Graph theory and graph algorithms basics
|
|
- Klára Musilová
- před 6 lety
- Počet zobrazení:
Transkript
1 Graph theory and graph algorithms basics Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic also Center for Machine Perception, Courtesy: Paul Van Dooren, Jeff Erickson, Jaehyun Park, Jianbo Shi Outline of the talk: Graph-based image segmentation, ideas Graphs, concepts Graph traversal Graph coloring Special graphs Computer representation of graphs Flow network, graph cut Minimum spanning tree
2 Graphs, concepts 2/60 It is assumed that a student has studied related graph theory elsewhere. Main concepts are reminded here only. lecture 6, graphalgo.html Concepts Graphs: directed, undirected Adjacency, similarity matrices Path in a graph Special graphs Related graph algorithms Shortest path Max graph flow = min graph cut Minimum spanning tree
3 Undirected graph, also graph Undirected/directed graph E.g. a city map without one-way streets. G = (V, E) is composed of vertices V and undirected edges E V V representing an unordered relation between two vertices. The number of vertices V = n and the number of edges E = m = O( V 2 ) is assumed finite. a Directed graph E.g. a city map with one-way streets. G = (V, E) is composed of vertices V and directed edges E representing an ordered relation between two vertices. Oriented edge e = (u, v) has the tail u and the head v (shown as the arrow ). The edge e is different from e = (v, u) in general. a 3/60 b d b d c c
4 Subgraph, simple graph 4/60 A graph H is a subgraph of graph G if and only if its vertex and edge sets are subset of corresponding sets in graph G. A simple graph is a graph, which has no loops and multiple edges.
5 Simple graph, multigraph 5/60 Aside: Set and bag (also multiset): The elements of set are distinct. Sometimes we need duplicates. E.g. there are duplicated persons with the same given name and surname in Prague. Mathematically, a bag is a set with duplicates. A multigraph allows multiple edges between the same vertices, i.e. E is a bag of undirected edges. E.g., the call graph in a program (a function can get called from multiple points in another function). Multigraphs do not depict relations. We can label edges in a multigraph to distinguish edges.
6 Vertex degree, the even degree property 6/60 The degree deg(v) of a vertex V is its number of incident edges. A self-loop counts for 2 in the degree function. An isolated vertex has degree 0. Proposition (trivial): The sum of the degrees of a graph or multigraph G = (V, E) equals 2 E = 2 m. Corollary (trivial): The number of vertices of odd degree is even. The handshaking theorem: Let G(E, V ) be an undirected graph. Then 2 E = v V deg(v). In any group of people the number of people who have shaken hands with odd number of other people from the group is even. Zero is an even number.
7 Complete graph, k-regular graph Complete graph Kn is a simple graph, in which every pair of vertices are adjacent. If number of graph vertices = n then there are n(n 1) 2 edges in a corresponding complete graph. 7/60 A k-regular graph is a simple graph with vertices of equal degree k. The complete graph Kn is (n 1)-regular.
8 Dense/sparse graph 8/60 Running times are typically expressed in terms of E and V. The graph is dense if E V 2. The graph is sparse if E V. Many interesting graphs are sparse. E.g., planar graphs, in which no edges cross, have E = O( V ) by Euler s formula. If you know you are dealing with dense or sparse graphs, different data structures may make sense.
9 Planar graph 9/60 A planar graph can be drawn on a plane without crossing edges. not planar planar Proposition (I. Fáry, 1948, independently K. Wagner 1936, S.K. Stein 1951): Any simple planar graph can be drawn without crossings so that its edges are straight line segments.
10 Graph isomorphism (1) 10/60 The isomorphism of graphs G, H denoted G = G is the bijection f between their set of vertices V (G), V (H) written as f: V (G) V (H) such that any two vertices v i, v j V (G) adjacent in G and if and only if vertices f(v i ) and f(v j ) are adjacent in H. The function f is called the isomorphism. Said informally: Two graphs are isomorphic if they differ only in their drawing (i.e. how their vertices and edges are labeled).
11 Graph isomorphism (2) 11/60 Needed conditions for the existence of the graph isomorphism: The same number of graph vertices and graph edges. The degrees of all vertices are the same. Finding the graph isomorphism is still believed to be NP hard.
12 Undirected/directed weighted graph 12/60 A weighted graph associates numerical weights (often non-negative integers) with either the edges or the vertices or both. E.g., a road map: graph edges are weighted with distances. A weighted graph is a special type of labeled graph. Undirected weighted graph Directed weighted graph a a b 3 d 6 c 4 b 3 d 6 c
13 Examples of edge-weighted graphs 13/60 Vertices correspond to towns. Edges are roads connected towns. Each edge is weighted by a distance between corresponding towns. Vertices match to translation stations for transmitting/receiving GSM signal. Edges are available radio connections between pairs of translation stations. Each edge is attributed by a communication channel capacity between corresponding translation stations. Vertices are students. Edges are bonds between students who know each other. Edges are attributed by an integer between 0 and 5 expressing how much the students like each other. Courtesy: Marcel Jiřina, jr.
14 Examples of vertex-weighted graphs 14/60 Vertices match to students. Edges correspond to relations to students who know each other. Vertices are attributed by the student sex; 0=male student or 1=female student. Vertices correspond to car dealer shops. Edges express that the shops sell cars of the same brand (e.g. Škoda). Each vertex tells how many cars of the brand the shop has in stock. Vertices are towns. Edges are roads connected towns. Each vertex is attributed by the number of ambulance cars available currently in the town. Courtesy: Marcel Jiřina, jr.
