněme si třeba rovnice x 2 3 x + 2 = 0". Je to výraz, obsahující neurčitou x; dcsadíme-li do něho za tuto neurčitou nějaké číslo, pak dostaneme výrok, ať již správný či nikoliv, na př = 0" (správný výrok) nebo = 0" (nesprávný výrok). Výraz (rovnice) x 2 3»+2 = 0" je tedy výrokovým vzorcem; řešením této rovnice nazýváme právě takové číslo, jehož dosazením vznikne správný výrok (zde jsou to čísla 1 a 2). Jak vidíme již z tohoto příkladu, je vlastně každá rovnice, ať již o jedné nebo o několika neznámých, výrokovým vzorcem. Totéž platí o systému rovnic, který je vlastně konjunkcí několika výrokových vzorců, totiž jednotlivých rovnic systému, a o nerovnostech. Dejme tomu, že pan Josef Pokorný byl 2. srpna 1942 večer v biografu. Pan J. P. byl večer dne 2. srpna " je výrokový vzorec; dosadíme-li do vytečkované mezery výraz v biografu", dostaneme správný výrok. Když pronášíme otázku: kde byl pan J. P. dne 2. srpna 1942 večer?" pak tím jednak předkládáme zmíněný výrokový vzorec, jednak vybízíme k vytvo
5 ření z něho správného výroku. Po lcgické stránce je tedy otázka výrokovým vzorcem; obsahuje,však též něco, co leží vlastně mimo logiku, totiž pobídku k určité činnosti. 2'4. Spojení výrokových vzorců. Mluvili jsme již o spojování výroků. Ježto výrokový vzorec je vlastně neúplný výrck, je jasné, že výrokové vzorce se dají spojovat stejně jako výroky. Tak na příklad z výrokových vzorců x je větší než y" a x se rovná y", můžeme utvořit jejich disjunkci, totiž výrokový vzorec x je buď větší než y nebo se rovná y". Další příklady spojení výrokových vzorců: když x > y, pak 2 X > 2y" (implikace); číslo x je dělitelné 3 v tom a jen v tom případě, že je dělitelné 6" (ekvivalence). Z prvního z těchto dvou výrokových vzorců vzniká, jak se čtenář snadno přesvědčí, pravdivý výrok, ať za x a y dosadíme jakákoliv čísla. Naproti tomu, dosadíme-li do druhého výrokového vzorce za x třeba číslo 15, vznikne nesprávný výrok 15 je dělitelné 3 v tem a jen v tom případě, že je dělitelné 6". 2*5. Označení a označovací vzorce. Obrátíme se nyní k jinému důležitému druhu výrazů. Všimněme si výrazů bezprostřední představený pana J. N. bydlí v Dejvicích"; čtverec čísla 6 je dělitelný 4". Výraz bezprostřední představený pana J. N." označuje určitou osobu; výraz čtverec čísla 6" označuje číslo 36. Výrazům toheto druhu právě budeme říkat označení. Další příklady označení: (1) číslo, které násobeno 3 dá 6, (2) dekadický logaritmus čísla 100, (3) normální počet prstů na lidské ruce. Jak vidíme z těchto příkladů, mohou dvě označení označovat totéž, aniž jsou sama tetožná [příklady (1) a (2) ]. Naproti tomu však požadujeme, aby označení bylo jednoznačné; na př. výraz číslo, jehcž čtverec se rovná 4" nebudeme považovat za označení, neboť 2 2 = 4, ale také 18
6 ( 2) 2 4, takže výraz číslo, jehož čtverec se rovná 4" byl by dvo jznačný. Všimněme si nyní výrazu čtverec čísla x". Dosadíme-li do tohoto výrazu za neurčitou x nějaké číslo, pak dostaneme označení, na příklad čtverec čísla 4" (to je označení čísla 16) nebo čtverec čísla 10" (to je označení čísla 100). Takovým výrazům, které obsahují jednu nebo několik neurčitých, jejichž vhodným nahrazením vznikne označení, říkáme označovací vzorce. Další příklady označovacích vzorců: (1) bezprostřední představený pana X; (2) logaritmus čísla x; (3) číslo, jež vynásobeno o;, dá 1; (4) součin čísel x a y. Dosazovat za neurčité do označovacího vzorce smíme jen takové výrazy, abyqhom skutečně dostali