Spalování zemního plynu

Rozměr: px
Začít zobrazení ze stránky:

Download "Spalování zemního plynu"

Transkript

1 Kotel na odpadní teplo pro PPC Kotel na odpadní teplo pro PPC Označení KNOT (Doc. Kolovratník) HRSG = Heat Recovery Steam Generator Funkce dochladit spaliny odcházející z plynové turbíny vyrobit páru pro pohon parní turbíny Dvě základní koncepce bez přitápění pro PPE s přitápěním teplárenské aplikace 1 2 Zemní plyn je nejčastěji užívaným palivem pro pohon plynových turbín typické složení a výhřevnost zemního plynu CH 4 0, C 2 H 6 0, C 3 H 8 0, C 4 H 10 0, C 5 H 12 0, C 6 H 14 0, CO 2 0, N 2 0, Výhřevnost plynu kj/nm kj/kg 3 Spalování zemního plynu výsledky stechiometrického výpočtu Nm 3 /Nm 3 Nm 3 /kg Spotřeba vzduchu : minimální objem kyslíku 2,0009 2,7401 minimální objem suchého vzduchu 9, ,0792 minimální objem vlhkého vzduchu 9, ,2885 Vzniklé spaliny : objem oxidu uhličitého 1,0022 1,3680 objem oxidu siřičitého 0,0000 0,0000 objem dusíku 7, ,2299 objem vzácných plynů 0,0877 0,1205 objem suchých spalin 8, ,7185 objem vodní páry ve spalinách 2,1075 2,9411 objem vlhkých spalin 10, , Spalování zemního plynu Závislost adiabatické spalovací teploty na součiniteli přebytku vzduchu Spalování zemního plynu složení spalin na výstupu ze spalovací turbíny Teplota C Tlak max. 0,03500 bar Složení N 2 74,59 %vol. O 2 12,62 %vol. CO 2 3,73 %vol. H 2 O 8,19 %vol. Ar 0,87 %vol. 5 obsah O 2 = 12,62 % odpovídá spalování s přebytkem vzduchu ~ 2,35 6 1

2 bez přitápění s přitápěním 7 8 s přitápěním mřížový hořák bez přívodu vzduchu s přitápěním mřížový hořák 1-stabilizační mříž, 2-rám, 3-hořák, 4-izolace, 5-přívod paliva, 6-zapalovací elektroda, 7-palivový otvor, 8-stabilizace 9-uzávěr 9 10 Specifika kotle na odpadní teplo kotel nemá spalovací zařízení rozdíly proti klasickým kotlům jsou výrazně nižší teplotní úroveň spalin v kotli => důsledky nižší parametry páry pokles teplotních spádů na výhřevných plochách použití žebrovaných trubek obvykle vícetlaký systém přísně protiproudé uspořádání a zapojení výhřevných ploch v kotli ryze konvekční charakteristika všech ploch chybí ohřívák vzduchu => horší podmínky pro dochlazení spalin za kotlem 11 Q-t diagram uhelného kotle 12 2

3 Definice pinch pointu a approach pinch point = koncový teplotní rozdíl approach = nedohřev jednotlaký systém jednotlaký systém Teplotní poměry v HRSG určení optimálních teplotních poměrů je složitá úloha výsledek je funkcí řešení energetických bilančních rovnic podmínek přenosu tepla ve spalinovém kotli do výpočtu vstupuje hmotnostní průtok spalin z plynové turbíny M s hmotnostní průtok vody vstupující do kotle M w jejich podíl y = M w / M s teploty médií v uzlových bodech Tepelná bilance HRSG c p (t 4 t 5 ) = y (i 6 i 8 ) c p (t 4 t 5) = y (i 6 i 9 ) c p (t 5 t 5 ) = y (i 9 i 8 ) = = y c w (t 9 t 8 ) současně musí platit (t 5 t 8 ); (t 5 t 9 ); (t 4 t 6 ) > Δt min Δt min má rozhodující vliv na velikost výhřevných ploch Δt min se volí 5 až 40 C jednotlaký systém teplota t 5 určuje velikost komínové ztráty, a tedy i účinnosti HRSG je funkcí y a Δt min

4 jednotlaký systém Tepelná bilance HRSG při zmenšování y teplota t 5 roste při y = 0 oběh přechází v oběh spalovací turbíny při daných t 4, y a Δt min dostaneme malou hodnotu komínové ztráty v případě jednotlakového systému nízkými parametry parního oběhu t 9 použitím dvoutlakového oběhu dvoutlaký systém dvoutlaký systém třítlaký systém třítlaký systém

5 třítlaký systém třítlaký systém třítlaký systém porovnání z hlediska parametrů páry Koncová teplota spalin HRSG nemá ohřívák vzduchu koncovou plochou kotle je EKO při t NVmin = 105 C by byla koncová teplota spalin příliš vysoká a účinnost kotle nízká pro lepší dochlazení spalin se za EKO řadí ještě spalinový regenerační ohřívák napájecí vody, který je zapojen k parnímu regeneračnímu ohřevu sériově paralelně