15 Walking in a graph, cycles 15/60 A walk of length k from vertex v0 to vertex vk is a non-empty graph P = (V, E) of the form V = {v 0, v 1,..., v k }, E = {(v 0, v 1 ),..., (v k 1, v k )}, where edge j connects vertices j 1 and j (i.e. V = E + 1). A path from a vertex u to a vertex v is a sequence (v0, v1,..., vk) of vertices, where v 0 = u, v k = v, and (v i, v i+1 ) E for i = 0, 1,..., k 1. Note: We will also simplify notation for a path from vertex u to vertex v as path u v. A simple path is a path, in which all vertices, except possibly the first and the last, are different (equivalently: do not appear more than once). A walk or path or simple path is closed when v0 = vk. A cycle is a walk with different vertices except for v0 = vk.
16 Length of a path, connected graph 16/60 The length of a path is defined as the number of edges in the path. Example: The red edges show a simple path acde from vertex a to vertex e of length 3. We could also consider a non-simple path acdabde of length 6. b d a e c If the graph is weighted then the length of the path is the sum of edges weights in the path. If the graph G is connected then there is a path between every pair of vertices. E V 1. Cliques are connected subgraphs in a bigger graph.
17 Graph cycle A cycle of a graph G is a subset of the edge set of G that forms a path such that the first vertex of the path corresponds to the last vertex. Hamilton cycle is a cycle that uses each graph vertex of a graph exactly once. A very hard problem. Still unsolved. Euler cycle (for undirected connected graphs) is a sequence of vertices that visits every edge exactly once and comes back to the starting vertex. A single stroke/line drawing task. Euler cycle exists if and only if G is connected and each vertex has an even degree. Leonhard Euler formulated this precondition on 7 bridges of Königsberg example in /60
18 Euler cycle, a constructive existence proof 18/60 Pick any vertex in G and walk randomly without using the same edge more than once. Each vertex is of even degree, so when you enter a vertex, there will be an unused edge you exit through. (Except at the starting point, at which you can get stuck.) When you get stuck, what you have is a cycle When you get stuck, what you have is a cycle. Glue the cycles together to finish!
19 Graph traversal 19/60 Graph traversal (called also graph search) visits (checks and/or updates) each vertex of a graph. The goal is to methodically explore every vertex and every edge of the graph. The most basic graph algorithm is the one that visits vertices of a graph in a certain order. Graph traversal is used as a subroutine in many other algorithms. Two basic algorithms: Depth-First Search (DFS): uses recursion (stack). Breadth-First Search (BFS): uses queue. Graph traversing/searching builds a tree on a graph depicting in which order the vertices/edges were traversed.
20 Depth-first search 20/60 Consider a graph G(V, E) and an arbitrary initial graph vertex v V. DFS(v) visits all the vertices reachable from v in a depth-first order, i.e. explores as far as possible along each branch before backtracking. Mark vertex v as visited. For each graph edge v u If u is not visited, call DFS(u). Worst case time performance: O( V + E ). Use non-recursive version if recursion depth is too big (over a few thousands), i.e. replace recursive calls with a stack.
21 Breadth-first search Consider a graph G(V, E) and an arbitrary initial graph vertex v V. 21/60 BFS(v) visits all the vertices reachable from v in a breath-first order, i.e. explores all of the neighbor vertices at the present depth prior to moving on to the vertices at the next depth level. Initialize a queue Q. Mark v as visited and push it to Q. While Q is not empty: Take the front element of Q, i.e. a vertex w For each graph edge w u: If u is not visited, mark it as visited and push it to Q. Worst case time performance: O( V + E ).
22 Chromatic number 22/60 The chromatic number of a graph G, written γ(g), is the minimum number of colors needed to label the vertices so that adjacent vertices receive different colors.
23 Maps and their coloring 23/60 A map is a partition of the plane into connected regions, e.g. a political country map. Can we can color the regions of every map using four colors at most so that neighboring regions have different colors? Map coloring graph coloring A map region a graph vertex. Adjacency between regions an edge in the graph.
24 Four color map theorem 24/60 Four color map theorem states: given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color. Theorem was proved in 1976 as the first major theorem proved by computer.
25 A special graph: bipartite graph 25/60 A bipartite graph has graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent. Used, e.g. for matching problems. A bipartite graph is a graph that does not contain any odd-length cycles. Bipartite graphs are equivalent to two-colorable graphs. Courtesy: Wolfram MathWorld. A bipartite graph is a special case of a k-partite graph with k = 2.
26 k-partite graph Also named a multipartite graph. 26/60 A k-partite graph is a graph whose vertices are or can be partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. The notation is used with a capital letter K subscripted by a sequence of the sizes of each set in the partition. For instance, K 2,2,2 is the complete tripartite graph of a regular octahedron. K 2,2,2 K 3,3,3 K 2,2,2,2 Examples of complete k-partite graphs
27 A special graph: acyclic graph 27/60 A graph containing no cycles of any length is known as an acyclic graph. Other graphs are cyclic. An acyclic graph is bipartite. A cyclic graph is bipartite iff all its cycles are of even length. Skiena, S.: Cycles in Graphs. 5.3 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp , 1990.
28 A special graph: tree 28/60 A tree is an acyclic connected graph (in which any two vertices are connected by exactly one path). Every acyclic connected graph is a tree, and vice versa. The tree is the most important type of special graphs because many problems are easy to solve on trees. Alternative equivalent tree definitions: A connected graph G with E = V 1 edges. An acyclic graph with with V 1 edges. There is exactly one path between every pair of vertices. An acyclic graph but adding any edge results in a cycle. A connected graph but removing any edge disconnects it.
29 A special graph: forest 29/60 A forest is an acyclic undirected graph. Equivalently, a forest is a disjoint union of trees, i.e. its connected components are trees. Examples of the forest special cases: an empty graph, a single tree, and the discrete graph on a set of vertices (that is, the graph with these vertices that has no edges). Since for every tree V - E = 1, we can easily count the number of trees that are within a forest by subtracting the difference between total vertices and total edges.