označení, které má smysl, případně, když dosazujeme výraz, který sám zase obsahuje neurčité, abychom dcstali zase správně utvořený označovací vzorec. Podmínky, které platí pro dosazování do označovacích vzorců, jsou tedy zcela obdobné podmínkám pro dosazování do výrokových vzorců. Uvedeme ještě příklady dovoleného a nepřípustného dosazení. Z označovacího vzorce logaritmus čísla x" můžeme dostat dosazením za neurčitou x tyto správně utvořené výrazy (1) logaritmus čísla 5"; (2) logaritmus součinu čísel 3 a 4"; (3) logaritmus součinu čísel x a y"\ zde nevzniklo dosazením označení, nýbrž zase označovací vzorec. Naproti tomu není přípustné dosadit do označovacího vzorce bezprostřední představený pana X" za X jméno člověka, který je na př. samostatným podnikatelem, nebo abychom zase uvedli drastický příklad dosadit do označovacího vzorce logaritmus x" za neurčitou x slovo Vltava"; dostali bychom pak skupinu slov, která nemá smysl. Právě tak není přípustné dosadit do označovacího vzorce číslo, jež vynásobeno x dá 1" za x číslo 0, načež bychom dostali skupinu slov číslo, jež vynásobeno 0, dá 1". 19
O nerovnostech a nerovnicích
O nerovnostech a nerovnicích Kapitola 3. Množiny In: František Veselý (author); Jan Vyšín (other); Jiří Veselý (other): O nerovnostech a nerovnicích. (Czech). Praha: Mladá fronta, 1982. pp. 19 22. Persistent
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.
Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869
Funkcionální rovnice
Funkcionální rovnice Úlohy k procvičení In: Ljubomir Davidov (author); Zlata Kufnerová (translator); Alois Kufner (translator): Funkcionální rovnice. (Czech). Praha: Mladá fronta, 1984. pp. 88 92. Persistent
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 27. Cyklické grupy In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 198--202. Persistent
Co víme o přirozených číslech
Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých
Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti
Kongruence 1. kapitola. Opakování základních pojmů o dělitelnosti In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 3 9. Persistent URL: http://dml.cz/dmlcz/403653 Terms
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 13. Homomorfní zobrazení (deformace) grupoidů In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962.
O dělitelnosti čísel celých
O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [V.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 2-3, 158--163 Persistent URL: http://dml.cz/dmlcz/122325
Úvod do neeukleidovské geometrie
Úvod do neeukleidovské geometrie Obsah In: Václav Hlavatý (author): Úvod do neeukleidovské geometrie. (Czech). Praha: Jednota československých matematiků a fysiků, 1926. pp. 209 [212]. Persistent URL:
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Ferdinand Pietsch Výpočet cívky pro demonstraci magnetoindukce s optimálním využitím mědi v daném prostoru Časopis pro pěstování matematiky a fysiky, Vol. 62 (1933),
Úvod do filosofie matematiky
Úvod do filosofie matematiky Axiom nekonečna In: Otakar Zich (author): Úvod do filosofie matematiky. (Czech). Praha: Jednota československých matematiků a fysiků, 1947. pp. 114 117. Persistent URL: http://dml.cz/dmlcz/403163
Jaká je logická výstavba matematiky?
Jaká je logická výstavba matematiky? 9. Logický kalkul In: Miroslav Katětov (author): Jaká je logická výstavba matematiky?. (Czech). Praha: Jednota československých mathematiků a fysiků, 1946. pp. 96 101.
