1/143. Komplexní vzdělávací program pro. podporu environmentálně šetrných provozování budov
|
|
- Leoš Hruška
- před 9 lety
- Počet zobrazení:
Transkript
1 1/143 Komplexní vzdělávací program pro podporu environmentálně šetrných technologií ve výstavbě a provozování budov
2 2/143 Solární tepelné soustavy Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
3 3/143 Sluneční energie sluneční záření základní pojmy dopadající energie
4 Rozlišení termínů 4/143 Sluneční energie x solární energie sluneční: přicházející od Slunce, související se Sluncem sluneční záření, sluneční aktivita, dopadající sluneční energie solární: využívající sluneční záření solární kolektor, solární soustava, využitá solární energie
5 Sluneční energie - původ 5/143 původ sluneční energie v jaderných reakcích jaderná syntéza kg/s H 2 na kg/s He při teplotách 10 6 K a tlacích MPa rozdíl hmot kg/s se vyzáří ve formě energie (E = m.c 2 ) 3, W 1367 W/m 2
6 Sluneční záření - pojmy 6/143 sluneční ozáření G [W/m 2 ] (nesp.intenzita sl. záření) - zářivý výkon dopadající na jednotku plochy (hustota zářivého toku) dávka ozáření H [kwh/m 2, J/m 2 ] hustota zářivé energie, hustota zářivého toku dopadající za určitý časový úsek, např. hodinu, den
7 Sluneční záření - pojmy 7/143 přímé sluneční záření (index b, beam) - dopadá na plochu bez rozptylu v atmosféře difúzní sluneční záření (index d, diffuse) - dopadá na plochu po změně směru vlivem rozptylu v atmosfére odražené sluneční záření (index r, reflected) - dopadá na plochu po odražené sluneční záření (index r, reflected) - dopadá na plochu po změně směru vlivem odrazu od terénu, budov, aj.
8 Sluneční záření - pojmy 8/143 odraz od molekul vzduchu, prachových částic, krystalků ledu odražené záření přímé záření difúzní záření odraz od terénu zdroj: solarpraxis
9 Přímé : difúzní = 50 : 50 % 9/143 9/ kwh/(m 2.měs) přímé 40 difúzní měsíc
10 Sluneční energie v číslech 10/143 zataženo polojasno jasno převážně difúzní převážně přímé dopadající energie: jasný den zima 3 kwh/(m 2.den) jaro, podzim 5 kwh/(m 2.den) léto 8 kwh/(m 2.den) výkon slunečního záření [W/m 2 ] zdroj: solarpraxis
11 Sluneční energie v Evropě 11/143 zdroj: PVGIS
12 Sluneční energie v České republice 12/143 zdroj: PVGIS
13 Sluneční energie v Německu 13/143 Německo a Česká republika podobné podmínky: 1000 až 1200 kwh/m 2 (s výjimkou jižního Německa) podobné solární soustavy podobné typy solárních kolektorů podobné roční tepelné zisky zdroj: PVGIS
14 Sluneční energie v České republice 14/143 Sluneční potenciál Rakouska začíná tam kde potenciál ČR končí... zkušenosti z Rakouska přenášet opatrně! zdroj: PVGIS
15 Optimální sklon? 15/143 jihovýchod - jihozápad východ jih západ
16 Různý optimální sklon pro solární zařízení 16/143 fotovoltaika 35 produkce el. energie produkce do veřejné sítě bez ohledu na místní odběr bez nutnosti akumulovat? fototermika 45 produkce tepla produkce pro místní spotřebu (odběr) nutnost akumulace omezený přenos solárního tepla sítěmi maximalizace zisku optimalizace zisku
17 17/143 Solární kolektory typy účinnost použití
18 Solární kolektor 18/143 Transparentní kryt Absorbér Sběrná trubka pro odvod tepla Izolace Trubky s teplonosnou látkou Rám kolektoru
19 Solární kolektory - rozdělení 19/143
20 Vzduchové solární kolektory 20/143 teplonosnou látkou je vzduch ohřívá se vně nebo uvnitř absorbéru použití: zemědělství sušení obytné budovy ohřev větracího vzduchu
21 Vzduchové solární kolektory 21/143 Zasklení Izolace Přírubový rám Žebrový absorbér Vana
22 Vzduchové solární kolektory 22/143
23 Vzduchové solární kolektory 23/143
24 Kapalinové solární kolektory 24/143 teplonosnou látkou je kapalina (voda, nemrznoucí směs, olej, atd.) energie pohlcená na povrchu absorbéru je odváděna teplonosnou látkou proudící uvnitř trubek absorbéru
25 Nekryté solární kolektory 25/143 teplotní hladiny do 40 C vhodné pro sezónní aplikace, ohřev bazénové vody výrazně závislé na okolních podmínkách (teplota, proudění vzduchu)
26 Kryté solární kolektory 26/143 jednoduché zasklení sklo s nízkým obsahem Fe 2 O 3 ( solární ) antireflexní povlaky prizmatické sklo Násobná zasklení tepelná ztráta zasklením cca % celk. ztráty násobná zasklení speciální struktury Antireflexní povlaky 1 % 100 % 91 % 4 % + 4 % 1 % 100 % 96 % 3 %
27 Ploché kryté solární kolektory 27/143 1 rám 2 těsnění 3 transparentní kryt 4 tepelná izolace 5 absorbér 6 trubkový registr
28 Ploché solární kolektory 28/143 výhodné z hlediska integrace do obálky budovy vysoký podíl aktivní plochy (apertury)
29 Ploché vakuové solární kolektory 29/143 podtlak pro omezení tepelných ztrát (absolutní tlak 1 až 10 kpa) zatížení plochého krycího skla (opěrky) sálání zadní strany absorbéru je nutné stínit
30 Vakuové trubkové solární kolektory 30/143 jednostěnná vakuová trubka plochý absorbér dvojstěnná vakuová trubka (Sydney) válcový absorbér vakuum 1 mpa
31 Vakuové trubkové solární kolektory 31/143 jednostěnná vakuová trubka ( evropský typ) dvojstěnná vakuová trubka ( čínský typ, Sydney)
32 Jednostěnné vakuové trubkové kolektory 32/143 tepelná trubice (TT) přímo protékaný registr (PP) TT PP velmi kvalitní přestup tepla z absorbéru do kapaliny, resp. na výparník tepelné trubice
33 33/143 Vakuové trubkové solární kolektory zdroj: Viessmann
34 Dvojstěnné vakuové trubkové kolektory 34/143 tepelná trubice (TT) přímo protékaný registr (PP) TT PP kontaktní teplosměnná lamela je zcela nezbytným prvkem
35 Vakuové trubkové Sydney kolektory 35/143 kontaktní lamela napojení PP potrubí Sydney trubky reflektor zdroj: OPC
36 Vakuové trubkové Sydney kolektory 36/143
37 Trubkové kolektory - tepelná trubice (TT) 37/143 odvod tepla do teplonosné kapaliny sluneční energie pohlcená absorbérem teplo přijaté výparníkem tepelné trubice
38 Trubkové kolektory - tepelná trubice (TT) 38/143 suché napojení tepelné trubice zdroj: Viessmann kondenzátor uložen v pouzdru pouzdro omývané teplonosnou látkou
39 Trubkové kolektory - tepelná trubice (TT) 39/143 mokré napojení tepelné trubice kondenzátor tepelné trubice přímo omývaný teplonosnou látkou
40 Trubkové solární kolektory s reflektorem 40/143 zvýšení aktivní plochy kolektoru (apertury) zrcadlový odraz difúzní odraz trvanlivost optické kvality odrazného plechu zachycování a akumulace sněhu (ledu), poničení trubek