6 Spalinový regenerační ohřívák zapojený sériově k parnímu regeneračnímu předehřevu Spalinový regenerační ohřívák zapojený paralelně k parnímu regeneračnímu předehřevu Účinnost HRSG účinnost závisí na vstupní teplotě spalin výstupní teplotě spalin přebytku spalovacího vzduchu velikosti a teplotě povrchu kotle Příklad: vstupní teplota spalin 580 C výstupní teplota spalin 90 C přebytek spalovacího vzduchu 2,35 ztráta sdílením tepla do okolí 0,5 % účinnost HRSG vztažená k teplu spalin na vstupu 88 % účinnost HRSG vztažená k výhřevnosti plynu 93,5 % účinnost samotného HRSG se obvykle negarantuje a není předmětem přejímacího řízení garantuje se účinnost PPC 33 Účinnost HRSG (vztaženo ke spalnému teplu) 34 Vliv výkonu na účinnost PPC Optimalizace návrhu HRSG složitá úloha s velkým počtem stupňů volnosti optimalizovanými parametry jsou koncová teplota spalin počet tlakových hladin pinch point a nedohřev na výhřevných plochách dělení a řazení výhřevných ploch Provádí se pomocí výpočtových softwarů Thermoflow (GT PRO) Gate Cycle (GE) Tempo Cycle (volně šiřitelný)

7 Vliv pinch pointu na velikost a cenu plochy Konstrukční provedení HRSG Konstrukční varianty horizontální uspořádání vertikální uspořádání Provedení výparníku bubnové s přirozenou nebo nucenou cirkulací průtočné Pracovní tlak podkritický nadktirický Horizontální HRSG Horizontální HRSG výparník s přirozenou cirkulací je z technického hlediska jednodušší Vertikální HRSG Vertikální HRSG výparník s nucenou cirkulací vhodné pro případy s prostorovým omezením ohyb proudu spalin před vstupem je zdrojem větší nerovnoměrnosti proudění v prvních plochách

8 Horizontální x vertikální konstrukce Výhody vertikálního provedení menší zastavěný půdorys menší velikost kotle z důvodu použití trubek menšího průměru menší citlivost na vznik parních zátek v EKU při najíždění Výhody horizontálního provedení rovnoměrnější průřezové rozdělení spalin za GT přirozená cirkulace nevyžaduje čerpadlo platí do tlaku 100 bar vertikální orientace trubek ve výparníku podporuje cirkulaci v tepelně více zatížených trubkách Zásadní rozdíl není výrobci nabízejí obě provedení Celosvětově převažují instalace horizontálních kotlů s přirozenou cirkulací 43 Systém výparníku HRSG s přirozenou s nucenou průtočný cirkulací cirkulací 44 Výparník s přirozenou cirkulací Výparník s přirozenou cirkulací Výparník s nucenou cirkulací Přechod z cirkulačního na Bensonův průtočný systém výparníku

9 Provedení průtočného výparníku Zapojení průtočného výparníku Rozložení průtoku a tepelného zatížení na vysokotlakém průtočném výparníku Zkrácení doby najíždění u průtočného systému výparníku Zkrácení doby najíždění u průtočného systému výparníku Zkrácení doby najíždění u průtočného systému výparníku

10 Cirkulační x průtočný výparník Nevýhody cirkulačního systému výparníku vyžaduje buben s rostoucím tlakem (nad 100 bar) klesá cirkulační číslo riziko špatného chlazení trubek menší provozní pružnost v důsledku většího vodního objemu Výhody průtočného systému výparníku odpadá buben neexistuje tlakové omezení zkrácení doby pro najíždění a změnu výkonu 55 Nadkritický HRSG Podmínkou výroby páry s nadkritickým tlakem v HRSG je užití průtočného systému výparníku vyšší teplota spalin na výstupu z GT Motivace zvýšení účinnosti bloku zjednodušení koncepce HRSG Z pohledu klasických bloků se jedná pouze o mírně nadkritické parametry 56 Vliv parametrů páry na účinnost PPC Nadkritický HRSG přechodem na nadkritický tlak mizí pinch point na začátku výparníku roste teplota spalin za VT Nový jednotlaký nadkritický HRSG

11 Nový jednotlaký nadkritický HRSG Provedení výhřevných ploch HRSG základním stavebním prvkem je žebrovaná trubka Provedení výhřevných ploch HRSG základním stavebním prvkem je žebrovaná trubka Provedení výhřevných ploch HRSG základním stavebním prvkem je žebrovaná trubka Provedení stěn HRSG Stěny HRSG jsou většinou nechlazené Dvě možnosti studené provedení s vnitřní izolací horké provedení s vnější izolací Studené provedení stěn výhodné při vysoké teplotě spalin za GT běžnější u kotlů s přirozenou cirkulací Horké provedení stěn výhodné při nižší teplotě spalin za GT běžnější u vertikálních kotlů může trpět korozí na studeném konci

12 Modulová koncepce HRSG Modulová koncepce HRSG Modulová koncepce HRSG DeNOx preferována metoda SCR redukčním činidlem je čpavek levnější močovina DeNOx katalyzátorem jsou oxidy těžkých kovů (Ti, V, W, Mo, Cu, Cr) (300 až 450 C) zeolity aluminosilikáty (350 až 600 C) oxidy železa s obsahem fosforečnanů železa aktivní uhlí (100 až 220 C) DeNOx

13 DeNOx Provozní rizika HRSG vysokoteplotní koroze u ZP při vhodné volbě materiálu riziko malé spalování oleje a mazutu riziko vanadové koroze (V 2 O 5 ) na přehřívácích s teplotou nad 500 C riziko sírové koroze v kombinaci s chlorem Provozní rizika HRSG nízkoteplotní koroze u ZP riziko malé nízká teplota rosného bodu spalin riziko roste při spalování sirnatých plynů nebo mazutu Provozní rizika HRSG zanášení výhřevných ploch u ZP riziko malé při spalování oleje zanášení žebrovaných trubek je třeba volit větší rozteč žeber a plochy čistit

Doc. Ing. Michal KOLOVRATNÍK, CSc. Doc. Ing. Tomáš DLOUHÝ, CSc.