O dělitelnosti čísel celých
O dělitelnosti čísel celých 6. kapitola. Nejmenší společný násobek In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 73 79. Persistent URL: http://dml.cz/dmlcz/403569
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, pp
Neurčité rovnice 2. Lineární rovnice o dvou neznámých In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 10 14. Persistent URL: http://dml.cz/dmlcz/402867
Základy teorie matic
Základy teorie matic 7. Vektory a lineární transformace In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 43--47. Persistent URL: http://dml.cz/dmlcz/401335 Terms of
Nerovnosti v trojúhelníku
Nerovnosti v trojúhelníku Úvod In: Stanislav Horák (author): Nerovnosti v trojúhelníku. (Czech). Praha: Mladá fronta, 1986. pp. 5 12. Persistent URL: http://dml.cz/dmlcz/404130 Terms of use: Stanislav
Aritmetické hry a zábavy
Aritmetické hry a zábavy 1. Doplnění naznačených výkonů In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 5 9. Persistent URL: http://dml.cz/dmlcz/4329
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987 Zdeněk Horský Písemnosti z pozůstalosti prof. dr. A. Seydlera In: Libor Pátý (editor): Jubilejní almanach Jednoty čs. matematiků a fyziků 1862
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický
Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918
Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918 Jednoroční učební kurs (JUK) In: Jiří Mikulčák (author): Nástin dějin vyučování v matematice (a také školy) v českých zemích
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Josef B. Slavík; B. Klimeš Hluk jako methodická pomůcka při zjišťování příčin chvění v technické praxi Pokroky matematiky, fyziky a astronomie, Vol. 2 (957), No.
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, pp
Neurčité rovnice 3. Neurčité rovnice 1. stupně o 3 neznámých In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 15 20. Persistent URL: http:dml.czdmlcz402868
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 12. Základní pojmy o grupoidech In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 94--100.
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 5. kapitola. Několik otázek z matematické statistiky In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 964. pp. 50 59. Persistent URL:
Co víme o přirozených číslech
Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438
PANM 16. List of participants. http://project.dml.cz. Terms of use:
PANM 16 List of participants In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi Rejstřík In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp.
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Emil Calda; Oldřich Odvárko Speciální třídy na SVVŠ v Praze pro žáky nadané v matematice a fyzice Pokroky matematiky, fyziky a astronomie, Vol. 13 (1968), No. 5,
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Počítání se zlomky In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Dějepis Jednoty českých mathematiků
Dějepis Jednoty českých mathematiků II. Změna stanov; studentský spolek se rozšiřuje na Jednotu českých mathematiků In: Václav Posejpal (author): Dějepis Jednoty českých mathematiků. K padesátému výročí
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Bílek Pythagorova věta ve třetí třídě středních škol Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D265--D268 Persistent URL: http://dml.cz/dmlcz/123381
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vladimír Kořínek Poznámky k postgraduálnímu studiu matematiky učitelů škol 2. cyklu Pokroky matematiky, fyziky a astronomie, Vol. 12 (1967), No. 6, 363--366 Persistent
Kongruence. 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence
Kongruence 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 43 54. Persistent URL: http://dml.cz/dmlcz/403656
Komplexní čísla a funkce
Komplexní čísla a funkce 3. kapitola. Geometrické znázornění množin komplexních čísel In: Jiří Jarník (author): Komplexní čísla a funkce. (Czech). Praha: Mladá fronta, 1967. pp. 35 43. Persistent URL:
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jan Novák Aritmetika v primě a sekundě Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D254--D257 Persistent URL: http://dml.cz/dmlcz/120798
Základy teorie matic
Základy teorie matic 23. Klasifikace regulárních párů matic In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 162--168. Persistent URL: http://dml.cz/dmlcz/401352 Terms
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Matyáš Lerch K didaktice veličin komplexních. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 5, 265--269 Persistent URL: http://dml.cz/dmlcz/108855
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 1, 25--31 Persistent URL: http://dml.cz/dmlcz/124004
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079
O dynamickém programování
O dynamickém programování 9. kapitola. Cauchy-Lagrangeova nerovnost In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 65 70. Persistent URL: http://dml.cz/dmlcz/403801
Malý výlet do moderní matematiky
Malý výlet do moderní matematiky Úvod [též symboly] In: Milan Koman (author); Jan Vyšín (author): Malý výlet do moderní matematiky. (Czech). Praha: Mladá fronta, 1972. pp. 3 6. Persistent URL: http://dml.cz/dmlcz/403755
O dynamickém programování
O dynamickém programování 7. kapitola. O jednom přiřazovacím problému In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 55 59. Persistent URL: http://dml.cz/dmlcz/403799
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 7. kapitola. Různé In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 72 81. Persistent URL: http://dml.cz/dmlcz/403522 Terms
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Jan Sommer Pokus vysvětliti Machův klam optický Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 2, 101--105 Persistent URL: http://dml.cz/dmlcz/109224
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 10. Plochy šroubové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 99 106.