30 A special graph: directed acyclic graph (DAG) 30/60 A directed acyclic graph (DAG) is a directed graph without cycles. Every DAG must have at least one vertex with in-degree zero (source) and at least one vertex with out degree zero (sink). DAG may have more than one source or sink. DAG is a directed graph that has a topological ordering, i.e. a linear ordering of its vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in the ordering. DAGs arise in modeling many problems involving prerequisite constraints as construction projects, course prerequisites, document version control.
31 Spanning tree 31/60 Definition: A spanning tree T of an undirected graph G is a subgraph that is a tree, which includes all of the vertices of G. A graph, which is not a tree, has more than one spanning tree. If a graph is not connected than it will not contain a spanning tree. (cf. spanning forest). If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T (that is, a tree has a unique spanning tree and it is itself). One of several possible spanning trees of a 4 4 grid with 4-neighborhood. Courtesy: Wikipedia A complete graph with n vertices has 2(n 2) different spanning trees.
32 Minimum spanning tree (MST) 32/60 Given: Given an undirected weighted graph G = (V, E), see page 12. Task: Find a subset of E with the minimum total weight that connects all the vertice s into a tree. A minimum spanning tree example. Blue edges constitute the minimum spanning tree
33 Cycle and cut MST properties Cycle property: For a cycle C in the graph, if the weight of and edge E of C is larger than the individual weights of all other edges of C, then this edge cannot belong to an MST. (See Wikipedia for proof). Cut property: For any cut C of the graph, if the weight of an edge E in the cut-set of C is strictly smaller than the weights of all other edges of the cut-set of C, then this edge belongs to all MSTs of the graph. (See Wikipedia for proof) a b c a b c a b c E 1 4 d e f d e f d e f input graph the cut MST T 33/60 Example: T is the only MST of the graph. If S = {a, b, c, d}, V \ S = {c, f}. There are only 3 possible edges across the cut(s, S \ V ), i.e. bc, ec, ef of the original graph. Edge E is the only minimum weight edge for the cut and therefore S {E} is part of MST T.
34 Classic MST algorithms overview 34/60 1. Borůvka algorithm, Otakar Borůvka 1926, purpose: efficient electricity distribution network in Moravia, even before the graph theory was introduced. The algorithm proceeds in a sequence of stages. In each stage, called Borůvka step, it identifies a forest F consisting of the minimum-weight edge incident to each vertex in the graph G, then forms the graph G 1 = G \ F as the input to the next step. Here G \ F denotes the graph derived from G by contracting edges in F (by the Cut property, these edges belong to the MST). Each Borůvka step takes linear time. 2. Prim algorithm, discovered by Vojtěch Jarník in 1929 in a letter to Otakar Borůvka, paper in 1930, reinvented by Robert Prim in Kruskal algorithm, by Joseph Kruskal 1956.
35 Shortest paths in a weighted directed graph 35/60 Assume a weighted directed graph G(V, E) with two selected special vertices s (source) and t (target). The goal is to find a shortest path from the source s to the target t. Image, e.g., that we seek a shortest path from Prague to Vienna in the road map. The weights on graph edges may be negative (maybe counter to the intuition). Negative edges bring complications, because the presence of a negative cycle might imply that there is no shortest path. In general, a shortest path s t exists if and only if there is at least one path from s t. However, there is no path s t that touches a negative cycle. If any negative cycle is reachable from s and can reach t, we can always find a shorter path by going around the cycle one more time.
36 Single source shortest path, introduction Almost every algorithm known for solving shortest path actually solves (large portions of) the more general single source shortest path (also SSSP problem): Find the shortest path from the source vertex s to every other vertex in the graph. This problem is usually solved by finding a shortest path tree rooted at the source vertex s that contains all the desired shortest paths. If shortest paths are unique, then they form a tree (because any subpath of a shortest path is itself a shortest path). If there are multiple shortest paths to some vertices, we can always choose one shortest path to each vertex so that the union of the paths is a tree. 36/60 To simplify the algorithms explanation in this lecture, we consider only directed graphs. All of the algorithms also work for undirected graphs with some minor modifications, but only if negative edges are prohibited.
37 Minimal spanning trees shortest path trees 37/60 Minimal spanning trees Minimum spanning trees are unrooted and undirected. Only undirected graphs have minimum spanning trees. If edge weights are distinct, there is only one minimum spanning tree. Shortest path trees Shortest-path trees are rooted and directed. Shortest-path trees are most naturally defined for directed graphs. Every source vertex induces a different shortest-path tree. It is possible for every shortest path tree to use a different set of edges from the minimum spanning tree. minim. spanning tree shortest path tree
38 Single source shortest path There are several SSSP algorithms. All of them are special cases of a generic algorithm by L. Ford (1956) and G. Dantzig (1957). Each graph vertex v stores two values, which describe a tentative sortest path from the source vertex s to v (inductively). dist(v) is the length of the tentative shortest path s v, or if there is no path. pred(v) in the predecessor of v in the tentative shortest path s v, or Null if there is no such vertex. The predecessor pointers automatically define a tentative shortest path tree; they play the same role as the parent pointers in our generic graph traversal algorithm. Tense edge: We call a graph edge u v tense if dist(u) + w(u v) < dist(v), where w(u v) is the weight of the edge u v. 38/60
39 Single source shortest path algorithm 39/60 We have seen that performing a depth-first-search or breath-first-search produces a spanning tree. Neither of those algorithms takes edge weights into account. There is a simple, greedy Dijksta SSSP algorithm that will solve this problem. We assume that there is a path from the source vertex s to every other vertex in the graph. Let V be the set of vertices whose minimum distance from the source vertex has been found. Initially, V contains only the source vertex s. The algorithm is iterative, adding one vertex to V on each pass. Greed: On each iteration, add to V the vertex not already in V for which the distance to the source is minimal.