Doc. Ing. Michal KOLOVRATNÍK, CSc. Doc. Ing. Tomáš DLOUHÝ, CSc. Doc. Ing. Michal KOLOVRATNÍK, CSc. Doc. Ing. Tomáš DLOUHÝ, CSc. ČVUT v PRAZE, Fakulta strojní Ústav mechaniky tekutin a energetiky Odbor tepelných a jaderných energetických zařízení pro energetiku 1 optimalizace

Více

Posouzení vlivu teploty napájecí vody na konstrukci kotle

Posouzení vlivu teploty napájecí vody na konstrukci kotle Předběžný návrh koncepce kotle a přípravy paliva Podle zadaných parametrů se volí typ parního generátoru (výparníku) s přirozeným oběhem, nucenou nebo superponovanou cirkulací průtočný. Zvolí se uspořádání

Více

TYPY KOTLŮ, JEJICH DĚLENÍ PODLE VYBRANÝCH HLEDISEK. Kotel horkovodní. Typy kotlů 7.12.2015. dělení z hlediska:

TYPY KOTLŮ, JEJICH DĚLENÍ PODLE VYBRANÝCH HLEDISEK. Kotel horkovodní. Typy kotlů 7.12.2015. dělení z hlediska: Typy kotlů TYPY KOTLŮ, JEJICH DĚLENÍ PODLE VYBRANÝCH HLEDISEK dělení z hlediska: pracovního média a charakteru jeho proudění ve výparníku druhu spalovaného paliva, způsobu jeho spalování a druhu ohniště

Více

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv

Více

PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ

PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ Energetické využití odpadů PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ komunální a průmyslové odpady patří do kategorie tzv. druhotných energetických

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv

Více

Pokročilé technologie spalování tuhých paliv

Pokročilé technologie spalování tuhých paliv Pokročilé technologie spalování tuhých paliv Může zvyšovaní obsahu CO 2 v ovzduší změnit životní podmínky na Zemi? Možnosti zvyšování účinnosti parních kotlů 1 Vliv účinnosti uhelného bloku na produkci

Více

NÁVRH DVOUTLAKÉHO HORIZONTÁLNÍHO KOTLE NA ODPADNÍ TEPLO PROPOSAL TWO-PRESSURES HORIZONTAL WASTE HEAT BOILER

NÁVRH DVOUTLAKÉHO HORIZONTÁLNÍHO KOTLE NA ODPADNÍ TEPLO PROPOSAL TWO-PRESSURES HORIZONTAL WASTE HEAT BOILER VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE NÁVRH DVOUTLAKÉHO HORIZONTÁLNÍHO KOTLE NA

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Funkce, rozdělení, parametry, začlenění parního kotle do schémat

Více

FLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon 16 150 t/h tlak páry 1,4 10 MPa teplota páry 220 540 C. Fluidní kotel

FLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon 16 150 t/h tlak páry 1,4 10 MPa teplota páry 220 540 C. Fluidní kotel FLUIDNÍ KOTLE Osvědčená technologie pro spalování paliv na pevném roštu s fontánovou fluidní vrstvou. Možnost spalování široké palety spalování pevných paliv s velkým rozpětím výhřevnosti uhlí, biomasy

Více

KEY PERFORMANCE INDICATORS (KPI)

KEY PERFORMANCE INDICATORS (KPI) KEY PERFORMANCE INDICATORS (KPI) Zavedením monitorováním a vyhodnocením KPI pro energetické provozy lze optimalizovat provoz a údržbu energetických zařízení, zlepšit účinnost a spolehlivost a také snížit

Více

Elektroenergetika 1. Technologické okruhy parních elektráren

Elektroenergetika 1. Technologické okruhy parních elektráren Technologické okruhy parních elektráren Schéma tepelné elektrárny Technologické okruhy parních elektráren 2 Hlavní technologické okruhy Okruh paliva Okruh vzduchu a kouřových plynů Okruh škváry a popela

Více

DVOUTLAKÝ HORIZONTÁLNÍ KOTEL NA ODPADNÍ TEPLO (HRSG)

DVOUTLAKÝ HORIZONTÁLNÍ KOTEL NA ODPADNÍ TEPLO (HRSG) VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE DVOUTLAKÝ HORIZONTÁLNÍ KOTEL NA ODPADNÍ TEPLO

Více

Příloha1) Atributy modulu

Příloha1) Atributy modulu Příloha1) Atributy modulu Název realizovaného modulu Kontaktní údaje garanta: Energetika doc. Ing. Ladislav 597324484 ladislav.vilimec@vsb.cz Vilimec Jméno a příjemní Telefon e-mail Požadované obsahové

Více

1 Typy BK 20 BK 250 BK 30 BK 50. Typ BK 20 BK 250 BK 100 BK 70. Typ. kw bar l mm Ø mm max. C % % mm mm mm kg

1 Typy BK 20 BK 250 BK 30 BK 50. Typ BK 20 BK 250 BK 100 BK 70. Typ. kw bar l mm Ø mm max. C % % mm mm mm kg 1 Typy BK 20 BK 250 2 Typ BK 20 BK 0 BK 50 Jmenovitý tepelný výkon Maximální provozní tlak Objem vody kotle Kouřovod, koaxiální vnitřní/vnější průměr Kouřovod (pouze pro spaliny) Teplota spalin Komínová

Více

Biflux. Vstřikový chladič páry. Regulace teploty páry chladičem. Regulace teploty páry. Regulace teploty páry. Regulaci teploty páry jde provádět :

Biflux. Vstřikový chladič páry. Regulace teploty páry chladičem. Regulace teploty páry. Regulace teploty páry. Regulaci teploty páry jde provádět : Regulace teploty páry Regulaci teploty páry jde provádět : přerozdělením tepla v kotli např. recirkulací spalin nebo naklápěním hořáků chlazením páry vstřikem napájecí vody vstřikem vlastního kondenzátu

Více

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov 1. Klimatické poměry a prvky (přehled prvků a jejich význam z hlediska návrhu a provozu otopných systémů) a. Tepelná

Více

PARNÍ KOTEL S PŘIHŘÍVÁNÍM PÁRY NA SPALOVÁNÍ VYSOKOPECNÍHO PLYNU

PARNÍ KOTEL S PŘIHŘÍVÁNÍM PÁRY NA SPALOVÁNÍ VYSOKOPECNÍHO PLYNU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PARNÍ KOTEL S PŘIHŘÍVÁNÍM PÁRY NA SPALOVÁNÍ

Více

DODAVATELSKÝ PROGRAM

DODAVATELSKÝ PROGRAM DODAVATELSKÝ PROGRAM HLAVNÍ ČINNOSTI DODÁVKY KOTELEN NA KLÍČ Projekty, dodávka, montáž, zkoušky a uvádění do provozu Teplárny Energetická centra pro rafinerie, cukrovary, papírny, potravinářský průmysl,chemický

Více

1/62 Zdroje tepla pro CZT

1/62 Zdroje tepla pro CZT 1/62 Zdroje tepla pro CZT kombinovaná výroba elektřiny a tepla výtopny, elektrárny a teplárny teplárenské ukazatele úspory energie teplárenským provozem Zdroje tepla 2/62 výtopna pouze produkce tepla kotle

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING ENERGETICKÝ ÚSTAV ENERGY INSTITUTE KOTEL NA SPOLUSPALOVANÍ VYSOKOPECNÍHO PLYNU

Více

Příklad 1: Bilance turbíny. Řešení:

Příklad 1: Bilance turbíny. Řešení: Příklad 1: Bilance turbíny Spočítejte, kolik kg páry za sekundu je potřeba pro dosažení výkonu 100 MW po dobu 1 sek. Vstupní teplota a tlak do turbíny jsou 560 C a 16 MPa, výstupní teplota mokré páry za

Více

Závěsné kondenzační kotle

Závěsné kondenzační kotle Závěsné kondenzační kotle VU, VUW ecotec plus Výhody kondenzační techniky Snižování spotřeby energie při vytápění a ohřevu teplé užitkové vody se v současné době stává stále důležitější. Nejen stoupající

Více

Parní turbíny Rovnotlaký stupeň

Parní turbíny Rovnotlaký stupeň Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost

Více

Stavba kotlů. Stav u parních oběhů. Zvyšování účinnosti parního oběhu. Vliv účinnosti uhelného bloku na produkci CO 2

Stavba kotlů. Stav u parních oběhů. Zvyšování účinnosti parního oběhu. Vliv účinnosti uhelného bloku na produkci CO 2 Stavba kotlů Vliv účinnosti uhelného bloku na produkci CO 2 dnešní standard 2.n. ročník zimní semestr Doc. Ing. Tomáš DLOUHÝ, CSc. 18.9.2012 Stavba kotlů - přednáška č. 1 1 18.9.2012 Stavba kotlů - přednáška

Více

Technická dokumentace Kotle středních a vyšších výkonů řady GKS

Technická dokumentace Kotle středních a vyšších výkonů řady GKS Technická dokumentace Kotle středních a vyšších výkonů řady GKS GKS Eurotwin GKS Dynatherm-L 1 Ocelový kotel s přetlakovým spalováním pro nízkoteplotní provoz podle DIN 4702/EN 303 a platných směrnic ES.

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra energetiky- 361

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra energetiky- 361 VŠB- Technická univerzita Ostrava Fakulta strojní Katedra energetiky- 361 Řízení teploty spalin nad rosným bodem u kotle s ohřívákem vzduchu Control of the Flue Gas Temperature above the Dew Point of the

Více

ROŠTOVÝ KOTEL NA SPALOVÁNÍ UHLÍ A NEBO DŘEVNÍ BIOMASY O PARAMETRECH 200 T/H, 9,3 MPA, 520 C

ROŠTOVÝ KOTEL NA SPALOVÁNÍ UHLÍ A NEBO DŘEVNÍ BIOMASY O PARAMETRECH 200 T/H, 9,3 MPA, 520 C VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE ROŠTOVÝ KOTEL NA SPALOVÁNÍ UHLÍ A NEBO DŘEVNÍ

Více

Mittel- und Großkesselsysteme

Mittel- und Großkesselsysteme Energiesparen und Klimaschutz serienmäßig Technische Technická dokumentace Dokumentation Kotle středních a vyšších výkonů řady GKS Mittel- und Großkesselsysteme GKS Eurotwin-K GKS Eurotwin-K GKS Dynatherm-L

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. Spalovací turbíny Základní informace Historie a vývoj Spalovací

Více

Závěsné kotle. Modul: Kondenzační kotle. Verze: 03 VU 156/5-7, 216/5-7, 276/5-7 ecotec exclusive 03-Z2

Závěsné kotle. Modul: Kondenzační kotle. Verze: 03 VU 156/5-7, 216/5-7, 276/5-7 ecotec exclusive 03-Z2 Verze: 0 VU /-, /-, /- ecotec exclusive 0-Z Pohled na ovládací panel kotle Závěsné kondenzační kotle ecotec exclusive jsou výjimečné svým modulačním rozsahem výkonu. - VU /-...,9 -, kw - VU /-...,9 -,

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,

Více

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku. Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak páry po expanzi ve vysokotlaké části turbíny

Více

GIAVA KRB

GIAVA KRB GIV 12-24-28-32 IST 03 C 886-01 Důležité informace pro výpočty CZ Překlad původních instrukcí (v italštině) Obecné vlastnosti Popis um 12 24 28 32 Jmenovitý tepelný výkon vytápění 12,0 23,7 26,4 30,4 Minimální

Více

Závěsné kondenzační kotle

Závěsné kondenzační kotle VC 126, 186, 246/3 VCW 236/3 Závěsné kondenzační kotle Technické údaje Označení 1 Vstup topné vody (zpátečka) R ¾ / 22 2 Přívod studené vody R ¾ / R½ 3 Připojení plynu 1 svěrné šroubení / R ¾ 4 Výstup

Více

1/79 Teplárenské zdroje

1/79 Teplárenské zdroje 1/79 Teplárenské zdroje parní protitlakové turbíny parní odběrové turbíny plynové turbíny s rekuperací paroplynový cyklus Teplárenské zdroje 2/79 parní protitlaké turbíny parní odběrové turbíny plynové

Více

Tepelné zdroje soustav CZT. Plynová turbína. Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami

Tepelné zdroje soustav CZT. Plynová turbína. Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami Tepelné zdroje soustav CZT tepelná část kombinovaného oběhu neovlivňuje silovou (mechanickou) část oběhu teplo se odvádí ze silové části

Více

Denitrifikace. Ochrana ovzduší ZS 2012/2013

Denitrifikace. Ochrana ovzduší ZS 2012/2013 Denitrifikace Ochrana ovzduší ZS 2012/2013 1 Úvod Pojem oxidy dusíku NO NO 2 Další formy NO x Vznik NO x 2 Vlastnosti NO Oxid dusnatý Vlastnosti M mol,no = 30,01 kg/kmol V mol,no,n = 22,41 m 3 /kmol ρ

Více

IST 03 C ITACA KB Důležité informace pro výpočet. Překlad původních instrukcí (v italštině)

IST 03 C ITACA KB Důležité informace pro výpočet. Překlad původních instrukcí (v italštině) ITC KB 24-32 IST 03 C 839-01 Důležité informace pro výpočet CZ Překlad původních instrukcí (v italštině) Obecné vlastnosti Tab. 4 Obecné specifikace Popis um KB 24 KB 32 Jmenovitý tepelný výkon vytápění

Více

Normování spotřeby paliv a energie v parních výrobnách

Normování spotřeby paliv a energie v parních výrobnách Normování spotřeby paliv a energie v parních výrobnách Kondenzační turbosoustrojí Odběrové turbosoustrojí (kombinovaná výroba) Oprava na provoz v SAR Oprava na plnění normy vlastní spotřeby kde Normovaná

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ROŠTOVÝ KOTEL NA SPALOVÁNÍ TŘÍDĚNÉHO ODPADU 70T/H, 4 MPA, 400 C

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ROŠTOVÝ KOTEL NA SPALOVÁNÍ TŘÍDĚNÉHO ODPADU 70T/H, 4 MPA, 400 C VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE ROŠTOVÝ KOTEL NA SPALOVÁNÍ TŘÍDĚNÉHO ODPADU

Více

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku. Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak

Více

FORMENTERA KC KR KRB

FORMENTERA KC KR KRB FORMENTER KC 12-24-28-32 KR 12-24-28-32 KRB 12-24-28-32 IST 03 C 852-01 Důležité informace k výpočtům CZ Překlad původních instrukcí (v italštině) Obecné vlastnosti Popis um KC 12 KC 24 KC 28 KC 32 Jmenovitý

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE NAVRHNĚTE PARNÍ KOTEL NA SPALOVÁNÍ ZEMNÍHO

Více

ANTEA KC KR KRB

ANTEA KC KR KRB NTE KC 12-24-28 KR 12-24-28 KRB 12-24-28 IST 03 C 832-01 Instalace, použití, údržba CZ Překlad původních instrukcí (v italštině) 2.5 Obecné vlastnosti Popis um KC 12 KC 24 KC 28 Jmenovitý tepelný výkon

Více

Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw. Stanislav Veselý, Alexander Tóth

Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw. Stanislav Veselý, Alexander Tóth KOTLE A ENERGETICKÁ ZAŘÍZENÍ 2011 BRNO 14.3. až 26.3. 2011 Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw Stanislav Veselý, Alexander Tóth EKOL, spol. s r.o., Brno Kogenerační jednotka se

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_SZ_20. 9. Autor: Ing. Luboš Veselý Datum vypracování: 15. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu

Více

Zvyšování vstupních parametrů

Zvyšování vstupních parametrů CARNOTIZACE Zvyšování vstupních parametrů TTT + vyšší tepelná účinnost ZVYŠOVÁNÍ ÚČINNOSTI R-C CYKLU - roste vlhkost páry na konci expanze (snížení η td, příp. eroze lopatek) - vyšší tlaky = větší nároky

Více

Návrh koncepce spalovacího zařízení. Návrh spalovací komory z hlediska potlačení tvorby NO x. Spalování práškového uhlí

Návrh koncepce spalovacího zařízení. Návrh spalovací komory z hlediska potlačení tvorby NO x. Spalování práškového uhlí Návrh koncepce spalovacího zařízení U roštových ohnišť se volí dle druhu paliva a jeho třídění typ roštu tvar spalovací komory, způsob přívodu paliva na rošt a vytváření vrstvy hradítkem pohazováním. Hrubá

Více

C-Energy Bohemia s.r.o. Ekologizace a obnova teplárny v Plané nad Lužnicí

C-Energy Bohemia s.r.o. Ekologizace a obnova teplárny v Plané nad Lužnicí Zákazník: Název zakázky: C-Energy Bohemia s.r.o. Ekologizace a obnova teplárny v Plané nad Lužnicí Rozsah dodávek společnosti invelt elektro s.r.o.: Projekt, výroba a montáž DCS systému řízení teplárny

Více

NÁVRH ROŠTOVÉHO KOTLE S PŘIROZENOU CIRKULACÍ NA SPALOVÁNÍ SLÁMY Z PŠENICE, ŽITA A JEČMENE

NÁVRH ROŠTOVÉHO KOTLE S PŘIROZENOU CIRKULACÍ NA SPALOVÁNÍ SLÁMY Z PŠENICE, ŽITA A JEČMENE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE NÁVRH ROŠTOVÉHO KOTLE S PŘIROZENOU CIRKULACÍ

Více

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH Teplárenské dny 2015 Hradec Králové J. Hyžík STEO, Praha, E.I.C. spol. s r.o., Praha, EIC AG, Baden (CH), TU v Liberci,

Více

NA FOSILNÍ PALIVA: pevná, plynná, kapalná NA FYTOMASU: dřevo, rostliny, brikety, peletky. SPALOVÁNÍ: chemická reakce k získání tepla

NA FOSILNÍ PALIVA: pevná, plynná, kapalná NA FYTOMASU: dřevo, rostliny, brikety, peletky. SPALOVÁNÍ: chemická reakce k získání tepla ZDROJE TEPLA - KOTELNY PŘEDNÁŠKA Č. 8 SLOŽENÍ PALIV 1 NA FOSILNÍ PALIVA: pevná, plynná, kapalná NA FYTOMASU: dřevo, rostliny, brikety, peletky SPALOVÁNÍ: chemická reakce k získání tepla SPALNÉ SLOŽKY PALIV:

Více

THRs/THs 2-17 B120 7716842077 A ++ A + A B C D E F G B C D E F G 2015 811/2013

THRs/THs 2-17 B120 7716842077 A ++ A + A B C D E F G B C D E F G 2015 811/2013 Ι THRs/THs 2-17 120 55 d 17 kw 2015 811/2013 Ι THRs/THs 2-17 120 2015 811/2013 Informační list výrobku o spotřebě elektrické energie THRs/THs 2-17 120 Následující údaje o výrobku vyhovují požadavkům nařízení

Více

Zapojení špičkových kotlů. Obecné doporučení 27.10.2015. Typy turbín pro parní teplárny. Schémata tepláren s protitlakými turbínami

Zapojení špičkových kotlů. Obecné doporučení 27.10.2015. Typy turbín pro parní teplárny. Schémata tepláren s protitlakými turbínami Výtopny výtopny jsou zdroje pouze pro vytápění a TUV teplo dodávají v páře nebo horké vodě základním technologickým zařízením jsou kotle s příslušenstvím (dle druhu paliva) výkonově výtopny leží mezi domovními

Více

Parní turbíny Rovnotlaký stupe

Parní turbíny Rovnotlaký stupe Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

MGM-I AUTOMATICKÉ TEPLOVODNÍ KOTLE

MGM-I AUTOMATICKÉ TEPLOVODNÍ KOTLE AUTOMATICKÉ TEPLOVODNÍ KOTLE MGM-I Automatické teplovodní MGM-I na plynná a kapalná paliva jsou standardně vyráběny ve 14 výkonových typech. Na přání zákazníka lze vyrobit i jiné výkonové varianty kotlů

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

OBSAH. ZVU Engineering a.s., člen skupiny ZVU, UTILIZAČNÍ KOTLE strana 2

OBSAH. ZVU Engineering a.s., člen skupiny ZVU, UTILIZAČNÍ KOTLE strana 2 UTILIZAČNÍ KOTLE OBSAH 1 ÚVOD...3 2 KONCEPCE UTILIZAČNÍCH KOTLŮ...4 2.1 Komplexní řešení... 4 2.2 Druh tepelné výměny... 4 2.3 Utilizační jednotky a jejich využití... 5 2.4 Konstrukční materiály, normy...

Více

Způsob uvolňování chloru z paliva

Způsob uvolňování chloru z paliva Předběžný návrh koncepce kotle a přípravy paliva Podle zadaných parametrů se volí typ parního generátoru (výparníku) s přirozeným oběhem, nucenou nebo superponovanou cirkulací průtočný. Zvolí se uspořádání

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ. Studijní program: N2301 Strojní inženýrství Studijní obor: Stavba energetických strojů a zařízení

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ. Studijní program: N2301 Strojní inženýrství Studijní obor: Stavba energetických strojů a zařízení ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Studijní program: N2301 Strojní inženýrství Studijní obor: DIPLOMOVÁ PRÁCE Návrh turbíny do kombinovaného cyklu Autor: Vedoucí práce: Ing. Pavel Žitek Akademický

Více

ení Ing. Miroslav Mareš EGP - EGP

ení Ing. Miroslav Mareš EGP - EGP Opatřen ení ke zvýšen ení energetické účinnosti při i výrobě elektřiny Ing. Miroslav Mareš Ing. Karel Bíža ÚJV EGP Ing. Zdeněk k Vlček ÚJV - EGP CÍL: Informovat o reálných možnostech zvýšení účinnosti

Více

VIESMANN VITOCROSSAL 300 Plynové kondenzační kotle 26 až 60 kw

VIESMANN VITOCROSSAL 300 Plynové kondenzační kotle 26 až 60 kw VIESMANN VITOCROSSAL 300 Plynové kondenzační kotle 26 až 60 kw List technických údajů Obj. č. a ceny: viz ceník VITOCROSSAL 300 Typ CU3A Plynový kondenzační kotel na zemní plyn a zkapalněný plyn (26 a

Více

Vytápění budov Otopné soustavy

Vytápění budov Otopné soustavy ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Vytápění budov Otopné soustavy 109 Systémy vytápění Energonositel Zdroj tepla Přenos tepla Vytápění prostoru Paliva Uhlí Zemní plyn Bioplyn

Více

Moderní kotelní zařízení

Moderní kotelní zařízení Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Moderní kotelní zařízení Text byl vypracován s podporou projektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

THERM 20, 28 CXE.AA, LXZE.A

THERM 20, 28 CXE.AA, LXZE.A TŘÍDA NOx THERM 0, CXE.AA, LXZE.A THERM 0, CXE.AA, LXZE.A Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do 0 kw popř. kw. Ohřev teplé vody (TV) je řešen variantně průtokovým způsobem či ohřevem

Více

SPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti. Přírodní a umělá paliva BIOMASA. Doc. Ing. Tomáš Dlouhý, CSc.

SPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti. Přírodní a umělá paliva BIOMASA. Doc. Ing. Tomáš Dlouhý, CSc. SPALOVÁNÍ A KOTLE Doc. Ing. Tomáš Dlouhý, CSc. 1 ENERGIE Energie je extensivní veličina definuje se jako schopnost hmoty konat práci vyskytuje se v nejrůznějších formách Z hlediska jejího využití se často

Více

Závěsné plynové průtokové ohřívače TV PANDA

Závěsné plynové průtokové ohřívače TV PANDA Závěsné plynové průtokové ohřívače TV PANDA PANDA 19 POG průtokový ohřívač TV na zemní plyn s výkonem 7,7 19,2 kw, odvod spalin do komína PANDA 24 POG průtokový ohřívač TV na zemní plyn s výkonem 9,8 24,4

Více

Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek

Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI 1 Zvyšování účinnosti R-C cyklu ZÁKLADNÍ POJMY Tepelná účinnost udává, jaké množství vloženého tepla se podaří přeměnit na užitečnou práci či elektrický výkon; vypovídá

Více

Závěsné kondenzační kotle. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. Zásobník s vrstveným ukládáním teplé vody actostor VIH CL 20 S

Závěsné kondenzační kotle. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. Zásobník s vrstveným ukládáním teplé vody actostor VIH CL 20 S Proč Vaillant? Tradice, kvalita, inovace, technická podpora., W ecotec plus Zásobník s vrstveným ukládáním teplé vody actostor VIH CL 20 S Protože myslí dopředu. Závěsné kondenzační kotle, W ecotec plus

Více

SPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti BIOMASA. doc. Ing. Tomáš Dlouhý, CSc. Obnovitelné palivo

SPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti BIOMASA. doc. Ing. Tomáš Dlouhý, CSc. Obnovitelné palivo SPALOVÁNÍ A KOTLE doc. Ing. Tomáš Dlouhý, CSc. 1 ENERGIE Energie je extensivní veličina definuje se jako schopnost hmoty konat práci vyskytuje se v nejrůznějších formách Z hlediska jejího využití se často

Více

Bc. Matěj Reiskup Návrh spalovenského kotle na spalování směsného komunálního odpadu

Bc. Matěj Reiskup Návrh spalovenského kotle na spalování směsného komunálního odpadu Bc. Matěj Reiskup Návrh spalovenského kotle na spalování směsného komunálního odpadu Abstrakt Diplomová práce se věnuje návrhu kotle spalujícího směsný komunální odpad. Úvodní kapitola je věnována uvedení

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_D.2.12 Integrovaná střední škola

Více

Závěsné kotle. Modul: Kondenzační kotle. Verze: 02 VU 466/4-5, VU 656/4-5 ecotec plus 02-Z2

Závěsné kotle. Modul: Kondenzační kotle. Verze: 02 VU 466/4-5, VU 656/4-5 ecotec plus 02-Z2 Nové závěsné kondenzační kotle VU 466/4-5 a 656/4-5 ecotec plus se odlišují od předchozích VU 466-7 ecotec hydraulickým zapojením. Původní kotel VU 466-7 ecotec byl kompletně připraven pro napojení nepřímotopného

Více

Závěsné kondenzační kotle

Závěsné kondenzační kotle Závěsné kondenzační kotle VU, VUW ecotec plus a Zásobník s vrstveným ukládáním teplé vody actostor VIH CL 20 S Výhody kondenzační techniky Snižování spotřeby energie při vytápění a ohřevu teplé vody se

Více

Naše nabídka zahrnuje kotle spalujících pevná, kapalná a plynná paliva, jakož i kotle na využití tepla z odpadních spalin.

Naše nabídka zahrnuje kotle spalujících pevná, kapalná a plynná paliva, jakož i kotle na využití tepla z odpadních spalin. Nové kotle Naše nabídka zahrnuje kotle spalujících pevná, kapalná a plynná paliva, jakož i kotle na využití tepla z odpadních spalin. Konstrukční řešení kotlů včetně příslušenství je provedeno v souladu

Více

THERM PRO 14 KX.A, XZ.A

THERM PRO 14 KX.A, XZ.A TŘÍDA NOx Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do kw. Ohřev teplé vody (TV) je řešen variantně v zabudovaném či v externím zásobníku. Ideální pro vytápění a ohřev TV v bytech. Univerzální

Více

Moderní energetické stoje

Moderní energetické stoje Moderní energetické stoje Jedná se o zdroje, které spojuje několik charakteristických vlastností. Jedná se hlavně o tyto: + vysoká účinnost + nízká produkce škodlivých látek - vysoká pořizovací cena! -

Více

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU. Cíl práce: Roštový kotel o jmenovitém výkonu 00 kw, vybavený automatickým podáváním paliva, je určen pro spalování dřevní štěpky. Teplo z topného okruhu je předáváno

Více

Univerzální středotlaké parní kotle KU

Univerzální středotlaké parní kotle KU Univerzální středotlaké parní kotle Popis Kotle jsou plamencožárotrubné, velkoprostorové kotle s přirozenou cirkulací kotelní vody, pro spalování kapalných a plynných paliv. Rozměry spalovací komory jsou

Více

Vliv paliva na konstrukční provedení kotle

Vliv paliva na konstrukční provedení kotle Předběžný návrh koncepce kotle a přípravy paliva Podle zadaných parametrů se volí typ parního generátoru (výparníku) s přirozeným oběhem, nucenou nebo superponovanou cirkulací průtočný. Zvolí se uspořádání

Více

PŘEHŘÍVÁK PÁRY. Charakteristika přehříváku

PŘEHŘÍVÁK PÁRY. Charakteristika přehříváku PŘEHŘÍVÁK PÁRY Účelem použití přehříváku je zvýšení účinnosti cyklu snížení vlhkosti po expanzi v turbíně. Pára se musí přehřívat na konstantní teplotu - materiál je obvykle využit do krajnosti Kolísáním

Více

Tepelně vlhkostní posouzení

Tepelně vlhkostní posouzení Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí

Více

ZPRÁVA O KONTROLE KOTLŮ A ROZVODŮ TEPELNÉ ENERGIE

ZPRÁVA O KONTROLE KOTLŮ A ROZVODŮ TEPELNÉ ENERGIE EMI-TEST s.r.o. Na Sibiři 451 549 54 Police nad Metují ZPRÁVA O KONTROLE KOTLŮ A ROZVODŮ TEPELNÉ ENERGIE podle 3 odstavec 1 a 3 vyhlášky 194/2013 Sb., o kontrole kotlů a rozvodů tepelné energie číslo 0043/14

Více

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. Vytápění místností. Princip

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. Vytápění místností. Princip ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Vytápění místností 67 Princip Zajištění tepelného komfortu pro uživatele při minimálních provozních nákladech Tepelná ztráta při dané teplotě

Více

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu: Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5

Více

Charakteristika výrobku VK 654/9-1654/9

Charakteristika výrobku VK 654/9-1654/9 VK 654/9-1654/9 Charakteristika výrobku VK 654/9-1654/9 - nízkoteplotní kotel s dvoustupňovým hořákem a vestavěnou spalinovou klapkou pro zachování konstantní účinnosti v obou režimech (1. stupeň/jmenovitý

Více

THERM 28 KD.A, KDZ.A, KDC.A, KDZ5.A, KDZ10.A

THERM 28 KD.A, KDZ.A, KDC.A, KDZ5.A, KDZ10.A TŘÍDA NOx THERM KD.A, KDZ.A, KDC.A, KDZ.A, KDZ0.A THERM KD.A, KDZ.A, KDC.A, KDZ.A, KDZ0.A sešit Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do kw. Díky široké modulaci výkonu se optimálně

Více

Závěsné kondenzační kotle. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. VU ecotec exclusiv

Závěsné kondenzační kotle. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. VU ecotec exclusiv Proč Vaillant? Tradice, kvalita, inovace, technická podpora. VU ecotec exclusiv Závěsné kondenzační kotle ecotec exclusiv Maximální přizpůsobení topného výkonu Široké možnosti použití Kondenzační kotle

Více

SMART 150 500 kw. Čistota přírodě Úspora klientům Komfort uživatelům

SMART 150 500 kw. Čistota přírodě Úspora klientům Komfort uživatelům Čistota přírodě Úspora klientům Komfort uživatelům AUTOMATICKÉ KOTLE NA BIOMASU SMART 0 00 kw Plně automatické, ekologické kotle s vynikajícími vlastnostmi Flexibilita technického řešení Variabilita použitelných

Více

Používání energie v prádelnách

Používání energie v prádelnách Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie v prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie 1

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV PARNÍ KOTEL NA DŘEVNÍ ŠTĚPKU S PÍSKEM 92,5T/H

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING ENERGETICKÝ ÚSTAV ENERGY INSTITUTE ROŠTOVÝ KOTEL NA SPALOVÁNÍ BIOMASY GRATE BOILER

Více

Systémem Pro E. Kotel má následující charakteristické vlastnosti: - NO X

Systémem Pro E. Kotel má následující charakteristické vlastnosti: - NO X s atmosférickým hořákem Závěsný kotel v komínovém provedení nebo s nuceným odvodem spalin s vodou chlazeným hořákem pro velmi nízký obsah škodlivin ve spalinách. řady exclusiv se vyznačují speciální konstrukcí

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Pevnostní dimenzování, bezpečnost Výměník je zařízení, které slouží

Více

PARNÍ TURBÍNY EKOL PRO VYUŽITÍ PŘI KOMBINOVANÉ VÝROBĚ ELEKTRICKÉ ENERGIE A TEPLA

PARNÍ TURBÍNY EKOL PRO VYUŽITÍ PŘI KOMBINOVANÉ VÝROBĚ ELEKTRICKÉ ENERGIE A TEPLA PARNÍ TURBÍNY EKOL PRO VYUŽITÍ PŘI KOMBINOVANÉ VÝROBĚ ELEKTRICKÉ ENERGIE A TEPLA PARNÍ TURBÍNY EKOL PRO VYUŽITÍ PŘI KOMBINOVANÉ VÝROBĚ ELEKTRICKÉ ENERGIE A TEPLA Ing. Bohumil Krška Ekol, spol. s r.o. Brno

Více

TECHNICKÁ ZAŘÍZENÍ BUDOV

TECHNICKÁ ZAŘÍZENÍ BUDOV Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Cvičení pro bakalářské studium studijního oboru Příprava a realizace staveb Cvičení č. 7 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly

Více