Konvexní útvary. Kapitola 4. Opěrné roviny konvexního útvaru v prostoru
Konvexní útvary Kapitola 4. Opěrné roviny konvexního útvaru v prostoru In: Jan Vyšín (author): Konvexní útvary. (Czech). Praha: Mladá fronta, 1964. pp. 49 55. Persistent URL: http://dml.cz/dmlcz/403505
Aritmetické hry a zábavy
Aritmetické hry a zábavy 3. Soustavy číselné In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 12 15. Persistent URL: http://dml.cz/dmlcz/403031
Kombinatorika. In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, pp. 3 [6].
Kombinatorika Předmluva In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, 1980. pp. 3 [6]. Persistent URL: http://dml.cz/dmlcz/403963 Terms of use: Antonín Vrba, 1080 Institute of
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jindřich Procházka Pokusy o interferenci a odrazu zvuku Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D197--D200 Persistent URL: http://dml.cz/dmlcz/120811
Kongruence. 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly
Kongruence 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 55 66. Persistent URL: http://dml.cz/dmlcz/403657
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 3. kapitola. Kombinace In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 27 35. Persistent URL: http://dml.cz/dmlcz/403518
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Výpočet objemu tělesa In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Jednota českých matematiků a fyziků ve 150. roce aktivního života
Jednota českých matematiků a fyziků ve 150. roce aktivního života Organizace JČMF In: Jiří Dolejší (editor); Jiří Rákosník (editor): Jednota českých matematiků a fyziků ve 150. roce aktivního života. (Czech).
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Ferdinand Pietsch O pokroku v osvětlování elektřinou. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 39 (1910), No. 5, 529--533 Persistent URL: http://dml.cz/dmlcz/123804
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Šafránek Některé fysikální pokusy s katodovou trubicí Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D285--D289 Persistent URL: http://dml.cz/dmlcz/123398
O mnohoúhelnících a mnohostěnech
O mnohoúhelnících a mnohostěnech I. Úhly a mnohoúhelníky v rovině In: Bohuslav Hostinský (author): O mnohoúhelnících a mnohostěnech. (Czech). Praha: Jednota československých matematiků a fysiků, 1947.