40 Dijkstra algorithm for the shortest path s source vertex dist(j) the minimal distance from vertex s to vertex j pred(j) predecessor of the vertex j 40/60 Dijkstra algorithm (1956) finds the shortest vertex from the source vertex s to all vertices. % N set of all graph vertices V := s % visited vertices; U := N \ s % unvisited vertices; dist(s) := 0, i := s; while V < N do choose(i, j) : d(j) := min k,m {dist(k) + c km k V, m U}; U = U \ {j}; V = V + {j}; pred(j) := i; end Incrementally labels vertices with their distance-from-start. Produces optimal (shortest) paths. Performance O( N 2) with the heap reshuffling O( N log N ).
41 Graphs representations 41/60 By a drawn figure (schema, drawing). By listing set of vertices, edges. By an adjacency list (suited for computer implementation). By an adjacency matric (suited for computer implementation).
42 Graph represented by the adjacency matrix 42/60 Adjacency relationship is: Symmetric if the graph G is undirected. Not necessarily so if G is directed. Adjacency matrix A has elements aij, i, j = 1,..., V. Elements a ij = 1 if graph vertices i, j share an edge; 0 otherwise. Uses Ω( V ) memory. b a c d a b c d a b c d
43 Similarity matrix In the case of the weighted graph, the adjacency matrix is generalized to the similarity matrix S of the graph. 43/60 Elements of A have value of the weight of the edge between two respective vertices, aij = wij. a 1 4 b 3 d 6 c a b c d a b c d
44 Graph represented by the adjacency list 44/60 Adjacency list: For each vertex v V, store a list of vertices adjacent to v (in other words: going out of v). Easy to iterate over edges incident to a certain vertex. The lists have variable lengths. Asymptotic bound of the space usage from above: Ω( E + V ). Our example: a Adj[a] = {b, c} 1 4 b Adj[c] = { } 3 6 c d Adj[b] = {c} Adj[d] = {c} From To a b, c b c c empty d c Variation: For oriented graphs, it is possible to store the list of graph edges coming into the vertex.
45 Implementing adjacency list 45/60 Three solutions: 1. Using linked lists Too much memory / time overhead. Using dynamically allocated memory or pointers is bad. 2. Using arrays of vectors Easier to code, no bad memory issues. Very slow. 3. Using arrays Assuming the total number of edges E is known. Very fast and memory efficient.
46 Implementation using arrays, example 46/60 Courtesy: Jaehyun Park, Stanford University
47 Graphs. Implementation using arrays (1) Have two arrays; E of size E and LE of size V. 47/60 E contains the edges. LE contains the starting pointers of the edge lists. Initialize LE[i] = -1 for all i LE[i] = 0 is also fine if the arrays are 1-indexed. Inserting a new edge from vertex u to vertex v with ID k E[k].to = v E[k].nextID = LE[u] LE[u] = k Iterating over all edges starting at u for (ID = LE[u]; ID!= -1; ID = E[ID].nextID // E[ID] is and edge starting from u
48 Graphs. Implementation using arrays (2) 48/60 Once built, it is hard to modify the edges. The graph better be static! However, adding more edges is easy.
49 Networks and flows 49/60 A network is a directed graph N = (V, E) with a source vertex s and a terminal vertex t (also sink). Each graph edge has a positive capacity c(e) > 0. A flow is a real-valued (often integer) function f: V 2 R+ associated with each edge e = (u, v) with the properties ( G. Kirchhoff s law, 1845): Capacity c constraint: u, v V, f(u, v) c(u, v). Skew symmetry: u, v V, f(u, v) = f(v, u). Flow conservation: u (V \ {s, t}), f(u, v) = 0. v V The total flow F of the networks is then what leaves s or reaches t F (N) = u V f(s, u) u V f(u, s) = u V f(u, t) u V f(t, u)
50 Network and flows example 50/60 Network example s t Flow example, f(s, t) = 7. s 2/5 1/3 1/1 2/3 t 5/5 4/10 6/9 4/5 1/1 Maximal flow example, f(s, t) = 9. s 0/3 3/3 t 5/5 4/10 8/9
51 Cut of a network 51/60 A cut of a network is a partition of the vertex set V = P P in to two disjoint sets P (containing s, source) and P (containing t, terminal, sink). The capacity of a cut κ is a sum of the capacities between edges (u, v) between P and P κ(p, P ) = c(u, v) Example continued: u P ;v P P s P 9 t The capacity of the cut for the example above is κ = = 6.
52 Graph cuts properties 52/60 Let (P, P ) be be any cut of a network N = (V, E) then the associated flow is given by F (N) = f(u, v) f(v, u) u P ;v P u P ;v P Idea of the proof: Show first that F (N) = ( u P v P f(u, v) v P f(v, u)) by summing all contributions in P and using conservation. For all v P the term between brackets is zero (conservation). Hence we need only to keep the edges across the partition. A minimal cut (with minimal capacity) also bounds f(n). We will construct one and will see that it equals to f(n).
53 Graph cut application, dining problem 53/60 Can we seat 4 families with number of members (3,4,3,2) at 4 tables with number of seats (5,2,3,2) so that no two members of a same family sit at the same table? The central edges are the table assignments (a capacity of 1). The cut shown has a capacity 11 which upper bounds f(n). We can therefore not seat all 12 members of the four families.
54 Graph cut application, marriage problem 54/60 One wants to find a maximimum number of couplings between men and women where each couple has expressed whether or not this coupling was acceptable (central edges that exist or not). One wants to find a maximum number of disjoint paths in this directed graph. All the capacities of the existing edges are 1.