41 Koncentrační solární kolektory 41/143 koncentrace přímého slunečního záření odrazem (zrcadla) x lomem (čočky) lineární ohnisko parabolický reflektor Winstonův kolektor kolektor s Fresnellovou čočkou bodové ohnisko paraboloidní reflektor fasetové reflektory, heliostaty
42 Koncentrační solární kolektory (odraz) 42/143
43 Kolektory s Fresnellovými čočkami (lom) 43/143 přechod mezi aktivními a pasivními prvky
44 Solární kolektory - princip 44/143 Odraz na zasklení Odraz na absorbéru Tepelná ztráta zasklením Odvod tepla teplonosnou látkou pro využití Dopadající sluneční záření Tepelné ztráty zadními a bočními stěnami
45 Účinnost solárního kolektoru 45/143 η = =τα F' ταu U ( t ( t t t) ) abs m G e G e F... účinnostní součinitel kolektoru > 0.90 závisí na geometrii a tepelných vlastnostech absorbéru t m... střední teplota teplonosné kapaliny v kolektoru t m = (t k1 +t k2 )/2
46 Účinnostní součinitel kolektoru F 46/143 závisí na geometrických vlastnostech absorbéru geometrických vlastnostech absorbéru: rozteč trubek, průměr trubek, tloušťka spoje trubka-absorbér, tloušťka absorbéru fyzikálních vlastnostech absorbéru: tepelná vodivost absorbéru, tepelná vodivost spoje trubkaabsorbér proudění uvnitř trubek: přestup tepla ze stěny trubky do kapaliny celkový součinitel prostupu tepla kolektoru U
47 Vliv materiálu a geometrie absorbéru 47/143 1,0 1,0 měď (Cu) 390 W/(m.K) W = 50 mm 0,8 hliník (Al) 250 W/(m.K) 0,8 W = 125 mm ocel (Fe) 100 W/(m.K) W = 200 mm 0,6 0,6 η [-] η [-] 0,4 0,4 0,2 0,2 0,0 0,00 0,05 0,10 0,15 0,20 (t m - t e )/G [m 2.K/W] 0,0 0,00 0,05 0,10 0,15 0,20 (t m - t e )/G [m 2.K/W]
48 Plastové absorbéry 48/143 tepelná vodivost plastů: 0,2 W/(m.K) pro zajištění dostatečného přenosu tepla: malé rozteče trubek silné stěny měď: 390 W/(m.K)
49 Vliv spoje na účinnost 49/143 přiložený naklapnutý
50 Trubkové Sydney kolektory - lamela 50/143 dáno Sydney trubkou η = F' τ α U ( t t ) m G e kontaktní lamela: krátká, vodivá, silná, s velmi těsným kontaktem
51 Vliv kontaktní lamely na účinnost (PP) 51/143 Vakuové Sydney kolektory s přímo protékaným (PP) U-registrem G > 700 W/m 2 kontaktní lamela je zásadním prvkem Sydney kolektoru
52 Zkoušení solárních kolektorů (podle EN) 52/143 ČSN EN ,2 (v českém překladu) Zkoušky výkonové tepelný výkon a účinnost kolektoru modifikátor úhlu dopadu (vliv úhlu dopadu na výkon kolektoru) účinná tepelná kapacita kolektoru (setrvačnost kolektoru), časová konstanta
53 53/143 Účinnost solárního kolektoru ( ) G t t a G t t a e m e m = η η k k s k A G t t c M Q Q = = ( 1 ) 2 & & & η η A k G = η protokol o zkoušce podle ČSN EN t k1 t k2 G M.
54 Účinnost solárního kolektoru (měření) 54/143 regresní parabola proložená naměřenými hodnotami y = a + bx + cx 2 η = η t t t t G m e m e 0 a1 a2 G G 2 η 0 a 1 optická účinnost [-], správně: účinnost při nulové tepelné ztrátě obecně η 0 = F τα součinitel tepelné ztráty (lineární) [W/(m 2.K)] } a 1+a 2 (t m - t e ) = F U a 2 součinitel tepelné ztráty (kvadratický) [W/(m 2.K 2 )] hodnoty η 0, a 1, a 2 udává výrobce, dodavatel kolektoru, případně zkušebna na základě zkoušky v souladu s EN
55 Plocha solárního kolektoru 55/143 hrubá plocha: A G plocha apertury: A a plocha absorbéru: A A
56 Plocha solárního kolektoru 56/143 A A A A A A A a A a A a
57 Plocha solárního kolektoru 57/143 A a = 0,9 A G A a = 0,75 A G A a = 0,6 A G A a = 0,8 A G
58 58/143 Účinnost solárního kolektoru A a A G 1,0 plochý 0,8 trubkový s plochým absorbérem trubkový s válcovým absorbérem 0,6 η [-] 0,4 0,2 0,0 0,00 0,05 0,10 0,15 0,20 (t m - t e )/G [m 2.K/W]
59 Solární kolektory - aplikace 59/143
60 Výkon solárního kolektoru 60/143 výkon solárního kolektoru (kolmý dopad, jasná obloha) Q& k = A [ η G a k ( t t ) a ( t t 0 1 m e 2 m e ) 2 ] instalovaný (nominální, jmenovitý) výkon solárního kolektoru pro definované podmínky (podle ESTIF): G = 1000 W/m 2 t e = 20 C t m = 50 C špičkový výkon kolektoru (bez tepelných ztrát) Q& = A η G k k 0 G = 1000 W/m 2
61 Modifikátor úhlu dopadu (K θ, IAM) 61/143 křivka účinnosti platí pro kolmý úhel dopadu θ = 0 x během roku θ 0 η( θ ) = η ( θ ) a 0 1 t m t G e a 2 ( t m t G e ) 2 incidence angle modifier (IAM) vliv úhlu dopadu slunečního záření na účinnost kolektoru, optická charakteristika kolektoru, činitel úhlové korekce η ( θ ) 0 K θ = = η0(0 ) F' ( τα) F'( τα) θ n osově symetrické kolektory: K θ (θ) osově nesymetrické kolektory: K θ (θ) = K L (θ L ) K T (θ T )
62 Opticky osově nesymetrický kolektor 62/143 K θ = K θ,l (θ L ). K θ,t (θ T )
63 Modifikátor úhlu dopadu (K θ, IAM) 63/143 plochý kolektor trubkový kolektor s plochým absorbérem 1,6 1,6 1,4 1,4 1,2 1,2 1,0 K θ,l = K θ,t 1,0 K θ,t K θ [-] 0,8 K θ [-] 0,8 K θ,l 0,6 0,6 0,4 0,4 0,2 0,2 0, θ [ ] 0, θ [ ]
64 Modifikátor úhlu dopadu (K θ, IAM) 64/143 trubkový kolektor s válcovým absorbérem bez reflektoru trubkový kolektor s válcovým absorbérem s reflektorem 1,6 1,6 1,4 K θ,t 1,4 1,2 1,2 K θ,t 1,0 1,0 K θ [-] 0,8 K θ,l K θ [-] 0,8 K θ,l 0,6 0,6 0,4 0,4 0,2 0,2 0, θ [ ] 0, θ [ ]
65 Výkon kolektoru v reálných podmínkách 65/143 ze zkoušky tepelného výkonu podle EN : křivka účinnosti η = η 0 a 1 t m t G e a 2 ( tm t G e ) 2 ze zkoušky modifikátoru podle EN : křivka modifikátoru K θ,b η0( θ ) = η (0 ) 0 π / 2 K θ, d = K ( θ )sin2θdθ 0 výkon kolektoru pro obecné podmínky (přímé, difúzní záření) Q& k = A [ η a 0 2 ( K G + K G ) a ( t t ) a ( t t ) ] θ,b b,t θ,d d,t 1 m e 2 m e
66 Výkon kolektoru v reálných podmínkách 66/ jasný den sluneční ozáření 800 plochý atmosférický reálný trubkový vakuový W/m oblačný den :00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
67 Výkonnost solárního kolektoru 67/ k ploše apertury A a t m = 40 C 500 kwh/m 2.rok PK1 PK2 PK3 PK4 TP1 TV1 TV2 TV3 TV4 TR1 TR2 TR3
68 Výkonnost solárního kolektoru 68/ t m = 40 C k hrubé ploše A G 500 kwh/m 2.rok PK1 PK2 PK3 PK4 TP1 TV1 TV2 TV3 TV4 TR1 TR2 TR3
69 Výkonnost solárního kolektoru 69/ k ploše apertury A a t m = 80 C k hrubé ploše A G 500 kwh/m 2.rok PK1 PK2 PK3 PK4 TP1 TV1 TV2 TV3 TV4 TR1 TR2 TR3
70 Závěry 70/143 Pro zhodnocení výkonnosti solárního kolektoru: nestačí pouze informace o typu kolektoru (plochý atmosférický, vakuový s plochým absorbérem, vakuový Sydney s reflektorem, vakuový Sydney bez reflektoru) nestačí pouze křivka účinnosti, je nutné znát i optickou charakteristiku (zvláště u trubkových kolektorů) je nutné znát provozní a klimatické podmínky v jakých bude solární kolektor nasazen je nutné znát konkrétní účel hodnocení vztažení výkonnosti na plochu apertury nebo na hrubou plochu?
71 Porovnání ceny solárních kolektorů 71/ Kč/m 2 bez DPH Kč/m Kč/m ploché atmosférické kolektory trubkové vakuové s plochým absorbérem trubkové vakuové Sydney bez reflektoru trubkové vakuové Sydney s reflektorem Kč/m Kč/m
72 Zkoušení solárních kolektorů (podle EN) 72/143 protokol o zkouškách v souladu s ČSN EN křivka výkonu a účinnosti vnitřní přetlak odolnost proti vysokým teplotám vystavení vnějším vlivům vnější tepelný ráz vnitřní tepelný ráz průnik deště (zasklené) mechanické zatížení odolnost proti nárazu žádné jiné certifikáty k prokázání vlastností nejsou potřeba!
73 Solar Keymark 73/143 Certifikační značka kvality (vlastník CEN) průmyslově vyráběné solární kolektory, solární soustavy dobrovolná certifikace třetí stranou, komplexní shoda s danou EN nejde o CE značku! (shoda s evropskými směrnicemi nebo normami), u běžných kolektorů nelze získat zdokumentovaná inspekce výroby (ISO 9000) inspektor vybírá jakýkoli kolektor ze skladu / výroby kontinuální shoda (stálý dohled - revize výrobku v časových intervalech) cca 30 laboratoří zmocněných pro udělování značky informace: kolektor prošel VŠEMI zkouškami požadovanými EN neříká, zda kolektor JE nebo NENÍ účinný, pouze neměnnost účinnosti
74 74/143 Solární soustavy parametry druhy a příklady navrhování
75 Druhy - aplikace 75/143 příprava teplé vody příprava teplé vody a vytápění (kombinované) ohřev bazénové vody technologický ohřev solární chlazení... solární CZT teplovzdušné (větrání, vytápění) bytové domy Orlová
76 Solární soustavy podle plochy 76/143 malé soustavy (< 20 m 2 ) rodinné domy, malé firmy,... střední soustavy (< 200 m 2 ) zdravotnická a sociální zařízení, pečovatelské ústavy, sportovní zařízení a plovárny, hotely, školy s celoročním provozem,... velké soustavy (> 200 m 2 ) soustavy centrálního zásobování teplem, výtopny pro sídliště (výhodná kombinace s biomasou), potravinářský a chemický průmysl, sportovní stadiony,...
77 Solární soustavy podle průtoku 77/143 s vysokým průtokem (high-flow): 50 až 90 l/h.m 2 tradiční osvědčený provoz, pomalý náběh zásobníku, zvýšení teploty teplonosné látky v kolektoru o 8 až 15 K s nízkým průtokem (low-flow): 10 až 20 l/h.m 2 výrazně snížený průtok, zvýšení teploty až o 50 K, výhodné pouze ve spojení se stratifikačními zásobníky malé dimenze, malé ztráty, sériové zapojení kolektorů teplo o využitelné teplotě, snížení četnosti dohřevu, vyšší energetické výnosy (o 5 až 20%) s proměnným průtokem (matched-flow) 10 až 40 l/h.m 2 optimalizace provozu soustavy, např. regulace na konstantní výstupní teplotu
78 Bilance solární soustavy 78/143
79 Parametry solární soustavy 79/143 Roční solární zisk [kwh/rok] dodaný do solárního zásobníku Q k dodaný do odběru (spotřebiče) využitý zisk soustavy Q ss,u Roční úspora energie Q u [kwh/rok] závisí na skutečné provozní účinnosti nahrazovaného zdroje tepla η nz jak ji určit? je známa? spotřeba provozní el. energie pro pohon solární soustavy podklad pro výpočet úspory primární energie, úspory emisí
80 Parametry solární soustavy 80/143 Měrný roční solární zisk q ss,u [kwh/(m 2.rok)] vztažený k ploše apertury kolektoru A a měrná roční úspora nahrazované energie ekonomické kritérium: úspora / m 2 x investice / m 2 Solární pokrytí, solární podíl f [%] f = 100 * využitý zisk / potřeba tepla (procentní krytí potřeby tepla) Spotřeba pomocné elektrické energie Q pom,el [kwh/rok] odhad: provoz 2000 h x příkon el. zařízení (čerpadla, pohony, reg.) běžně do 1 % ze zisků ~ COP solární soustavy > 100
81 Solární soustavy v ČR 81/143 bytový sektor příprava teplé vody, vytápění, ohřev bazénové vody rodinné domy, velmi omezeně bytové domy terciární sektor příprava teplé vody, ohřev bazénové vody domovy důchodců, ústavy sociální péče, koupaliště, hotely, sportovní centra, vzdělávací zařízení, nemocnice zanedbatelně administrativa (kanceláře, banky) průmysl příprava teplé vody, technologické teplo (téměř nic)
82 Solární soustavy pro přípravu TV 82/143 rodinné domy (3 až 6 m 2 ; 250 až 400 l), solární podíl 50 až 70 % solární zisky 300 až 400 kwh/m 2.r bytové domy, ústavy, hotely,... (od 25 až 200 m 2 ; 1 až 8 m 3 ), solární podíl 40 až 50 % solární zisky 400 až 500 kwh/m 2.r předehřev teplé vody solární podíl 20 až 40 % solární zisky 500 až 600 kwh/m 2.r
83 83/143 Solární soustavy pro přípravu TV DD Hvízdal České Budějovice, 127 m2 DPS Ostrava, 165 m2 DPS Jihlava, 120 m2
84 Solární soustavy pro přípravu TV 84/143 Výukové a rekreační středisko Herbertov, 100 m 2 Rehabilitační zařízení Slapy (SS+TČ pro TV+BV), 48 m 2 Výzkumná stanice Antarktida, 12 m 2 (TV) + 36 m 2 (vzduch) Hotel Liberec, 96 m 2
85 Solární soustava Meziboří příprava TV 85/143 správní objekt firmy Doterm Servis realizace 1996 kancelářské prostory dílny turistická ubytovna měření za více než 12 let 15 ks plochých kolektorů Heliostar = 27 m 2
86 Solární soustava Meziboří příprava TV 86/ kwh leden únor březen duben květen červen červenec srpen září říjen listopad prosinec
87 Solární soustava Meziboří příprava TV 87/143 roční spotřeba TV: 130 až 150 m 3 (vysoký podíl tepelných ztrát TV+solar) kwh/(m 2.rok); m kwh/(m 2.rok) spotřeba TV [m3] měrné zisky [kwh/m2.rok]
88 Kombinované solární soustavy (TV+VYT) 88/143 rodinné domy (6 až 12 m 2 ; 1000 až l) solární podíl: standardní domy 10 až 20 % solární zisky 250 až 350 kwh/m 2.r nízkoenergetické, pasivní domy 20 až 40 % bytové domy (40 až 200 m 2 ; 4 až 16 m 3 ) solární podíl 10 až 20 % solární zisky 350 až 450 kwh/m 2.r
89 Příprava teplé vody a vytápění 89/143 RD Čerčany, 9.3 m 2, TV + vytápění přímá + nepřímá integrace do fasády RD Úvaly, 6 m 2, TV + vytápění šikmá střecha RD Mnichovice, 7,4 m 2, TV + vytápění plochá střecha
90 Příprava teplé vody a vytápění 90/143 Pension u Bártů, Soběslav, 14 m 2 teplá voda, vytápění MŠ Proskovice, Ostrava, 120 m 2 SS+DK, teplá voda, vytápění SOU Zelený Pruh, Praha, 209 m 2 teplá voda, vytápění, bazén
91 Solární soustava Mnichovice (TV + VYT) 91/143 rodinný dům, 4 osoby, ztráta 5,2 kw, plocha kolektorů 7,3 m 2, sklon 60 monitoring: regulátor, měřicí ústředna, kalorimetr (cejch na vodu)
92 Solární soustava Mnichovice (TV + VYT) 92/ vyhodnocení za rok 2009 dodané teplo z kolektorů Qk,u spotřeba energie Qk,u + Qd,el kwh měrné využité zisky 270 kwh/(m 2.rok) leden únor březen duben květen červen červenec srpen září říjen listopad prosinec
93 Ohřev bazénové vody 93/143 celoroční využití kryté bazény sezónní využití otevřené, venkovní bazény pokrytí tepelných ztrát z hladiny bazénu, ohřev přiváděné čerstvé vody bazén jako akumulátor tepla kombinace přípravy teplé vody a ohřevu bazénové vody solární zisky nad 500 kwh/m 2.r
94 Ohřev bazénové vody 94/143 Aquapark Ostrava Zábřeh, 157 m 2 Hotel Jezerka, Ústupky, 240 m 2 příprava TV, venkovní a vnitřní bazén Plavecký bazén, Jindřichův Hradec, 256 m 2 Koupaliště Rusava, 550 m 2
95 Solární soustava Rusava (BV) 95/143 největší solární soustava v ČR: 540 m 2 kolektorové plochy přírodní koupaliště v Rehabilitačním centru Podhostýnského mikroregionu bazén 15 x 43 m, 1000 m 3, brouzdaliště 22 m 3, skluzavky z 9 m
96 Solární soustava Rusava (BV) 96/143
97 Celoroční zisky 450 až 540 kwh/m MWh 443 kwh/m MWh 461 kwh/m MWh 535 kwh/m MWh 487 kwh/m MWh 466 kwh/m 2 97/143 kwh/měs XII.04 III.05 VI.05 IX.05 XII.05 III.06 VI.06 IX.06 XII.06 III.07 VI.07 IX.07 XII.07 III.08 VI.08 IX.08 XII.08 III.09 VI.09 IX.09 XII.09
98 Provoz až 400 kwh/m MWh 335 kwh/m MWh 352 kwh/m MWh 391 kwh/m MWh 365 kwh/m MWh 348 kwh/m 2 98/143 kwh/měs XII.04 III.05 VI.05 IX.05 XII.05 III.06 VI.06 IX.06 XII.06 III.07 VI.07 IX.07 XII.07 III.08 VI.08 IX.08 XII.08 III.09 VI.09 IX.09 XII.09
99 Solární soustava Rusava (BV) 99/ levé pole pravé pole krádež 22 kolektorů z pravého pole + dalších 6 odstaveno MWh/rok
100 Centrální zásobování solárním teplem 100/143 solární soustavy pro přímý ohřev CZT (SE, DK) připojení přímo na teplovodní síť (léto) nárazový denní zásobník, bez zásobníku (akumulace v rozvodné síti) předehřev: zpátečky CZT, pitné vody solární podíl 5 až 10 % Kungälv (SE), 2000 Saltum (DK), 1987
101 Centrální zásobování solárním teplem 101/143 velkoplošné solární soustavy se sezónními zásobníky 1000 až m až m 3 DE (Solarthermie 2000), DK, NL solární podíl 40 až 50 % (cíl: 80 %) solární zisky 300 až 400 kwh/m 2.r
102 Solární soustavy se sezónní akumulací 102/143
103 Sezónní akumulace pro vytápění 103/143 solární kolektory: 148 m 2 sezónní zásobník: 1100 m 3 Dům sociální péče Slatiňany tepelné čerpadlo 37 kw podlahové vytápění
104 Technologické teplo 104/143 Bioreaktor pro pěstování řas Ústav fyzikální biologie Jihočeské univerzity Nové Hrady Fresnellovy čočky 120 m 2 ploché kolektory 32 m 2
105 Solární absorpční chlazení 105/143 Administrativa Instaplast, 99 m 2 velkoplošné stěnové chlazení Hotel Duo Praha, 448 m 2 teplá voda, bazén, chlazení
106 106/143 Navrhování a bilancování potřeba tepla zisky solární soustavy zjednodušená bilanční metoda podle TNI simulační nástroje
107 Potřeba tepla 107/143 snížit spotřebu tepla - úsporná opatření provádět jako první! analyzovat skutečnou spotřebu tepla (!) příprava teplé vody úsporné armatury, zaregulování a zaizolování rozvodů, řízení cirkulace TV podle času a teploty vytápění nízkoenergetické a energeticky pasivní domy (zateplení, okna, mechanické větrání se zpětným získáváním tepla)
108 Potřeba teplé vody 108/143 stávající budovy: nutné vycházet ze skutečné spotřeby TV v objektu dlouhodobé měření na patě objektu zohlednění teplotní úrovně měření skutečné spotřeby tepla souhrnné údaje za delší časové období (poslední rok) několik celodenních měření příložnými průtokoměry na patě objektu
109 Potřeba teplé vody 109/143 novostavby: nejsou k dispozici reálná data směrné hodnoty z literatury bytové objekty (60 / 15 C) nízký standard střední standard vysoký standard 10 až 20 l/os.den 20 až 40 l/os.den 40 až 80 l/os.den ENERGO 2004: 49 l/os.den, vč. ztrát další údaje lze nalézt v ČSN EN , VDI , Sešit projektanta Solární tepelné soustavy
110 Potřeba teplé vody 110/143 zásadně nepoužívat údaje o potřebě TV z normy ČSN Ohřívání užitkové vody Navrhování a projektování 82 l/os.den (55 / 10 C); 4,3 kwh/os.den norma je určena pro návrh objemu a tepelného příkonu ohřívače (vyhovět i extrémním podmínkám) nevhodné pro návrh solárních soustav předimenzované plochy vedou k četným odstávkám zvláště během léta primární okruh pracuje s vysokou provozní teplotou nízká účinnost solárních kolektorů vysoké tepelné ztráty rozvodů a solárních zásobníků
111 Profil potřeby tepla na přípravu TV 111/143 letní pokles (bytové domy) oproti zimnímu období: školní prázdniny, dovolená vyšší teplota studené vody chování uživatelů (letní sprcha, zimní vana) 25 %
112 Měření v BD Stodůlky 112/ odběr teplé vody teplota studené vody % V [l/týden] ,3 C t SV [ C] 5000 t = 13 K 6,4 C
113 Tepelné ztráty přípravy TV 113/143 Q = Q = Q + Q = 1+ paušální přirážka ( ) p, c p, TV TV z, TV TV z Q Typ přípravy TV z Lokální průtokový ohřev 0.00 Centrální zásobníkový ohřev bez cirkulace 0.15 Centrální zásobníkový ohřev s řízenou cirkulací 0.30 Centrální zásobníkový ohřev s neřízenou cirkulací 1.00 CZT, příprava TV s meziobjektovými přípojkami, TV, CV > 2.00 zdroj: TNI Energetické hodnocení solárních tepelných soustav Zjednodušený výpočtový postup
114 Potřeba tepla na vytápění 114/143 ČSN EN ISO Energetická náročnost budov Výpočet potřeby energie na vytápění a chlazení měsíční bilance, okrajové podmínky TNI , TNI stupeň využití solárních a vnitřních tepelných zisků na základě akumulační schopnosti objektu (výpočet tepelné kapacity, časové konstanty) denostupňová metoda zjednodušené stanovení (TNI ) měsíční bilance, na základě venkovní teploty z výpočtové tepelné ztráty korekční součinitel: 0.75 (standard), 0.60 (nízkoenergetické), 0.50 (pasivní) Q VYT = 24 ε Q& z ( t t ) ip ( t t ) iv ep ev
115 Tepelné ztráty otopné soustavy 115/143 tepelné ztráty otopné soustavy Q z,vyt vlastní ohřev otopné vody (kombinovaný zásobník, část pro OS) rozvod otopné vody (tepelné ztráty do nevytápěných místností) setrvačnost otopné soustavy (přetápění, zvýšení dodávky energie) podrobný výpočet (precizní, náročný na vstupní údaje) ČSN EN : sdílení tepla ( účinnost otopných ploch) ČSN EN : rozvody tepla (otopné vody) paušální přirážka - zjednodušené stanovení (TNI ) Q p, VYT = Q + Q = 1 VYT z, VYT ( + v ) QVYT
116 Návrh plochy a bilancování zisků 116/143 simulační programy (doporučeno pro navrhování a bilancování) Polysun 4 (Professional, Designer), T-Sol (Professional, Expert), GetSolar, TRNSYS... simulace s hodinovým krokem a menším, dynamické modely prvků (zásobník, kolektor), hodinové klimatické údaje pro různé oblasti náročné na vstupní údaje, které často nejsou k dispozici (modifikátor úhlu dopadu, rozměry potrubí, tloušťky izolací, profily spotřeby, atd.) nutná (letitá) zkušenost cena (x0.000 Kč)
117 Návrh plochy a bilancování zisků 117/143 zjednodušené metody TNI Energetické hodnocení solárních tepelných soustav vydal ÚNMZ, 2009 program Bilance SS 5.4 (měsíční bilance, Excel podle TNI ) zdarma ke stažení na ČSN EN Tepelné soustavy v budovách... Výroba tepla na vytápění, tepelné sluneční soustavy (v angl. jazyce) f-chart metoda = korelační výpočet na základě x1000 simulací ze 70. let solární pokrytí v jednotlivých měsících = f (X, Y) vstupní údaje: průměrná teplota, průměrná intenzita záření (včetně noci) referenční teplota: pro přípravu TV: 90 až 140 C (???) fyzikálně nejasné parametry, pro pochopení nutné hlubší znalosti
118 Bilancování energetických zisků 118/143 metodika ( TNI , ÚNMZ 2009) původně vytvořeno pro Operační program Životní prostředí (jako pomoc auditorům), použito v Zelená úsporám (výpočet kritéria pro udělení dotace) audity: měrné zisky > 600 kwh/m 2.rok při pokrytí > 60 % zjednodušený výpočtový postup jednoduchý výpočet s použitím Excel, minimalizace vstupů (oproti simulacím) uvažování konstantní střední teploty v kolektorech v celém roce, nezohlední velikost zásobníku a změnu teploty s navrženou plochou (předimenzování nárůst teploty, poddimenzování pokles teploty) započtení tepelných ztrát solární soustavy paušální srážkou ze zisků v měsíční bilanci nelze přesně zahrnout vliv modifikátoru úhlu dopadu, aj. optimistické výsledky, omezená platnost pro pokrytí 30 do 75 %
119 Teoreticky využitelný zisk kolektorů 119/143 teoreticky využitelný tepelný zisk Q k,u [kwh/m 2 ] solárních kolektorů v daném období (den, měsíc) Q ( p) k, u = 0,9 ηk HT,den Ak 1 kwh/den skutečná denní dávka slunečního ozáření plochy kolektoru H T,den tabulky v TNI jednotné klimatické údaje účinnost solárního kolektoru v dané aplikaci η k tepelné ztráty solární soustavy paušální procentní srážka p tabulky v TNI podle typu a velikosti solární soustavy
120 Účinnost solárního kolektoru 120/143 účinnost solárního kolektoru η k (střední denní, resp. měsíční účinnost) η k =η a 0 1 t k,m G t T,m e,s a 2 ( t t ) pro průměrnou teplotu kapaliny t k,m v kolektoru během dne tabulky v TNI podle typu a velikosti solární soustavy pro průměrnou venkovní teplotu v době slunečního svitu t e,s tabulky v TNI jednotné klimatické údaje pro střední sluneční ozáření G T,m během dne na uvažovanou plochu (sklon, orientace)... předpoklad: jasný den k,m G T,m tabulky v TNI jednotné klimatické údaje e,s 2
121 Účinnost solárního kolektoru 121/143 průměrná denní teplota kapaliny v kolektoru t k,m Typ aplikace t k,m [ C] Předehřev teplé vody, pokrytí < 35 % 35 Příprava teplé vody, 35 % < pokrytí < 70 % 40 Příprava teplé vody, pokrytí > 70 % 50 Příprava teplé vody a vytápění, pokrytí < 25 % 50 Příprava teplé vody a vytápění, pokrytí > 25 % 60
122 Tepelné ztráty solární soustavy 122/143 paušální srážka Q =,9 H A ( 1 p) k, u 0 ηk T,den k Typ solární soustavy p Příprava teplé vody, do 10 m 2 0,20 Příprava teplé vody, od 10 do 50 m 2 0,10 Příprava teplé vody, od 50 do 200 m 2 0,05 Příprava teplé vody, nad 200 m 2 0,03 Příprava teplé vody a vytápění, do 10 m 2 0,30 Příprava teplé vody a vytápění, od 10 do 50 m 2 0,20 Příprava teplé vody a vytápění, od 50 do 200 m 2 0,10 Příprava teplé vody a vytápění, nad 200 m 2 0,06
123 Návrh plochy solárních kolektorů 123/143 Návrh plochy solárních kolektorů A k pro daný návrhový den v typickém návrhovém měsíci klimatické a provozní okrajové podmínky pro zajištění plného nebo částečného (podíl f) pokrytí potřeby tepla podle typu aplikace, podle místní dispozice ( p) = f Q p c Q k, u = 0,9 ηk HT,den Ak 1,
124 Návrh plochy kolektorů: příprava TV 124/143 rodinné domy návrhové měsíce duben a září (100% návrhové pokrytí) střední teplota teplonosné kapaliny t k,m = 40 C odpovídá pokrytí cca 60 % roční potřeby tepla na přípravu TV bytové domy návrhový měsíc červenec (100% návrhové pokrytí) střední teplota teplonosné kapaliny t k,m = 40 C odpovídá pokrytí % roční potřeby tepla na přípravu TV
125 Návrh plochy kolektorů: příprava TV 125/143
126 Návrh plochy kolektorů: TV + VYT 126/143 příprava TV a vytápění návrhové měsíce květen a září střední teplota teplonosné kapaliny t k,m = 50 C uvážit smysluplné využití letních přebytků uvážit stupeň pokrytí v přechodových měsících (100 %?)
127 Návrh plochy kolektorů: TV + VYT 127/143
128 Vliv plochy na dimenzování prvků 128/143 průtok solární soustavou návrh světlosti potrubí návrh tloušťky izolace tlakové ztráty solární soustavy, členění a hydraulika okruhů oběhové čerpadlo objem solární soustavy velikost expanzní nádoby, případně nárazníkové nádoby nosné konstrukce výměník tepla (výkon)
129 Navrhování prvků solárních soustav 129/143 Návrh prvků plocha a počet solárních kolektorů, umístění na budově v polích nosné konstrukce pro kolektory objem a konstrukce solárních zásobníků architektonická a systémová integrace hydraulická zapojení solárních soustav světlost potrubí a tloušťka izolací výměníky tepla (optimalizace cena x zisk) oběhová čerpadla (výpočet tlakových ztrát) pojistná a zabezpečovací zařízení (pojistné ventily a expanzní nádoby) Matuška, T.: Sešit projektanta č.1 Solární tepelné soustavy, STP 2009
130 Bilancování tepelných zisků 130/143 Bilancování solární soustavy (TNI ) pro danou plochu solárních kolektorů A k pro všechny měsíce roku (referenční dny, okrajové podmínky roku) Q ss,u = min (Q k,u ; Q p,c ) z porovnání v jednotlivých měsících vyplývá využitelnost zisků z kolektorů pro krytí potřeby tepla přebytky nelze započítat (!)
131 Výpočtový program Bilance SS 5.4 (Excel) 131/143
132 Výpočtový program Bilance SS 5.4 (Excel) 132/143 podle TNI zpracoval ing. Bořivoj Šourek ke stažení na: solab.fs.cvut.cz
1/58 Solární soustavy
1/58 Solární soustavy typy navrhování a bilancování hydraulická zapojení 2/58 Fototermální přeměna aktivní soustavy strojní hnací a rozvodné prvky (čerpadlo, ventilátor, potrubí,...)... solární soustavy
Více1/68 Solární soustavy
1/68 Solární soustavy typy navrhování a bilancování hydraulická zapojení Fototermální přeměna 2/68 aktivní soustavy strojní hnací a rozvodné prvky (čerpadlo, ventilátor, potrubí,...)... solární soustavy
Více1/64 Solární kolektory
1/64 Solární kolektory účinnost zkoušení optická charakteristika měrný zisk Solární kolektory - princip 2/64 Odraz na zasklení Odraz na absorbéru Tepelná ztráta zasklením Odvod tepla teplonosnou látkou
VíceSolární tepelné soustavy. Ing. Stanislav Bock 3.května 2011
Solární tepelné soustavy Ing. Stanislav Bock 3.května 2011 Princip sluneční kolektory solární akumulační zásobník kotel pro dohřev čerpadlo Možnosti využití nízkoteplotní aplikace do 90 C ohřev bazénové
VíceEFEKTIVNÍ ENERGETICKÝ REGION DOLNÍ BAVORSKO
ECČB, 19.9.2011 Základní vzdělávací kurz pro energetické poradce EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Solární tepelné soustavy pro přípravu teplé vody a vytápění Investice do Vaší budoucnosti
Více1/61 Solární soustavy
1/61 Solární soustavy příprava teplé vody vytápění ohřev bazénové vody navrhování a bilancování hydraulická zapojení Aktivní solární soustavy 2/61 soustavy pro ohřev bazénové vody (do 35 C) soustavy pro
VíceSolární soustavy v budovách
1/43 Solární soustavy v budovách Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Fakulta strojní, ČVUT v Praze 2/43 Jaký vybrat kolektor? druh a typ kolektoru odpovídá aplikaci... bazén:
Více1/89 Solární kolektory
1/89 Solární kolektory typy účinnost použití 2/89 Fototermální přeměna jímací plocha (obecně kolektor) plocha, na které se sluneční záření pohlcuje a mění na teplo (kolektor zasklení, absorbér) akumulátor
VíceJak vybrat solární kolektor?
1/25 Jak vybrat solární kolektor? Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Fakulta strojní, ČVUT v Praze 2/25 Druhy solárních tepelných kolektorů Nezasklený plochý kolektor bez
VíceIntegrace solárních soustav do bytových domů Bořivoj Šourek
Integrace solárních soustav do bytových domů Bořivoj Šourek Siemens, s.r.o., Building Technologies Ústav techniky prostředí Fakulta strojní, ČVUT v Praze Solární tepelné soustavy pro BD Typy solárních
VíceSolární teplo pro rodinný dům - otázky / odpovědi
1/24 Solární teplo pro rodinný dům - otázky / odpovědi Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Novotného lávka 5, 116 68 Praha 1 Česká republika info@solarnispolecnost.cz 2/24
VíceMožnosti využití solární energie pro zásobování teplem
TS ČR 22.9.2010 Teplárenství a jeho technologie VUT Brno Možnosti využití solární energie pro zásobování teplem Bořivoj Šourek, Tomáš Matuška Československá společnost pro sluneční energii - národní sekce
VíceSolární energie. Vzduchová solární soustava
Solární energie M.Kabrhel 1 Vzduchová solární soustava teplonosná látka vzduch, technicky nejjednodušší solární systémy pro ohřev větracího vzduchu, vysoušení,možné i temperování pohon ventilátorem nebo
VíceSolární soustavy pro bytové domy
Využití solární energie pro bytové domy Solární soustavy pro bytové domy Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Původ sluneční energie, její šíření prostorem a dopad na Zemi
VíceSolární zařízení v budovách - otázky / odpovědi
Solární zařízení v budovách - otázky / odpovědi Ing. Bořivoj Šourek Ph.D. Československá společnost pro sluneční energii (ČSSE) Novotného lávka 5, 116 68 Praha 1 Česká republika info@solarnispolecnost.cz
VíceSolární soustavy pro bytové domy
Bytové domy v ČR Solární soustavy pro bytové domy Tomáš Matuška Ústav techniky prostředí Fakulta strojní ČVUT v Praze sčítání lidu 21 195 27 bytových domů ~ 2 16 73 bytů 38 % dálkové vytápění, 6 % blokové
VíceUniverzitní centrum energeticky efektivních budov, České vysoké učení technické, Buštěhrad
Zjednodušená měsíční bilance solární tepelné soustavy BILANCE 2015/v2 Tomáš Matuška, Bořivoj Šourek Univerzitní centrum energeticky efektivních budov, České vysoké učení technické, Buštěhrad Úvod Pro návrh
VíceJiří Kalina. rní soustavy. bytových domech
Jiří Kalina Solárn rní soustavy pro přípravu p pravu teplé vody v bytových domech Parametry solárn rních soustav pro přípravu p pravu teplé vody celkové tepelné zisky využité pro krytí potřeby tepla [kwh/rok]
VíceInstalace solárního systému
Instalace solárního systému jako opatření ve všech podoblastech podpory NZÚ Kombinace solární soustavy a různých opatření v rámci programu NZÚ výzva RD 2 Podoblast A Úspory nejen na obálce budovy, ale
VíceEfektivní využití OZE v budovách. Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze
Efektivní využití OZE v budovách Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze OBNOVITELNÉ ZDROJE TEPLA sluneční energie základ v podstatě veškerého
VíceZákladní principy využívání sluneční energie pro výrobu tepla, možnosti využití v průmyslu
Základní principy využívání sluneční energie pro výrobu tepla, možnosti využití v průmyslu Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze 1/83 Využití solárního tepla v průmyslu průmyslové
VíceSluneční energie v ČR potenciál solárního tepla
1/29 Sluneční energie v ČR potenciál solárního tepla David Borovský Československá společnost pro sluneční energii (ČSSE) CityPlan spol. s r.o. 2/29 Termíny Sluneční energie x solární energie sluneční:
VíceHODNOCENÍ VÝKONNOSTI SOLÁRNÍCH KOLEKTORŮ
Konference Alternativní zdroje energie 2010 13. až 15. července 2010 Kroměříž HODNOCENÍ VÝKONNOSTI SOLÁRNÍCH KOLEKTORŮ Tomáš Matuška Ústav techniky prostředí, Fakulta strojní, ČVUT v Praze tomas.matuska@fs.cvut.cz
VíceZjednodušená měsíční bilance tepelné soustavy s tepelným čerpadlem BilanceTC 2017/v2
Zjednodušená měsíční bilance tepelné soustavy s tepelným čerpadlem BilanceTC 2017/v2 Tomáš Matuška Fakulta strojní, České vysoké učení technické v Praze Univerzitní centrum energeticky efektivních budov,
VíceVakuové trubkové solární kolektory
1/70 jednostěnná vakuová trubka plochý absorbér dvojstěnná vakuová trubka (Sydney) válcový absorbér vakuum 1 mpa Vakuové solární kolektory 2/70 vakuové trubkové ploché vakuové kolektory 1 3/70 Jednostěnná
Více1/58 Solární soustavy
1/58 Solární soustavy hydraulická zapojení zásobníky tepla tepelné výměníky 2/58 Přehled solárních soustav příprava teplé vody kombinované soustavy ohřev bazénové vody hydraulická zapojení typické zisky
VíceBudovy a energie Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Návrh solárních systémů Návrh
VíceNezávislost na dodavatelích tepla možnosti, příklady. Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze
Nezávislost na dodavatelích tepla možnosti, příklady Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze Volně dostupné zdroje tepla sluneční energie základ v podstatě veškerého přírodního
VíceSolární termické systémy pro bytové domy. Tomáš Matuška Ústav techniky prostředí, Fakulta strojní Energetické systémy budov, UCEEB ČVUT v Praze
Solární termické systémy pro bytové domy Tomáš Matuška Ústav techniky prostředí, Fakulta strojní Energetické systémy budov, UCEEB ČVUT v Praze BYTOVÉ DOMY V ČR sčítání lidu 2001 195 270 bytových domů ~
VíceTechnické normalizační informace TNI 73 0302 (revize 2014) solární soustavy TNI 73 0351 (nová 2014) tepelná čerpadla
Technické normalizační informace TNI 73 0302 (revize 2014) solární soustavy TNI 73 0351 (nová 2014) tepelná čerpadla Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních
VíceTechnické systémy pro pasivní domy. Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Technické systémy pro pasivní domy Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze PASIVNÍ DŮM - VYTÁPĚNÍ snížení potřeby tepla na vytápění na minimum
VíceSolární kolektory a solární soustavy pro obytné budovy. Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Solární kolektory a solární soustavy pro obytné budovy Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Sluneční energie v Evropě zdroj: PVGIS Sluneční energie v České republice zdroj:
VíceObnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Návrh solárních systémů Návrh solárních systémů
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,
VíceMožnosti řešení solárních tepelných soustav
1/25 Možnosti řešení solárních tepelných soustav Jiří Kalina Československá společnost pro sluneční energii (ČSSE) Regulus, s.r.o. 2/25 Kde je lze využít sluneční energii? příprava teplé vody příprava
VíceTomáš Matuška Ústav techniky prostředí, Fakulta strojní RP2 Energetické systémy budov, UCEEB ČVUT v Praze 1/39
Zdroje tepla pro pasivní domy Tomáš Matuška Ústav techniky prostředí, Fakulta strojní RP2 Energetické systémy budov, UCEEB ČVUT v Praze 1/39 Pasivní domy (ČSN 73 0540-2) PHPP: měrná potřeba primární energie
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:
VíceProtokol. o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN ISO 9806
České vysoké učení technické v Praze Univerzitní centrum energeticky efektivních budov Třinecká 1024 273 43 Buštěhrad www.uceeb.cz Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených
VíceZdroje tepla pro pasivní domy. Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Zdroje tepla pro pasivní domy Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze PASIVNÍ DOMY termín nemá oporu v legislativě dobrovolný systém různá
VícePorovnání solárního fototermického a fotovoltaického ohřevu vody
Porovnání solárního fototermického a fotovoltaického ohřevu vody Tomáš Matuška, Bořivoj Šourek RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze ÚPRAVA OPROTI
VíceNovinky v oblasti vytápění a přípravy teplé vody. Roman Vavřička. Teplá voda vs. Vytápění
Novinky v oblasti vytápění a přípravy teplé vody Roman Vavřička 1/15 http://utp.fs.cvut.cz Roman.Vavricka@fs.cvut.cz Teplá voda vs. Vytápění PŘÍKLAD: Rodinný dům 4 osoby VYTÁPĚNÍ Celková tepelná ztráta
VíceSpeciální aplikace FV systémů. Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze
Speciální aplikace FV systémů Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze Fotovoltaický ohřev vody (a jeho porovnání s fototermickým...) CÍL
Více1/38. jejich měření. Tomáš Matuška Ústav techniky prostředí, Fakulta strojní
1/38 Provozní chování solárních soustav a jejich měření Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze 2/38 Proč měřit? Co měřit? Kde měřit? Jak měřit? 3/38 Proč měřit? měření pro
VíceEnergetické hodnocení solárních soustav ve vztahu k programu Zelená úsporám (C.3) Tomáš Matuška
Energetické hodnocení solárních soustav ve vztahu k programu Zelená úsporám (C.3) Tomáš Matuška Anotace Článek je komentářem k postupu hodnocení solárních tepelných soustav podle TNI 73 0302 Energetické
VíceEfektivita provozu solárních kolektorů. Energetické systémy budov I
Efektivita provozu solárních kolektorů Energetické systémy budov I Sluneční energie Doba slunečního svitu a zářivý výkon závisí na: zeměpisné poloze ročním obdobím povětrnostních podmínkách Základní pojmy:
VíceSlunce # Energie budoucnosti
Možnosti využití sluneční energie Slunce # Energie budoucnosti www.nelumbo.cz 1 Globální klimatická změna hrozí Země se ohřívá a to nejrychleji od doby ledové.# Prognózy: další růst teploty o 1,4 až 5,8
VíceBudovy a energie Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Solární energie Kolektory
VíceKOMBINACE FVSYSTÉMU A TEPELNÉHO ČERPADLA (PRO TÉMĚŘ NULOVOU BUDOVU)
KOMBINACE FVSYSTÉMU A TEPELNÉHO ČERPADLA (PRO TÉMĚŘ NULOVOU BUDOVU) Tomáš Matuška, Bořivoj Šourek, Jan Sedlář, Yauheni Kachalouski Energetické systémy budov Univerzitní centrum energeticky efektivních
VíceSolární energie. M.Kabrhel. Solární energie Kolektory
Solární energie M.Kabrhel 1 Solární energie Kolektory 1 Kapalinové solární kolektory Trubkový vakuový kolektor - plochý nebo válcový selektivní absorbér ve vakuované skleněné trubce, tlak
VíceVýpočet potřeby tepla na vytápění
Výpočet potřeby tepla na vytápění Výpočty a posouzení byly provedeny při respektování zásad CSN 73 05 40-2:2011, CSN EN ISO 13789, CSN EN ISO 13790 a okrajových podmínek dle TNI 73 029, TNI 73 030. Vytvořeno
VíceObnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 21 Fototermické solární
VíceZdroje tepla pro vytápění
UNIVERZITNÍ CENTRUM ENERGETICKY EFEKTIVNÍCH BUDOV Zdroje tepla pro vytápění Tomáš Matuška RP2 Energetické systémy budov, UCEEB Ústav techniky prostředí, FS ČVUT v Praze Stavíme rodinný pasivní dům, 24.1.2014,
VíceEkonomika využití solárního tepla
1/22 Ekonomika využití solárního tepla Bořivoj Šourek Československá společnost pro sluneční energii (ČSSE) Siemens Building Technologies 2/22 Co ovlivňuje ekonomiku solárních soustav? investiční náklady
VíceIntegrace solárních soustav a kotlů na biomasu do soustav pro vytápění budov
SOLÁRNÍ TERMICKÉ SYSTÉMY A ZDROJE TEPLA NA BIOMASU MOŽNOSTI INTEGRACE A OPTIMALIZACE 29. října 2007, ČVUT v Praze, Fakulta strojní Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění
VíceTematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov
Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov 1. Klimatické poměry a prvky (přehled prvků a jejich význam z hlediska návrhu a provozu otopných systémů) a. Tepelná
VíceSOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU
SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU Martin Kny student Ph.D., ČVUT v Praze, fakulta stavební, katedra technických zařízení budov martin.kny@fsv.cvut.cz Konference
VíceTechnická zpráva akce:
Technická zpráva akce: Využití OZE v Městském bazénu Hlinsko solární systém projekt pro výběrové řízení Obec Hlinsko Městský plavecký bazén Vypracoval: REGULUS spol. s r.o. Projekt: zakázka NV/2011/1957
VíceVliv konstrukce solárního kolektoru na jeho účinnost. Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Vliv konstrukce solárního kolektoru na jeho účinnost Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Solárníkolektory Typy a konstrukční uspořádání plochésolárníkolektory trubkovésolární
Více= [-] (1) Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Kde: I 0
Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Z ln I ln I ln I ln I 0 n = [-] (1) 0 n, č Kde: I 0 sluneční konstanta 1 360 [W.m -2 ]; I n intenzita
VíceZdroje energie pro úsporné budovy. Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Zdroje energie pro úsporné budovy Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze ENERGETICKY ÚSPORNÉ BUDOVY nízkoenergetické nízká potřeba energie
VíceINOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SOLÁRNÍ SYSTÉMY MILAN KLIMEŠ TENTO
VíceHodnocení energetické náročnosti z pohledu primární energie - souvislosti s KVET
1/54 Hodnocení energetické náročnosti z pohledu primární energie - souvislosti s KVET Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Hodnocení energetické náročnosti budov 2/54 potřeby
VíceEnergetický audit a energetická náročnost budov, legislativa, seznámení s předmětem
České vysoké učení technické v Fakulta stavební Katedra technických zařízení budov Energetický audit a energetická náročnost budov, legislativa, seznámení s předmětem prof.ing.karel 1 Energetický audit
VíceSolární systémy pro rodinné a bytové domy a další aplikace 1/38
Solární systémy pro rodinné a bytové domy a další aplikace 1/38 Kde lze využít sluneční energii příprava teplé vody příprava teplé vody a vytápění ohřev bazénové vody nízkoteplotní aplikace do 90 C centralizované
VíceObnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Vzduchová solární soustava
Vícesolární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. STISKNI ENTER
solární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. TERMICKÉ SOLÁRNÍ SYSTÉMY k ohřevu vody pro hygienu (sprchování, koupel, mytí rukou) K ČEMU k ohřevu pro technologické
VíceIntegrace solárních soustav a kotlů na biomasu do soustav pro vytápění budov
VYTÁPĚNÍ BIOMASOU 14. května 2009, Luhačovice Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění budov Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Solární energie
VíceKONFERENCE TZB 2012 Aqua-therm 2012
KONFERENCE TZB 2012 Aqua-therm 2012 Příklady realizovaných termických systémů a jejich monitoringu Stanislav Němec Důvody monitoringu a vyhodnocování Optimalizace chodu samotné solární soustavy Zjištění
VíceKrycí list technických parametrů k žádosti o podporu: B - Výstavba rodinných domů s velmi nízkou energetickou náročností
B Krycí list technických parametrů k žádosti o podporu: B - Výstavba rodinných domů s velmi nízkou energetickou náročností 1 Upozornění: Struktura formuláře se nesmí měnit! ČÍSLO ŽÁDOSTI * Část A - Identifikační
Více1/69 Solární soustavy
1/69 Solární soustavy hydraulická zapojení zásobníky tepla tepelné výměníky 2/69 Přehled solárních soustav příprava teplé vody kombinované soustavy ohřev bazénové vody hydraulická zapojení typické zisky
VíceDřevostavby komplexně Energetická náročnost budov a nové energetické standardy
Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ÚVOD 2 ENERGETICKY
VícePRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY, Rodinný dům, Pustá Kamenice 32, 569 82 Pustá Kamenice
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY, Rodinný dům, Pustá Kamenice 32, 569 82 Pustá Kamenice dle Vyhl. 78/2013 Sb. Energetický specialista: ING. PETR SUCHÁNEK, PH.D. energetický specialista MPO, číslo 629
VíceŠTÍTKY ENERGETICKÉ ÚČINNOSTI KOMBINOVANÝCH SOUPRAV PRO VYTÁPĚNÍ A PŘÍPRAVU TEPLÉ VODY
ŠTÍTKY ENERGETICKÉ ÚČINNOSTI KOMBINOVANÝCH SOUPRAV PRO VYTÁPĚNÍ A PŘÍPRAVU TEPLÉ VODY Ing. Jan Sedlář, UCEEB, ČVUT v Praze ÚVOD CO JE ENERGETICKÝ ŠTÍTEK Grafický přehled základních údajů o daném zařízení
VíceTECHNICKÁ ZAŘÍZENÍ BUDOV
Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Cvičení pro bakalářské studium studijního oboru Příprava a realizace staveb Cvičení č. 8 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly
Vícesolární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz
solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz Proč zvolit vakuové solární kolektory Sunpur? Vakuové kolektory SUNPUR jsou při srovnání s tradičními plochými kolektory mnohem účinnější,
VíceRealizace solární soustavy od A do Z
1/22 Realizace solární soustavy od A do Z Marie Hrádková Československá společnost pro sluneční energii (ČSSE) JH Solar s.r.o., Plavsko 88 2/22 Vstupní předpoklady typ soustavy ohřev TV, přitápění, ohřev
VíceKrycí list technických parametrů k žádosti o podporu z oblasti podpory B - Výstavba rodinných domů s velmi nízkou energetickou náročností
Krycí list technických parametrů k žádosti o podporu z oblasti podpory B - Výstavba rodinných domů s velmi nízkou energetickou náročností 1 ČÍSLO ŽÁDOSTI * Část A - Identifikační údaje IDENTIFIKACE ŽADATELE
VíceNAVRHOVÁNÍ SOLÁRNÍCH SOUSTAV
NAVRHOVÁNÍ SOLÁRNÍCH SOUSTAV Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze s poděkováním T. Matuškovi za podklady Původ sluneční energie, její šíření prostorem a dopad na Zemi Jaderná
VíceTepelná čerpadla + solární soustavy = konkurence nebo spolupráce?
Tepelná čerpadla + solární soustavy = konkurence nebo spolupráce? Tomáš Matuška, Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Zdroje tepla pro tepelná čerpadla energie pocházející
Více9.1 Okrajové podmínky a spotřeba energie na ohřev teplé vody
00+ příklad z techniky prostředí 9. Okrajové podmínky a spotřeba energie na ohřev teplé vody Úloha 9.. V úlohách 9, 0 a určíme spotřebu energie pro provoz zóny zadaného objektu. Zadaná zóna představuje
VíceBYTOVÉ DOMY v rámci 2. výzvy k podávání žádostí
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram NZÚ BYTOVÉ DOMY v rámci 2. výzvy k podávání žádostí Podoblast podpory C.3 Instalace solárních termických a fotovoltaických
VíceHurbanova 5 1171, k.ú. 727598, p.č. 2869/38 14200, Praha 4 - Krč Bytový dům 2486.99 0.39 2210.6
Hurbanova 5 1171, k.ú. 727598, p.č. 2869/38 14200, Praha 4 Krč Bytový dům 2486.99 0.39 2210.6 46.7 83.5 99.1 86.6 125 149 167 198 250 297 334 396 417 495 191.4 103.3 Software pro stavební fyziku firmy
VíceTECHNICKÁ ZAŘÍZENÍ BUDOV
Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Přednášky pro bakalářské studium studijního oboru Příprava a realizace staveb Přednáška č. 9 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly
VíceS l eznam ana ý yzovan ch t opa ř í en a j ji e ch l ik og a výbě ýb ru Petr Vogel Kolektiv výzkumného úkolu V AV- VAV SP- SP 3g5-3g5 221-221 07
Seznam analyzovaných opatření a jejich ji logika výběru Petr Vogel Kolektiv výzkumného úkolu VAV-SP-3g5-221-07 Oblasti analýz výzkumu Energetika původních PD ve zkratce Problémy dnešních rekonstrukcí panelových
VíceKomplexní vzdělávací program pro podporu environmentálně šetrných technologií ve výstavbě a provozování budov
Komplexní vzdělávací program pro podporu environmentálně šetrných technologií ve výstavbě a provozování budov Ing. Jan Schwarzer, Ph.D. ČVUT v Praze Ústav techniky prostředí Technická 4 166 07 Praha 6
VícePOTŘEBA TEPLA NA VYT vs. TV REKUPERACE TEPLA ZÁSADY NÁVRHU INŽENÝRSKÝCH SÍTÍ
POTŘEBA TEPLA NA VYT vs. TV REKUPERACE TEPLA ZÁSADY NÁVRHU INŽENÝRSKÝCH SÍTÍ Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/20 Potřeba tepla na vytápění Křivka trvání venkovních
VíceObnovitelné zdroje energie Otázky k samotestům
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Obnovitelné zdroje energie Otázky k samotestům Ing. Michal Kabrhel, Ph.D. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VícePRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY
Ing. Tomáš Marek, Sokolovská 226/262, Praha 9, tel: 739435042, ing.tomas.marek@centrum.cz ČKAIT 10868, MPO PENB č.o. 1003 PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Typ budovy Bytový dům Místo budovy Mikulova
VícePRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY (PENB) DLE VYHLÁŠKY 78/2013 Sb. O ENERGETICKÉ NÁROČNOSTI BUDOV. BYTOVÝ DŮM Křivoklátská ul., Praha 18 - Letňany
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY (PENB) DLE VYHLÁŠKY 78/213 Sb. O ENERGETICKÉ NÁROČNOSTI BUDOV BYTOVÝ DŮM Křivoklátská ul., Praha 18 Letňany Investor: BPT DEVELOPMENT, a.s. Václavské nám.161/147 Vypracoval:
Více02 Výpočet potřeby tepla a paliva
02 Výpočet potřeby tepla a paliva Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/29 http://utp.fs.cvut.cz Roman.Vavricka@fs.cvut.cz kde t d tis tes Q, 24 3600 e e e t VYT teor
VícePRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY
DEKPROJEKT s.r.o. Tiskařská 10/257, 108 00 Praha 10 Malešice tel. 234 054 284-5, fa 234 054 291 e-mail tereza.brettingerova@dek-cz.com http://www.atelier-dek.cz IČO: 276 42 411 DIČ: CZ 699 000 797 Komerční
VíceProtokol k průkazu energetické náročnosti budovy
str. 1 / 20 Protokol k průkazu energetické náročnosti budovy Účel zpracování průkazu Nová budova Prodej budovy nebo její části Větší změna dokončené budovy Jiný účel zpracování: Budova užívaná orgánem
VíceJak ušetřit za ohřev vody a vytápění?
Jak ušetřit za ohřev vody a vytápění? JH SOLAR s.r.o., Plavsko 88, 378 02 Stráž nad Nežárkou, okres Jindřichův Hradec, www.jhsolar.cz 2011 Marie Hrádková - JH SOLAR s.r.o.. Všechna práva vyhrazena. Slunce
Vícerekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva
rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva Jiří Novák činnost technických poradců v oblasti stavebnictví květen 2006 Obsah Obsah...1 Zadavatel...2
VíceKOMBINACE TEPELNÝCH ČERPADEL A FOTOVOLTAICKÝCH SYSTÉMŮ
KOMBINACE TEPELNÝCH ČERPADEL A FOTOVOLTAICKÝCH SYSTÉMŮ Tomáš Matuška a kol. Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze Aquatherm 2018 1 34 KOMBINACE FVSYSTÉMU
VíceProtokol k průkazu energetické náročnosti budovy
str. 1 / 16 Protokol k průkazu energetické náročnosti budovy Účel zpracování průkazu Nová budova Prodej budovy nebo její části Větší změna dokončené budovy Jiný účel zpracování: Budova užívaná orgánem
VíceChytré bydlení TRIGEMA 11/2016 autor: Jan Vostoupal
Chytré bydlení TRIGEMA 11/2016 autor: Jan Vostoupal OBSAH: A. Představení produktu 1) Obálka budovy v souvislosti s PENB 2) Větrání bytů v souvislostech 3) Letní stabilita bytů 4) Volba zdroje tepla pro
VícePřipravený k propojení
Nový Roth plochý kolektor a doporučené solární sestavy na ohřev teplé vody Reg. č. 0-7589 F NOVÉ Připravený k propojení Nový Roth kolektor se vyznačuje čtyřmi konektory založenými na technologii zásuvného
VíceEFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Projektování nízkoenergetických a pasivních staveb konkrétní návrhy budov RD Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt
Více