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Antonín Bohun Elektronová emise, luminiscence a zbarvení iontových krystalů Pokroky matematiky, fyziky a astronomie, Vol. 6 (1961), No. 3, 150--153 Persistent URL:
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 2. kapitola. Kombinační číslo In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1985. pp. 26 36. Persistent URL: http://dml.cz/dmlcz/404114
O náhodě a pravděpodobnosti
O náhodě a pravděpodobnosti 2. kapitola. Stromy neboli grafické znázornění průběhů a výsledků náhodného pokusu In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček (illustrator): O
Booleova algebra. 1. kapitola. Množiny a Vennovy diagramy
Booleova algebra 1. kapitola. Množiny a Vennovy diagramy In: Oldřich Odvárko (author): Booleova algebra. (Czech). Praha: Mladá fronta, 1973. pp. 5 14. Persistent URL: http://dml.cz/dmlcz/403767 Terms of
Úlohy o maximech a minimech funkcí
Úlohy o maximech a minimech funkcí 1. kapitola. Základní pojmy a nejjednodušší úlohy In: Jaromír Hroník (author): Úlohy o maximech a minimech funkcí. (Czech). Praha: Mladá fronta, 1967. pp. 5 15. Persistent
O rovnicích s parametry
O rovnicích s parametry 3. kapitola. Kvadratické rovnice In: Jiří Váňa (author): O rovnicích s parametry. (Czech). Praha: Mladá fronta, 1964. pp. 45 [63]. Persistent URL: http://dml.cz/dmlcz/403496 Terms
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Stanovení kvality piva a chleba In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický
Jan Sobotka (1862 1931)
Jan Sobotka (1862 1931) Martina Kašparová Vysokoškolská studia Jana Sobotky In: Martina Kašparová (author); Zbyněk Nádeník (author): Jan Sobotka (1862 1931). (Czech). Praha: Matfyzpress, 2010. pp. 231--234.
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Cyril Dočkal Automatické elektromagnetické váhy Acta Universitatis Palackianae Olomucensis. Facultas Rerum
PANM 14. List of participants. http://dml.cz. Terms of use:
PANM 14 List of participants In: Jan Chleboun and Petr Přikryl and Karel Segeth and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
Polynomy v moderní algebře
Polynomy v moderní algebře 2. kapitola. Neutrální a inverzní prvek. Grupa In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 15 28. Persistent URL: http://dml.cz/dmlcz/403713
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Bohdan Klimeš Normalisace veličin, jednotek a značek ve fysice Pokroky matematiky, fyziky a astronomie, Vol. 3 (1958), No. 4, 437--441 Persistent URL: http://dml.cz/dmlcz/137041
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 2. Rozklady v množině In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 22--27. Persistent
Symetrické funkce. In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, pp
Symetrické funkce Kapitola III. Symetrické funkce n proměnných In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, 1982. pp. 24 33. Persistent URL: http://dml.cz/dmlcz/404069 Terms
Aplikace matematiky. Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní
Aplikace matematiky Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní (2m + 1) diagonální maticí Aplikace matematiky, Vol. 17 (1972), No. 4, 321--324 Persistent
Aplikace matematiky. Terms of use: Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375. Persistent URL: http://dml.cz/dmlcz/102630
Aplikace matematiky František Šubart Odvození nejvýhodnějších dělících tlaků k-stupňové komprese, při ssacích teplotách lišících se v jednotlivých stupních Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Ladislav Klír Příspěvek ke geometrii trojúhelníku Časopis pro pěstování mathematiky a fysiky, Vol. 44 (1915), No. 1, 89--93 Persistent URL: http://dml.cz/dmlcz/122380
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Zdeněk Češpíro Výbojový vakuoměr bez magnetického pole Pokroky matematiky, fyziky a astronomie, Vol. 3 (1958), No. 3, 299--302 Persistent URL: http://dml.cz/dmlcz/137111
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky M. Jahoda; Ivan Šimon Užití sodíkového světla pro Ramanův zjev Časopis pro pěstování matematiky a fysiky, Vol. 69 (1940), No. 3-4, 187--190 Persistent URL: http://dml.cz/dmlcz/123324
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Astronomická zpráva na květen a červen 1909 Časopis pro pěstování mathematiky a fysiky, Vol. 38 (1909), No. 4, 525--528 Persistent URL: http://dml.cz/dmlcz/121459