55 Residual network N f The residual capacity of an edge with respect to a flow f is the difference between the edge capacity and its flow. Given a network N(V, E) with a flow f on it, its residual network N f (V, E f ) is a network with the same set of vertices V and edges E f but with new residual capacities c f c f (u, v) f(u, v) > 0 if(u, v) E (forward edges) c f (u, v) = f(v, u) if(v, u) E (backward edges) 0 otherwise That means that there are units of flow f(u, v), which we can undo by pushing the flow backward. Notice, if c(u, v) = f(u, v) then there are only backward edges in Nf. 55/60 s 4/5 5/5 5/10 3/3 1/1 N 5/9 t s N f 4 5 t
56 Augmenting path 56/60 Augmenting means making the flow larger here. The residual capacity of an edge tells what is the maximum amount the flow can be increased. An augmenting path is a path constructed by repeatedly finding a path of positive capacity from a source to a sink and then adding it to the flow. The augmenting path is a directed path v0,..., vk from S = v0 to t = vk for which i = c(v i, v i+1 ) f(v i, v i+1 ) > (v i, v i+1 ) E or i = c(v i+1, v i ) f(v i+1, v i ) > (v i+1, v i ) E
57 Example, augmenting path 1 57/60 At each step, the graph (left) and the residual graph is displayed. Augmentation paths are shown in blue. Step 1 s 0/5 0/7 0/3 0/2 0/4 0/6 0/5 0/8 t s t Step 2 s 5/5 0/7 0/3 0/2 0/4 5/6 0/5 0/8 t s t Step 3 s 5/5 5/7 0/3 0/2 0/4 5/6 5/5 0/8 t s t
58 Example, augmenting path 2 58/60 Step 4 s 5/5 5/7 3/3 0/2 0/4 5/6 5/5 3/8 t s t Step 5 s 5/5 6/7 0/3 0/2 0/4 6/6 5/5 0/8 t s t We find F (N) = 14 in five steps.
59 Max flow, min-cut A network N(V, E) is at maximum flow if and only if there is no augmenting path in the residual network N f. In a network N the following are equivalent 1. A flow is optimal. 2. The residual graph does not contain an augmenting path. 3. f(n) = capacity κ(p, P ) for some cut(p, P ) The value of the optimal flow thus equals f(n) = min κ(p, P ). Finding maximal flow / minimal cut becomes an linear programming task if flows f(i, j) on edges (i, j) max i:(s,i) f(s, i) = i:(i,s) f(i, s) subject to i f(i, j) = i f(j, i) and 0 f(i, j) c(i, j) 59/60
60 Ford-Fulkerson algorithm The Ford-Fulkerson algorithm (1956) calculates this optimal flow using augmentation paths. Algorithm MaxFlowFF(N, s, t) f(u, v) := 0 (u, v) E; while N f contains a path from s to t do choose an augmentation path A p from s to t := min (u,v) Ap i Augment the flow by along A p Update N f end 60/60 Finding a path in the residual graph can be implemented with a BFS or DFS exploration. At each step we show the graph (left) and the residual graph (right). Augmentation paths are in red. In 5 steps, we find f(n) = 14.
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:
WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.
Transportation Problem
Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia
On large rigid sets of monounary algebras D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia coauthor G. Czédli, University of Szeged, Hungary The 54st Summer School on General Algebra
Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová
Využití hybridní metody vícekriteriálního rozhodování za nejistoty Michal Koláček, Markéta Matulová Outline Multiple criteria decision making Classification of MCDM methods TOPSIS method Fuzzy extension
DC circuits with a single source
Název projektu: utomatizace výrobních procesů ve strojírenství a řemeslech egistrační číslo: Z..07/..0/0.008 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je spolufinancován
WORKSHEET 1: LINEAR EQUATION 1
WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable
VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace
VY_32_INOVACE_06_Předpřítomný čas_03 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400
Database systems. Normal forms
Database systems Normal forms An example of a bad model SSN Surnam OfficeNo City Street No ZIP Region President_of_ Region 1001 Novák 238 Liteň Hlavní 10 26727 Středočeský Rath 1001 Novák 238 Bystřice
Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz
SCHEME OF WORK Subject: Mathematics Year: first grade, 1.X School year:../ List of topisc # Topics Time period Introduction, repetition September 1. Number sets October 2. Rigtht-angled triangle October,
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA What is an FTP client and how to use it? FTP (File transport protocol) - A protocol used to transfer your printing data files to the MAFRAPRINT
Compression of a Dictionary
Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction
Litosil - application
Litosil - application The series of Litosil is primarily determined for cut polished floors. The cut polished floors are supplied by some specialized firms which are fitted with the appropriate technical
Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.
Czech Republic EDUCAnet Střední odborná škola Pardubice, s.r.o. ACCESS TO MODERN TECHNOLOGIES Do modern technologies influence our behavior? Of course in positive and negative way as well Modern technologies
Introduction to MS Dynamics NAV
Introduction to MS Dynamics NAV (Item Charges) Ing.J.Skorkovský,CSc. MASARYK UNIVERSITY BRNO, Czech Republic Faculty of economics and business administration Department of corporate economy Item Charges
2. Entity, Architecture, Process
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš
VOŠ, SPŠ automobilní a technická. Mgr. Marie Šíchová. At the railway station
Název SŠ: Autor: Název: Tematická oblast: VOŠ, SPŠ automobilní a technická Mgr. Marie Šíchová At the railway station VOŠ, Provoz a ekonomika dopravy, cizí jazyk, angličtina B, odborné téma Železniční doprava
FIRE INVESTIGATION. Střední průmyslová škola Hranice. Mgr. Radka Vorlová. 19_Fire investigation CZ.1.07/1.5.00/
FIRE INVESTIGATION Střední průmyslová škola Hranice Mgr. Radka Vorlová 19_Fire investigation CZ.1.07/1.5.00/34.0608 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/21.34.0608 Šablona: III/2 Inovace a zkvalitnění
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Libuše Matulová Název materiálu: Education Označení materiálu: VY_32_INOVACE_MAT27 Datum vytvoření: 10.10.2013
Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů
Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Design and implementation of algorithms for adaptive control of stationary robots Marcel Vytečka 1, Karel Zídek 2 Abstrakt Článek
Dynamic programming. Optimal binary search tree
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
Informace o písemných přijímacích zkouškách. Doktorské studijní programy Matematika
Informace o písemných přijímacích zkouškách (úplné zadání zkušebních otázek či příkladů, které jsou součástí přijímací zkoušky nebo její části, a u otázek s výběrem odpovědi správné řešení) Doktorské studijní
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING Eva Minaříková Institute for Research in School Education, Faculty of Education, Masaryk University Structure of the presentation What can we as teachers
MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation
Aplikace matematiky Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky, Vol. 25 (1980), No. 6, 457--460 Persistent URL: http://dml.cz/dmlcz/103885 Terms
Progressive loyalty V1.0. Copyright 2017 TALENTHUT
Progressive loyalty Copyright 2017 TALENTHUT www.talenthut.io 1. Welcome The Progressive Loyalty Siberian CMS module will allow you to launch a loyalty program and reward your customers as they buy from
STUDY EDITS FOR BETTER TRANSPORT IN THE CENTRE OF NÁCHOD
CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of transportation sciences Title of project STUDY EDITS FOR BETTER TRANSPORT IN THE CENTRE OF NÁCHOD 2006 Petr Kumpošt Basic information about town Náchod Náchod
CZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Social Media a firemní komunikace
Social Media a firemní komunikace TYINTERNETY / FALANXIA YOUR WORLD ENGAGED UČTE SE OD STARTUPŮ ANALYSIS -> PARALYSIS POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE
By David Cameron VE7LTD
By David Cameron VE7LTD Introduction to Speaker RF Cavity Filter Types Why Does a Repeater Need a Duplexer Types of Duplexers Hybrid Pass/Reject Duplexer Detail Finding a Duplexer for Ham Use Questions?
CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor: Sylva Máčalová Tematický celek : Gramatika Cílová skupina : mírně pokročilý - pokročilý Anotace Materiál má podobu pracovního listu, který obsahuje cvičení, pomocí nichž si žáci procvičí rozdíly
Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products
Energy news2 1 Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products Doposud jste Energy znali jako výrobce a dodavatele humánních přírodních doplňků stravy a kosmetiky.
kupi.cz Michal Mikuš
kupi.cz Michal Mikuš redisgn website kupi.cz, reduce the visual noise. ADVERT ADVERT The first impression from the website was that i dint knew where to start. It was such a mess, adverts, eyes, products,
WYSIWYG EDITOR PRO XML FORM
WYSIWYG EDITOR PRO XML FORM Ing. Tran Thanh Huan, Ing. Nguyen Ba Nghien, Doc. Ing. Josef Kokeš, CSc Abstract: In this paper, we introduce the WYSIWYG editor pro XML Form. We also show how to create a form
PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I
E L E C T R O N I C C O N N E C T O R S 196 ept GmbH I Tel. +49 (0) 88 61 / 25 01 0 I Fax +49 (0) 88 61 / 55 07 I E-Mail sales@ept.de I www.ept.de Contents Introduction 198 Overview 199 The Standard 200
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace
Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.
1 Bad line breaks The follwing text has prepostions O and k at end of line which is incorrect according to Czech language typography standards: Mezi oblíbené dětské pohádky patří pohádky O Palečkovi, Alenka
Jakub Zavodny (University of Oxford, UK)
.. Factorized databases III Základní horizontální logolink 13 Jakub Zavodny (University of Oxford, UK) Palacky University, Olomouc, Czech Republic Základní horizontální verze logolinku v češtině Základní
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Základy teorie front III
Základy teorie front III Aplikace Poissonova procesu v teorii front II Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta
Střední škola obchodní, České Budějovice, Husova 9, VY_INOVACE_ANJ_741. Škola: Střední škola obchodní, České Budějovice, Husova 9
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
LOGOMANUÁL / LOGOMANUAL
LOGOMANUÁL / LOGOMANUAL OBSAH / CONTENTS 1 LOGOTYP 1.1 základní provedení logotypu s claimem 1.2 základní provedení logotypu bez claimu 1.3 zjednodušené provedení logotypu 1.4 jednobarevné a inverzní provedení
PAINTING SCHEMES CATALOGUE 2012
Evektor-Aerotechnik a.s., Letecká č.p. 84, 686 04 Kunovice, Czech Republic Phone: +40 57 57 Fax: +40 57 57 90 E-mail: sales@evektor.cz Web site: www.evektoraircraft.com PAINTING SCHEMES CATALOGUE 0 Painting
1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení.
Moje hlavní město Londýn řešení: 1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení. Klíčová slova: capital, double decker bus, the River Thames, driving
Vánoční sety Christmas sets
Energy news 7 Inovace Innovations 1 Vánoční sety Christmas sets Na jaře tohoto roku jste byli informováni o připravované akci pro předvánoční období sety Pentagramu koncentrátů a Pentagramu krémů ve speciálních
Theme 6. Money Grammar: word order; questions
Theme 6 Money Grammar: word order; questions Čas potřebný k prostudování učiva lekce: 8 vyučujících hodin Čas potřebný k ověření učiva lekce: 45 minut KLÍNSKÝ P., MÜNCH O., CHROMÁ D., Ekonomika, EDUKO
Výukový materiál zpracovaný v rámci projektu EU peníze do škol. illness, a text
Výukový materiál zpracovaný v rámci projektu EU peníze do škol ZŠ Litoměřice, Ladova Ladova 5 412 01 Litoměřice www.zsladovaltm.cz vedeni@zsladovaltm.cz Pořadové číslo projektu: CZ.1.07/1.4.00/21.0948
Chapter 7: Process Synchronization
Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Critical Regions Monitors Synchronization in Solaris
Present Perfect x Past Simple Předpřítomný čas x Minulý čas Pracovní list
VY_32_INOVACE_AJ_133 Present Perfect x Past Simple Předpřítomný čas x Minulý čas Pracovní list PhDr. Zuzana Žantovská Období vytvoření: květen 2013 Ročník: 1. 4. ročník SŠ Tematická oblast: Gramatika slovesa
VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová
VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová VZDĚLÁVÁNÍ V ČR VY_32_INOVACE_AH_3_03 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět
Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Libuše Matulová Název materiálu: European Union Označení materiálu: VY_32_INOVACE_MAT 22 Datum vytvoření:
EXACT DS OFFICE. The best lens for office work
EXACT DS The best lens for office work EXACT DS When Your Glasses Are Not Enough Lenses with only a reading area provide clear vision of objects located close up, while progressive lenses only provide
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY. Číslo Servisní Informace Mechanika: 5-2013
Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY Servisní Informace Datum vydání: 20.2.2013 Určeno pro : AMS, registrované subj.pro montáž st.měř. Na základě SI VDO č./datum: Není Mechanika
Čtvrtý Pentagram The fourth Pentagram
Energy News 4 1 Čtvrtý Pentagram The fourth Pentagram Na jaře příštího roku nabídneme našim zákazníkům již čtvrtý Pentagram a to Pentagram šamponů. K zavedení tohoto Pentagramu jsme se rozhodli na základě
SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91
SEZNAM PŘÍLOH Příloha 1 Dotazník Tartu, Estonsko (anglická verze)... 90 Příloha 2 Dotazník Praha, ČR (česká verze)... 91 Příloha 3 Emailové dotazy, vedení fakult TÜ... 92 Příloha 4 Emailové dotazy na vedení
Travel information. 1. from Prague to Ostrava
1. from Prague to Ostrava Travel information Ostrava, as a city with more than 330 thousands inhabitants, has a regular flight connection with Prague, usually arranged by the Czech Airlines, which is a
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Student: Draw: Convex angle Non-convex angle
WORKBOOK http://agb.gymnaslo.cz Subject: Student: Mathematics.. School year:../ Topic: Trigonometry Angle orientation Types of angles 90 right angle - pravý less than 90 acute angles ("acute" meaning "sharp")-
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
PITSTOP VY_22_INOVACE_26
PITSTOP VY_22_INOVACE_26 Vzdělávací oblast: Jazyk a jazyková komunikace Vzdělávací obor: Anglický jazyk Ročník: 9. PITSTOP 1/ Try to complete the missing words. Then listen and check your ideas. Eight
The Czech education system, school
The Czech education system, school Pracovní list Číslo projektu Číslo materiálu Autor Tematický celek CZ.1.07/1.5.00/34.0266 VY_32_INOVACE_ZeE_AJ_4OA,E,L_10 Mgr. Eva Zemanová Anglický jazyk využívání on-line
AIC ČESKÁ REPUBLIKA CZECH REPUBLIC
ČESKÁ REPUBLIKA CZECH REPUBLIC ŘÍZENÍ LETOVÉHO PROVOZU ČR, s.p. Letecká informační služba AIR NAVIGATION SERVICES OF THE C.R. Aeronautical Information Service Navigační 787 252 61 Jeneč A 1/14 20 FEB +420
Digitální učební materiál
Digitální učební materiál Projekt Šablona Tématická oblast DUM č. CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Anglický jazyk pro obor podnikání
Zubní pasty v pozměněném složení a novém designu
Energy news4 Energy News 04/2010 Inovace 1 Zubní pasty v pozměněném složení a novém designu Od října tohoto roku se začnete setkávat s našimi zubními pastami v pozměněném složení a ve zcela novém designu.
UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9
www.regulus.cz UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9 CZ EN UPM3 Hybrid 1. Úvod V továrním nastavení čerpadla UPM3 Hybrid je profil PWM
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY. Stručný úvod do programování v jazyce C 2.díl. České vysoké učení technické Fakulta elektrotechnická
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Stručný úvod do programování v jazyce C 2.díl České vysoké učení technické Fakulta elektrotechnická A1B14MIS Mikroprocesory pro výkonové systémy 07 Ver.1.10 J. Zděnek,
Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.
1/ 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Soft biometric traits in de identification process Hair Jiri Prinosil Jiri Mekyska Zdenek Smekal 2/ 13 Klepnutím
Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.
CURRICULUM VITAE - EDUCATION Jindřich Bláha Výukový materiál zpracován v rámci projektu EU peníze školám Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Bc. Jindřich Bláha. Dostupné z Metodického
GENERAL INFORMATION MATCH: ALSA PRO ARENA MASTERS DATE: TIME SCHEDULE:
GENERAL INFORMATION MATCH: ALSA PRO ARENA MASTERS DATE: 22.9. - 23.9.2018 TIME SCHEDULE: Mainmatch 1 - Saturday 22.9. registration: 22.9.2018-9.00h first shot: 22.9.2018-10.00h Mainmatch 2 - Sunday 23.9.
Diagnostika síťových aplikací - Zkouška
Diagnostika síťových aplikací - Zkouška Radek Mařík, January 19, 2018 1 Zkouška B2M32DSA a její hodnocení, platí od 1. 1. 2018 Zkoušení mohou být jen ti studenti, kteří získali zápočet ze cvičení. Zkouška
Projekt: ŠKOLA RADOSTI, ŠKOLA KVALITY Registrační číslo projektu: CZ.1.07/1.4.00/21.3688 EU PENÍZE ŠKOLÁM
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 email: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA
HASHING GENERAL Hashovací (=rozptylovací) funkce
Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG
SPECIAL THEORY OF RELATIVITY
SPECIAL THEORY OF RELATIVITY 1. Basi information author Albert Einstein phenomena obsered when TWO frames of referene moe relatie to eah other with speed lose to the speed of light 1905 - speial theory
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
2011 Jan Janoušek BI-PJP. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE TRANSFORMACE GRAMATIK NA LL(1) GRAMATIKU. TABULKA SYMBOLŮ. VNITŘNÍ REPREZENTACE: AST. JAZYK ZÁSOBNÍKOVÉHO POČÍTAČE. RUNTIME PROSTŘEDÍ. 2011 Jan Janoušek BI-PJP Evropský
Digitální učební materiály www.skolalipa.cz
Název školy Číslo projektu Název projektu Klíčová aktivita Dostupné z: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Tematická oblast: Téma: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ,
6.867 Machine Learning
. Machine Learning Problem Set Solutions Due date: Monday November Problem : Model Selection. P (y,..., y n x,..., x n, PST) = = K [ [,] K [ K p n+ i i ( p i ) n i dpi ] = p n+ i i K ( p i ) n i n + i!
11.12. 100 ΕΙΣΟΔΟΣ = E / ENTRANCE = E = = 1174 550 ΤΥΠΟΠΟΙΗΜΕΝΟ ΚΥ = 2000 (ΕΠΙΛΟΓΗ: 2100) / CH STANDARD = 2000 (OPTIONAL: 2100) 243 50 ΚΥ/CH + 293 ΚΥ/CH +103 100 ΚΥ /CH 6 11 6 20 100 0,25 ΚΑ (CO) + 45
Britské společenství národů. Historie Spojeného království Velké Británie a Severního Irska ročník gymnázia (vyšší stupeň)
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
Name: Class: Date: RELATIONSHIPS and FAMILY PART A
Name: Class: Date: RELATIONSHIPS and FAMILY PART A 1. Read the text A and complete it. Lidé jsou už ze své podstaty společenští, což znamená, že patří vždy do nějaké sociální společenské skupiny (1. )
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: II/2 Inovace a zkvalitnění výuky cizích jazyků na středních
2 Axiomatic Definition of Object 2. 3 UML Unified Modelling Language Classes in UML Tools for System Design in UML 5
Contents Contents 1 Semestrální práce 1 2 Axiomatic Definition of Object 2 3 UML Unified Modelling Language 2 3.1 Classes in UML............................ 3 4 Tools for System Design in UML 5 5 Student
CHAIN TRANSMISSIONS AND WHEELS
Second School Year CHAIN TRANSMISSIONS AND WHEELS A. Chain transmissions We can use chain transmissions for the transfer and change of rotation motion and the torsional moment. They transfer forces from
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Unit 3 Stereochemistry
Unit 3 Stereochemistry Stereoisomers hirality (R) and (S) Nomenclature Depicting Asymmetric arbons Diastereomers Fischer Projections Stereochemical Relationships Optical Activity Resolution of Enantiomers
User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com
1/ 11 User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 2/ 11 Contents 1. MINIMUM SYSTEM REQUIREMENTS... 3 2. SŘHV ON-LINE WEB INTERFACE... 4 3. LOGGING INTO SŘHV... 4 4. CONTRACT
GENERAL INFORMATION MATCH: ALSA PRO HOT SHOTS 2018 DATE:
GENERAL INFORMATION MATCH: ALSA PRO HOT SHOTS 2018 DATE: 7.7. - 8.7.2018 TIME SCHEDULE: Prematch - Friday registration: 6.7.2018-10.00h first shot: 6.7.2018-11.00h Mainmatch 1 - Saturday registration:
PRODEJNÍ EAUKCE A JEJICH ROSTOUCÍ SEX-APPEAL SELLING EAUCTIONS AND THEIR GROWING APPEAL
PRODEJNÍ EAUKCE A JEJICH ROSTOUCÍ SEX-APPEAL SELLING EAUCTIONS AND THEIR GROWING APPEAL Ing. Jan HAVLÍK, MPA tajemník Městského úřadu Žďár nad Sázavou Chief Executive Municipality of Žďár nad Sázavou CO
Digitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
POPIS TUN TAP. Vysvetlivky: Modre - překlad Cervene - nejasnosti Zelene -poznamky. (Chci si ujasnit o kterem bloku z toho schematu se mluvi.
Vysvetlivky: Modre - překlad Cervene - nejasnosti Zelene -poznamky POPIS TUN TAP (Chci si ujasnit o kterem bloku z toho schematu se mluvi.) VAS MODEL OpenVPN MUJ MODEL funkce virtuálního sítového rozhrani
Angličtina O-06 A 1. Označte správnou variantu. (10x1 bod)
Jméno: Angličtina O-06 A Datum: 1. Označte správnou variantu. (10x1 bod) a) Cože? Řekni mi znovu, koho jsi to dneska viděla na nádraží! What? Tell me again who at the station today. did you see you did
Functions. 4 th autumn series Date due: 3 rd January Pozor, u této série přijímáme pouze řešení napsaná anglicky!
Functions 4 th autumn series Date due: 3 rd January 207 Pozor, u této série přijímáme pouze řešení napsaná anglicky! Problem. (3 points) David found the quadratic function f : R 0, ), f(x) = x 2 and a
CZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Číslo materiálu: VY 32 INOVACE 25/12. Název materiálu: Anatomy 2 - Senses Číslo projektu: CZ.1.07/1.4.00/
Číslo materiálu: Název materiálu: Anatomy 2 - Senses Číslo projektu: CZ.1.07/1.4.00/21.1486 Zpracoval: Jana Jourová Anatomy 2 - Senses 1. Before you watch the videos, try to answer the questions. How many