Rovinné grafy. III. kapitola. Tři domy, tři studně a muří noha aneb věta Kuratowského
Rovinné grafy III. kapitola. Tři domy, tři studně a muří noha aneb věta Kuratowského In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, 1977. pp. 43 50. Persistent URL: http://dml.cz/dmlcz/403907
Shodná zobrazení v konstruktivních úlohách
Shodná zobrazení v konstruktivních úlohách II. část. Shodná zobrazení v rovině In: Jaroslav Šedivý (author): Shodná zobrazení v konstruktivních úlohách. (Czech). Praha: Mladá fronta, 1962. pp. 14 24. Persistent
PANM 17. List of participants. http://project.dml.cz. Terms of use:
PANM 17 List of participants In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky F. Císař Kinematografie při vyučování matematice. [II.] Časopis pro pěstování matematiky a fysiky, Vol. 60 (1931), No. 3, D39--D43 Persistent URL: http://dml.cz/dmlcz/123948
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Hromádko Ukázky z indické arithmetiky obecné Časopis pro pěstování mathematiky a fysiky, Vol. 5 (1876), No. 4, 182--187 Persistent URL: http://dml.cz/dmlcz/121711
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Příloha A In: Vlasta Chmelíková (author): Zlatý řez nejen v matematice. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2009. pp. 157 166. Persistent URL: http://dml.cz/dmlcz/400805
Polynomy v moderní algebře
Polynomy v moderní algebře Výsledky cvičení a návody k jejich řešení In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 94 [102]. Persistent URL: http://dml.cz/dmlcz/403718
Matematika v 19. století
Matematika v 19. století Martina Němcová František Josef Studnička a Americký klub dam In: Jindřich Bečvář (editor); Eduard Fuchs (editor): Matematika v 19. století. Sborník přednášek z 15. letní školy
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Gabriel Blažek O differenciálních rovnicích ploch obalujících Časopis pro pěstování mathematiky a fysiky, Vol. 2 (1873), No. 3, 167--172 Persistent URL: http://dml.cz/dmlcz/109126
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Janoušek O nepravidelném rozkladu světla Časopis pro pěstování mathematiky a fysiky, Vol. 1 (1872), No. 5, 256--261 Persistent URL: http://dml.cz/dmlcz/122691
O dělitelnosti čísel celých
O dělitelnosti čísel celých 10. kapitola. Některé staré i nové problémy číselné teorie In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 106 115. Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Kounovský O projektivnosti involutorní Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 3-4, 433--439 Persistent URL: http://dml.cz/dmlcz/109245
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Václav Petržílka Demonstrační pokus měření rychlosti zvuku v plynech Časopis pro pěstování matematiky a fysiky, Vol. 61 (1932), No. 6, 254--258 Persistent URL:
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Evžen Říman Vyučování matematice bez tabule Časopis pro pěstování matematiky a fysiky, Vol. 70 (1941), No. Suppl., D289--D292 Persistent URL: http://dml.cz/dmlcz/121810
Rovinné grafy. In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, pp
Rovinné grafy VIII. kapitola. Konvexní mnohostěny In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, 1977. pp. 99 112. Persistent URL: http://dml.cz/dmlcz/403912 Terms of use: Bohdan
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Vavřinec Jelínek Za jakých podmínek lze vést vrcholem trojúhelníka příčku, která by byla střední měřicky úměrnou úseků, jež stanoví na protější straně Časopis
O náhodě a pravděpodobnosti
O náhodě a pravděpodobnosti 13. kapitola. Metoda maximální věrohodnosti neb o tom, jak odhadnout počet volně žijících divokých zvířat In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vítěslav Jozífek Poznámky k teorii vyučování matematice Pokroky matematiky, fyziky a astronomie, Vol. 14 (1969), No. 3, 148--151 Persistent URL: http://dml.cz/dmlcz/139905
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 8. kapitola. Různé In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1985. pp. 96 107. Persistent URL: http://dml.cz/dmlcz/404120 Terms
Goniometrické funkce
Goniometrické funkce 3. kapitola. Grafy goniometrických funkcí In: Stanislav Šmakal (author); Bruno Budinský (author): Goniometrické funkce. (Czech). Praha: Mladá fronta, 1968. pp. 90 108. Persistent URL: