Uspořádání genů v genomech
|
|
- Rostislav Macháček
- před 7 lety
- Počet zobrazení:
Transkript
1 Genomika
2 GEOGRAFIE GENOMU
3 Uspořádání genů v genomech
4 Syntenie - konzervativita pořadí genů druhy I. II. III. A A B C1 C2 D E B C E
5 A.thaliana sondy vs. B. oleracea BACy plné kolečko gen přítomen Makro- vs. mikro- kolinearita - konzervativita v dlouhých úsecích - mikrostruktura více dynamická, mísení s jinými geny - polyploidie urychluje evoluci mikrostruktury - změny nastanou již u prvních generací syntetického alotetraploida u Brassica A. thaliana vs. Capsella rubella (7mil)
6 Rychlá evoluce oblasti rezistence k patogenu - gen RPP5 rezistence k Perenospora parasitica - rozdíly mezi A.t. ekotypy Lansberg erecta a Columbia - většinou pseudogeny - tandemové duplikace a nerovnoměrný crossing-over jsou mechanizmem rychlé evoluce Columbia Lansberg erecta
7 Různé počty chromosomů u blízce příbuzných druhů jelínků Muntiacus Zvětšování gonozomů, snižování počtu autozomů různé druhy
8 Recyklace pohlavních chromosomů u drozofily První Y chromosom: original Y : - vymizel před více než 60 mil. lety Druhý Y chromosom: ancestral Y : - párování B chromosomu s X chromosomem ~ před 60 mil. let - získání užitečných genů z autosomů - degenerace Třetí Y chromosom: neo Y - fúze X s autosomem - připojení ancestrálního Y na A - opět degenerace neo-y
9 Srovnání lidských a myších chromosomů Od evoluční divergence (společný předek) došlo k mnoha translokacím, skupiny genů jsou různě kombinované. člověk myš
10 Chromosomové přestavby Zlom chromatidy a opětovné spojení Rekombinace mezi repeticemi
11 Izochorový model organizace genomu Isochory: bloky genomové DNA (stovky kb-mb) s charakteristickým GCobsahem - fragmentace genomové DNA na fragmenty kb - separace fragmentů podle obsahu bází - shlukování do skupin s diskrétními GC-obsahy, u člověka typy L1, L2, H1, H2 a H3 (GC nejbohatší, tvoří jen 3% ale obsahuje 25% genů) - Mozaiková struktura genomu obratovců a rostlin Původ izochor: Výsledek selekce? Výsledek mutací? Genová konverze?
12 Procesy vedoucí ke tvorbě izochor Mutační bias: - včleňování nukleotidů při replikaci je ovlivněno koncentrací volných nukleotidů - koncentrace nukleotidů závisí na poloze v jádře - různé části genomu replikovány v různou dobu - příčinou izochor je různá účinnost reparace DNA - izochory jsou důsledkem deaminace cytosinu (C-U), častější v ATbohatých oblastech, jejich růst Selekce: - izochory jsou výsledkem selekce - selekce na úrovni teplotní stability DNA a zastoupení AK Genová konverze: - korelace mezi rekombinací a obsahem GC
13 Chirochory Úsek genomu, který vykazuje odchylky od paritního zastoupení bází. Je obsazen geny, které preferují určitou orientaci, zaujímá oblast mezi dvěma začátky replikace (origin). Mají různý obsah bází v komplementárních vláknech bakteriální DNA. Oblasti s homogenním zastoupením bází v jednom vlákně. Korelace s polohou replikačního počátku. Není známo, zda chirochory mohou být adaptivní, ale poslední výsledky naznačují funkční polarizaci chromosomu E. Coli a mohou být pro tento problém důležité.
14 Chirochory C A T G Bacillus subtilis Vectorové znázornění genomové DNA sequence Escherichia coli
15 Jak studovat evoluci genomu? Simulace evoluce in silico Evoluční experimenty in laboratory - SELEX experimenty ribozymy, aptamery - selekce bakterií - řízená evoluce in vitro řízená evoluce
16 Struktura genomu Opakování: Prokaryota: obvykle 1 kružnicová (nebo lineární) molekula (nukleoid) volně v cytoplazmě a plazmidy (kružnicové nebo lineární). Eukaryota: genom segmentovaný na jednotlivé chromozomy, jádro odděleno od cytoplazmy. V cytoplazmě mitochondriální DNA (kružnicová), u rostlin chloroplastová DNA (lineární!!), u někt. plazmidy (kvasinky). Archea: cirkulární dsdna rozdělené u řady zástupců do více molekul, chybí jaderná membrána.
17 Struktura genomu virů Segmentovaný, nesegmentovaný; DNA, RNA; lineární, kružnicový. Složitá taxonomie, zde stručně: + ssrna viry - hepatitida A, dětská obrna, klíšťová encenfalitida, SARS, zarděnky - ssrna viry - chřipka, spalničky, příušnice, vzteklina dsrna viry Reoviridae, případně viroidy, virusoidy (nejsou viry) Retroviry (ssrna do dsdna, reverzní transkripce, např. HIV), + DNA retroviry (např. hepadnaviry hepatitida B) ssdna viry parvoviry, onemocnění zvířat, např. psů a koček, někteří bakteriofágové M13, ΦX170 dsdna viry - papillomaviry bradavice; většina bakteriofágů; adenoviry onemocnění dýchacích cest; herpesviry plané neštovice, pásový opar
18 Struktura genomu virů Počet genů: 3 nejmenší RNA viry (bakteriofág MS2) 9-11 nejmenší DNA viry (ΦX174) cca 150 největší DNA viry (bakteriofág T2) Virus vztekliny
19 PB2 PB1 PA HA NP NA M NS Influenza (Orthomyxoviridae) virus chřipky minus ssrna, 8 segmentů, 8 genů, 10 proteinů HIV (Human Immunodeficiency Virus, Lentiviridae) retrovirus, 2 plus ssrna, 9 genů (nejen gag, pol, env), 15 proteinů RNA viry rychle mutují!!! RNA polymeráza nemá korekční aktivitu
20 Struktura genomu prokaryot Genom do 5 Mbp, genů, málo nekódujících sekvencí. Nukleoid svinutý do smyček okolo středu. RNA drží smyčky u sebe, proteiny drží nadšroubovicové závity. Neutralizace náboje DNA proteiny H1, Hu, kationty, polyaminy aj. E. coli: DNA 1,5 mm, průměr buňky 1 um
21 Velikost genomů prokaryot Bakteriální genom: >10 7 (=0.6-10Mb; =600 tis. 10 mil.) nejmenší známý: Mycoplasma genitalium (480 genů kódujících proteiny, 3 rrna geny, 37 trna genů) Velikost genomů prokaryot je zhruba úměrná počtu genů Procesy ovlivňující velikost bakteriálního genomu: Genová duplikace, malé delece a inzerce, transpozice, horizontální přenos, ztráta genů v parazitických liniích, atd.
22 Prokaryotický genom Obvykle jeden cirkulární chromosom, existují ale i bakterie s lineárními chromosomy. Plasmidy. Nesou za určitých podmínek užitečné geny (rezistence k antibiotikům, schopnost konjugace, syntéza toxinů, patogenita). Snadný přenos mezi jedinci i druhy. Velikost prokaryotického genomu obvykle nepřesahuje 5 Mb. Nejmenší genom mají bakterie mykoplazmy. Kompaktní uspořádání genomů. Nekódující DNA zabírá jen malou část genomu. Díky tomu rychlá replikace a množení buněk. Jednoduché geny nemají introny. Operonové uspořádání genů. Geny v jednom operonu regulovány z jedné cis-regulační oblasti. Přepisují se do jednoho transkriptu.
23 Prokaryotický genom U prokaryot zejména platí, že snadno části genomu získávají a snadno ztrácí. To platí zejména pro plazmidy, ale také pro jadernou DNA.
24 Velikosti genomů prokaryot Velikost genomů v Mbp (milionech)
25 Minimální genom Mycoplasma 580 kb genom/ 480 genů pro proteiny/ 37 genů pro trna 2209 inzercí transpozonů/ ve 140 genech 1354 míst, kde inzerce nebyla letální genů nepostradatelných (glykolýza) genů postradatelných 100 genů má neznámou funkci!!! různý vliv inzercí podle polohy inzerce v genu
26 Minimální genom Bacillus subtilis 271 gen 4100 genů 192 genů zcela nepostradatelných na bohatém prostředí: zpracování informace, buněčná stěna, energie 79 genů podstatných Jen 4% genů má neznámou funkci
27 Minimální velikost genomu: (a) Analytický přístup Srovnání kompletních bakteriálních genomů: Translation Recombination and DNA repair E. coli 1,146 Replication Chaperone-like proteins Transcription Anaerobic metabolism H.influenzae 889 1, M.genitalium Lipid or cofactor biosynthesis Transmembrane transporter Some unknown function Překrývající se ortologní geny (239) + přesun neortologních genů geny specifické pro parazitické bakterie nebo funkční redundance = 256 genů
28 Minimální velikost genomu: (b) Experimentální přístup Knock-out 79 náhodně vybraných genů Bacillus subtilis: - pouze 6 letálních, 73 je postradatelných 7.5% (6/79) genomu je nepostradatelných - B.subtilis genome: bp 7.5% = bp Průměrná velikost genu je 1.25kb, takže minimální velikost genomu 254 genů
29 Největší prokaryotické genomy Pseudomonas aeruginosa (bakterie): genů - přes 6 Mb - přirozeně rezistentní k antibiotikům (ochranný obal) - R-faktor, žije ve společenství jiných bakterií, konjugace - lidský patogen (kožní n., močové, dýchací a trávicí cesty) Repetice N.p. Nostoc punctiforme (sinice): ORF Mb - repetice, transpozony - fotoautotrofní, také fakultativně heterotrofní - možnost symbiózy s rostlinami i houbami
30 Struktura genomu prokaryot Plazmidy většinou nesou neesenciální geny, nicméně mohou mít zajímavé vlastnosti - rezistence na antibiotika, pro konjugaci (F plazmid), syntéza toxinů zabíjejících bakterie (Col plazmidy), patogenita (Ti plazmid u Argobacterium tumefaciens, transgenoze).
31 Struktura genomu prokaryot Borrelia burgdorferi - hlavní lineární genom, k tomu 17 lineárních nebo cirkulárních plazmidů, nesou i esenciální geny, naopak Treponema pallidum je příbuzný druh, nemá Vibrio cholerae 2 cirkulární chromozomy A. tumefaciens 3 cirkulární a 1 lineární
32 Struktura genomu prokaryot
33 Struktura genomu eukaryot Lineární, segmentovaný na chromozomy.
34 Hlavní komponenty eukaryotického genomu Kódující části genů: - u prokaryot tvoří většinu genomu - u eukaryot méně, člověk genů 1.5% Introny: - původně považovány za příčinu C-paradoxu, - tvoří většinu genů Pseudogeny: - klasické, retropseudogeny, člověk, myš, 51 kur, 33 kvasinka, 176 drosophila Mobilní elementy: - LTR, nonltr SINE, LINE, DNA transposony- MITE Numt, Nupt: - inzerce promiskuitní DNA
35 Eukaryotický genom Velké genomy. U některých rostlin (např. lilie) a obojživelníků (např. mloci) až 100 Gb. Genom rozdělen do několika lineárních chromosomů. Mitochondriální a chloroplastová DNA (prokaryotického původu). Složené geny (exony, introny). Jednotlivé geny mají vlastní cis-regulační oblasti (promotory, enhancery). Často daleko od kódující sekvence. Častá trans-regulace genové exprese (transkripční faktory). Díky tomu geny v genomu eukaryot uspořádány více náhodně. Existují, ale výjimky (např. Hox geny). Geny s podobným expresním profilem mají tendenci se v genomu shlukovat. Většina genomu je nekódující (introny, regulační oblasti, junk DNA).
36 Myrmecia pilosula skákající mravenec Žije v jižní Austrálii a na Tasmánii 2n = 2 Nejméně 1n Ophioglossum reticulatum Kapradina hadilka 2n = 1260, ale velká variabilita Nejvíce
37 Chromozóm
38 Člověk DNA dlouhá 2 metry, 3 x 10 9 bp x 2 pro diploidní genom x 0,34 nm vzdálenost mezi bp. Buňka mm, mnohonásobná spiralizace. 2n = 46. Záporný náboj DNA vyvážen histony (bazické proteiny). Další komponenty chromatinu.
39 Prokaryota - eukaryota Prokaryota: - Malé, kompaktní genomy, v podstatě jen geny. - Výjimečně mají introny v genech (v rrna, trna genech. - Nukleoid neoddělen od cytoplazmy membránou, translace přímo navazuje na transkripci! - 1 replikační počátek. - Genom je haploidní. Eukaryota: - Větší genomy, nižší hustota genů (klastry genů vs. genové pouště). - Velké procento genu tvoří introny (kombinace exonů, rekombinace, snížení rizika mutací). - Rozsáhlé intergenové oblasti (unikátní nebo repetitivní), větší počet regulačních sekvencí. - Jaderná membrána, posttranskripční úpravy pre-mrna (hnrna), potom přesun do cytosolu. - Více replikačních počátků. - Diploidní nebo polyploidní genom.
40 Genová denzita
41 savci ptáci plazi obojživelníci ryby kostnaté ryby chrupavčité ostnokožci korýši hmyz měkkýši červi plísně rostliny řasy houby grampozitivní bakterie gramnegativní bakterie mykoplazmata Velikost genomů
42 Velikost genomů Rostliny velké rozpětí. Savci malé rozpětí. Někteří obojživelníci řádově větší genom než savci.
43 Velikost genomů Velikost vybraných haploidních genomů Organismus Velikost (bp) Rok přečtení První osekvenovaný genom bakteriofág MS ssrna viru bakteriofág ΦX ssdna viru bakterie Haemophilus inluenzae 1, prokaryotického org. kvasinka Saccharomyces cerevisiae 12, eukyraotického org. hlístice Caenorhabditis elegans vícebuněčného org. rostlina Arabidopsis thaliana rostliny člověk Homo sapiens sapiens 3, savce největší známý genom (dosud měňavka Amoeba dubia nepřečtený)
44 Paradox hodnoty C C-hodnota je obsah DNA v haploidním genomu (bp, pg). Paradox C-hodnoty - neexistuje jednoduchý přímý vztah mezi velikostí genomu a biologickou (genetickou) komplexitou organizmu. Rozdílná velikost genomu u blízce příbuzných organismů podobné komplexity daná jednak celogenomovými duplikacemi a jednak zmnožením repetitivních sekvencí. Totéž platí i pro G-hodnotu (počet genů). Nejmenší genom má Mycoplasma genitalium 500kb. Největší genomy mají např. mloci, nebo liliovité rostliny (velikost ca 100x lidský genom).
45 Paradox hodnoty C H. sapiens má 200x menší genom než Amoeba dubia. Délka kódující DNA je podobná, příčinou je nekódující, sobecká DNA. 180 Mb 18,000 Mb Drosophila melanogaster Podisma pedestris Genomy eukaryot se liší až x.
46 Velikosti genomů eukaryot Eukaryotický genom: ~ (= 8.8Mb 690Gb; = 8 mil. 800 tis. 690 mld.) Nejmenší známý: Saccharomyces cerevisiae a jiné houby Velikosti eukaryotických genomů nejsou! úměrné počtu genů nebo komplexitě organizmu
47 Změny velikosti genomu Zvětšení celkové zvětšení: polyploidizace (duplikace celého genomu) duplikace části genomu, zmnožení počtu chromosomů duplikace genů a skupin genů expanze heterochromatinu amplifikace transpozonů a retroelementů inzerce virové DNA inzerce organelové DNA expanze mikrosatelitů Vzrůstající komplexita živých forem byla doprovázena vzrůstem velikosti genomů a počtu genů
48 Celkové zvětšení genomu Polyploidizace (duplikace celého genomu): Autopolyploidie: multiplikace jedné základní sady chromosomů, jeden organizmus, chyba při meioze (růže ) Allopolyploidie: kombinace geneticky odlišných sad chromosomů (pšenice ) Kryptopolyploidie: dávná polyplodizace, organizmus se jeví jako diploidní, přestavby delece, translokace, kvasinka, obratlovci, obilniny, odhalení až sekvenací Duplikace části genomu: chromosomů - polysomie (trisomie), většinou letální, genová imbalance, evolučně irelevantní genů nebo skupin genů
49 Výhody a nevýhody polyploidů Definice, vznik chyba nebo indukce, živočichové partenogeneze, rostliny fertilní (4n, 8n) vs. sterilní hybridi (3n, tetra+di) Skoková (kvantová) změna velikosti genomu nadějné monstrum musí najít partnera Schopnost obsazovat nová prostředí, převládá v evoluci rostlin, i u obratlovců Noví polyploidi nestabilní radikalní přestavby genů rychlá diverzifikace - speciace (změněný počet chromosomů vede k reprodukční izolaci) Multiplikace klíčových genů v regulaci vývoje multiplikace klastrů homeotických genů vedla k enormní diverzitě druhů ryb
50 Růst velikosti genomu: Polyplodizace Chyba v meioze vede k diploidním gametám Fúze diploidní a haploidní gamety vede k triplodnímu jádru, triploidní organizmus je však sterilní
51 Mechanizmy zvětšení genomů Duplikativní (retro)transpozice Nerovnoměrný (unequal) crossing-over Replikační klouzání (Replication slippage) Genová amplifikace (rolling circle replication)
52 Zmenšování genomů Př. homologická rekombinace mezi různými kopiemi retroelementů v rámci jednoho řetězce DNA musí to být rekombinace mezi přímými repeticemi!!, vyštěpí se kus chromozomu a je ztracen (nemá centromeru) markerem po deleci jsou solo LTR sekvence
53 Evoluční síly ovlivňující velikost genomu
54 Změny ve velikosti genomů: plynulé nebo skoky? Plynulost: - savci, ptáci, kostnaté ryby - postupná akumulace nebo delece, malé segmenty DNA - normální distribuce velikostí genomů v těchto skupinách - podíl jedinečných sekvencí konstantní, mění se spolu se změnou velikosti genomu, je dán velikostí intronů Skoky (kvantové změny): - bezobratlí, rostliny (50% nahosemenných je polyploidní), vyjímečně obratlovci - polyploidizace, přídatná replikace některého chromosomu, kryptopolyploidizace (koordinovaná replikace všech repeticí v genomu Chironomus) - kvantové rozdíly mezi blízkými příbuznými, velké rozdíly ve velikostech genomů
55 Genom kvasinky: Polyploidizace nebo duplikace segmentů? 54 nepřekrývajících se duplikovaných oblastí 50 z nich si zachovalo stejnou orientaci vzhledem k centroméře nebyla nalezena žádná triplikovaná oblast, přičemž 7 oblastí by bylo očekáváno dle Poissonova rozložení příbuzné druhy bez duplikace Kluveromyces waltii a Ashbya gossypii 457 genových párů 17% se vyvíjí rychleji než jejich homology u K. waltii Duplikace jsou výsledkem tetraploidie spíše než postupných regionálních duplikací
56 Polyploidizace v linii obratlovců S. Ohno: - dvě genomové duplikace u obratlovců hypotéza 2R (2 rounds) - některé genové rodiny mají 4 členy u obratlovců a jednu u bezobratlých - srovnání ježovky (bezobratlý) s obratlovci (člověkem, myší a rybou Fugu) - v genomu člověka dlouhé segmenty ve čtyřech kopiích podél všech chromosomů Duplikace genomu před 450 mil let napomohla vzrůstu komplexity a diverzifikaci obratlovců
57 Polyploidizace u rostlin Arabidopsis: - duplikace před mil. let - možná i více než 4 genomové duplikace - asi 60% genomu leží v duplikovaných segmentech - 50% genů v nich je konzervováno
58 Polyploidní plodiny - tetraploidi: kukuřice, bavlna, brambor, zelí - hexaploidi: pšenice, chrysantéma - oktoploidi: jahodník
59 Genomová obezita u rostlin jednosměrný proces? Teorie sobecké DNA (Dawkins, 1976) -jediným cílem DNA je se replikovat Dva modely: - pouze růst genomů - růst i zmenšování genomů Limity růstu genomů: - fitness hostitele - mechanizmy potlačující amplifikaci metylace - mechanizmy odstraňování repeticí rekombinace - nonltr u Laupala x drosophila rychlost delecí - BARE 42x více solo LTR než vnitřních částí - rekombinace uvnitř i mezi elementy - selekce na kratší LTR, solo LTR nejdelší
60 Počet genů a evoluce duplikovaného genomu ABCDEFGHIJKLM NOPQRSTUVWXYZ ABCDEFGHIJKLM a b c d e f g h i j k l m NOPQRSTUVWXYZ a b c d e f g h i j k l m n o p q r s t u v w x y z 26 genes, 2 chomosomes Tetraploidizace 26 genes, 2 chomosomes Ztráta genů n o p q r s t u v w x y z 52 genes, 4 chomosomes AB DEF HI KLM b c e g h j k m N PQ TUV X Z n o p r s t v w x y bc E F H Translokace s t v w x y AB D e g h j k m N PQ TUV X Z AB DEF H s t v w x y b c e g h j k m N PQ TUV X Z n o p r I KLM 36 genes, 4 chomosomes n o p r I KLM
61 Vzrůst počtu genů, potlačení šumu a biologická komplexita eukaryota obratlovci Prokaryota, eukaryota: Potlačení šumu - separace transkripce a translace, jaderná membrána a histony Obratlovci: Potlačení šumu metylace genů, mobilních elementů a duplikátů prokaryota
62 Metylace u obratlovců mechanizmus potlačení šumu Obratlovci: - geny jsou metylovány, CpG-ostrovy nemetylovány - genové oblasti chudé na dinukleotidy CpG
63 Komplexita vzniká snadno, kontroluje se ale obtížně Komplexita organismu nekoreluje s počtem genů kódujících proteiny (rýže má více genů než člověk) Zbytečná DNA může kódovat RNA s různými regulačními funkcemi Geny - ostrovy v moři regulačních sekvencí
64 Nekódující DNA: Regulační systém na bázi RNA? introny MicroRNA
65 Regulační systém na bázi RNA Vznik nového regulačního systému
66 NEKÓDUJÍCÍ DNA A VELIKOST GENOMU
67 Teorie úlohy nekódující DNA: adaptivní role vs. sobecká DNA - Jaké evoluční síly produkují zbytečnou DNA? - Jaká je role zbytečné DNA? - Proč selekce toleruje zbytečnou DNA? Adaptivní role: vliv nadbytečné DNA na fenotyp, vliv na velikost jádra a buňky, ochrana kódujících sekvencí před mutacemi, pufrování koncentrace regulačních proteinů Sobecká DNA (junk DNA): Parazitické sekvence, mobilní elementy, fixace genetickým driftem, velikost genomu je tolerovatelné maximum závisející na ekologických a vývojových potřebách organizmu
68 Big Bang v genomu kukuřice polyploidizace amplifikace transpozonů a retroelementů Exploze před 6 mil let Více inzercí do mezigenových oblastí Exponenciální růst mezigenových vzdáleností
69 Závislost velikosti genomu na zaměpisné šířce a nadmořské výšce - korelace mezi velikostí genomu a teplotním režimem - větší genomy nebo polyploidi: - arktické lososovité ryby - zooplankton arktických jezer (Daphnia, Bosmina) - rostliny v polárních oblastech - populace v teplých oblastech jsou diploidní
70 Obsah DNA je proměnlivý i v rámci jedince Zvýšení obsahu DNA - endopolyploidie a polytenie: - drosophila - polytenní chromosomy ve slinných žlázách - Daphnia - tkáňově-specifické rozdíly v ploidii, C, vliv na velikost vajíčka, vliv na morfologii hlavy indukovanou predátorem - Bombyx mori ploidní buňky žláz produkujících hedvábí - korelace ploidie a velikosti buňky Snížení obsahu DNA v somatických buňkách: - nematoda, bičíkovci, dvoukřídlí, - např. Cyclops strenuus somatické b. mají 5% obsahu DNA oproti oplozenému vajíčku - vysvětlení z hlediska sobecké DNA delece DNA ze slepé somatické linie a ne ze zárodečné linie, jak repetitivní DNA může tak významně ovlivnit genetické mechanizmy svého hostitele - změna obsahu DNA během života jako odpověď na stimuly rozpor s Darwinismem
71 Vliv velikosti genomu na fenotyp Velikost genomu koreluje s: + - velikostí jádra - velikostí buňky (nucleotypic effect) - dobou mitózy a meiózy - minimální generační dobou - velikostí semen - odpovědí letniček vůči CO 2 - dobou vývoje embrya u mloků - - rychlostí bazálního metabolismu u obratlovců (negativní korelace) (malý genom ptáků a netopýrů - rychlý metabolismus při letu, velký genom ryb estivace, letní spánek za hypoxických podmínek) - morfologickou komplexitou mozků u žab a mloků (negativní korelace)
Genomika GEOGRAFIE GENOMU
Genomika GEOGRAFIE GENOMU 1 Uspořádání genů v genomech Syntenie - konzervativita pořadí genů druhy I. II. III. A A B C1 C2 D E B C E vysoká konzervace sekvencí genů a jejich pořadí bez homologie sekvencí
První genomy vznik fúzováním malých kružnic DNA
Obsah Velikosti genomů u prokaryot Minimální genom a miniaturizace genomu Velikost genomů u eukaryot a paradox hodnoty C Globální zvýšení velikosti genomu, polyploidizace Negenová DNA Repetitivní charakter
Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.
Genomika Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat ji v termínech životních pochodů. Strukturní genomika stanovení sledu nukleotidů genomu organismu,
Struktura a organizace genomů
CG020 Genomika Přednáška 8 Struktura a organizace genomů Markéta Pernisová Funkční genomika a proteomika rostlin, Mendelovo centrum genomiky a proteomiky rostlin, Středoevropský technologický institut
O původu života na Zemi Václav Pačes
O původu života na Zemi Václav Pačes Ústav molekulární genetiky Akademie věd ČR centrální dogma replikace transkripce DNA RNA protein reverzní transkripce translace informace funkce Exon 1 Intron (413
Transpozony - mobilní genetické elementy
Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné
Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.
Genomika Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat ji v termínech životních pochodů. Strukturní genomika stanovení sledu nukleotidů genomu organismu,
Evoluční genetika 2/1 Zk/Z
Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
http://www.accessexcellence.org/ab/gg/chromosome.html
3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Nebuněčný život (život?)
Nebuněčný život (život?) Nebuněčný život (život?) 1. viry 2. viroidy (infekční RNA) 3. satelity (subvirální infekční jednotky, jejichž replikace buňkou je zajištěna koinfekcí pomocným virem ) (a) satelitní
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Struktura a analýza rostlinných genomů Jan Šafář
Struktura a analýza rostlinných genomů Jan Šafář Ústav experimentální botaniky AV ČR, v.v.i Centrum regionu Haná pro biotechnologický a zemědělský výzkum Proč rostliny? Proč genom? Norman E. Borlaug Zelená
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 KBB/ZGEN Základy genetiky Dana Šafářová KBB/ZGEN Základy genetiky Rozsah: 2+1
Evoluční genetika 2/1 Zk/Z
Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
25.2.2014. Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.
Genomika Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat ji v termínech životních pochodů. 1 Strukturní genomika stanovení sledu nukleotidů genomu organismu,
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura
DNA se ani nezajímá, ani neví. DNA prostě je. A my tancujeme podle její muziky. Richard Dawkins: Řeka z ráje.
Genomika DNA se ani nezajímá, ani neví. DNA prostě je. A my tancujeme podle její muziky. Richard Dawkins: Řeka z ráje. Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat
Teorie neutrální evoluce a molekulární hodiny
Teorie neutrální evoluce a molekulární hodiny Teorie neutrální evoluce Konec 60. a začátek 70. let 20. stol. Ukazuje jak bude vypadat genetická variabilita v populaci a jaká bude rychlost evoluce v případě,
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Evoluční genetika 2/1 Zk/Z
Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením
A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům
Karlova univerzita, Lékařská fakulta Hradec Králové Obor: všeobecné lékařství - test z biologie Vyberte tu z nabídnutých odpovědí (1-5), která je nejúplnější. Otázka Odpověď 1. Mezi organely membránového
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek
Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
Teorie neutrální evoluce a molekulární hodiny
Teorie neutrální evoluce a molekulární hodiny Teorie neutrální evoluce Konec 60. a začátek 70. let 20. stol. Ukazuje jak bude vypadat genetická variabilita v populaci a jaká bude rychlost divergence druhů
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny
Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů
Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Maturitní témata - BIOLOGIE 2018
Maturitní témata - BIOLOGIE 2018 1. Obecná biologie; vznik a vývoj života Biologie a její vývoj a význam, obecná charakteristika organismů, přehled živých soustav (taxonomie), Linného taxony, binomická
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
Cytosin Thymin Uracil
ukleové kyseliny fosfát - P - nukleotid nukleová báze C 2 3' 4' 5' cukr 2 1' 2' 5' báze C 2 1' 3' 2' 4' nukleosidy C 2 3' báze 1' b-d- ribofuranóza b-d-deoxyribofuranóza 4' 5' 2' - P - 2 - P - Cytosin
MOBILNÍ GENETICKÉ ELEMENTY. Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
MOBILNÍ GENETICKÉ ELEMENTY Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. Demerec (1937) popsal nestabilní mutace u D. melanogaster B. McClintocková (1902-1992, Nobelova cena 1983) ukázala ve
Definice genu. = základní jednotka genetické informace zapsaná v NK
Definice genu = základní jednotka genetické informace zapsaná v NK Podle šíře definice: 1. všechny sekvence DNA potřebné k syntéze proteinu nebo RNA, tedy i regulační a signální sekvence (nejširší) 2.
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Evoluce bakteriálních genomů
Evoluce bakteriálních genomů Charakteristické rysy: Rychlé a rozsáhlé změny ve struktuře a informačním obsahu genomu - Vnitřní přestavby - Získávání a ztráty genů a genetických elementů Vývoj kmenů v rámci
B6, 2007/2008, I. Literák
B6, 2007/2008, I. Literák REPLIKACE GENETICKÉ INFORMACE REPLIKACE GENETICKÉ INFORMACE život závisí na stabilním uchovávání a předávání genetické informace v buňce jsou mechanismy pro: přesné kopírování
Okruhy otázek ke zkoušce
Okruhy otázek ke zkoušce 1. Úvod do biologie. Vznik života na Zemi. Evoluční vývoj organizmů. Taxonomie organizmů. Původ a vývoj člověka, průběh hominizace a sapientace u předků člověka vyšších primátů.
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy)
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy) Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza
Molekulární a buněčná biologie, genetika a virologie
Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze ( https://www.lf2.cuni.cz) Molekulární a buněčná biologie, genetika a virologie Okruhy otázek ke státní doktorské zkoušce Část molekulární biologie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Populační genetika III. Radka Reifová
Populační genetika III Radka Reifová Genealogie, speciace a fylogeneze Genové genealogie Rodokmeny jednotlivých kopií určitého genu v populaci. Popisují vztahy mezi kopiemi určitého genu v populaci napříč
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Co se o sobě dovídáme z naší genetické informace
Genomika a bioinformatika Co se o sobě dovídáme z naší genetické informace Jan Pačes, Mgr, Ph.D Ústav molekulární genetiky AVČR, CZECH FOBIA (Free and Open Bioinformatics Association) hpaces@img.cas.cz
M A T U R I T N Í T É M A T A
M A T U R I T N Í T É M A T A BIOLOGIE ŠKOLNÍ ROK 2017 2018 1. BUŇKA Buňka základní strukturální a funkční jednotka. Chemické složení buňky. Srovnání prokaryotické a eukaryotické buňky. Funkční struktury
Mutace jako změna genetické informace a zdroj genetické variability
Obecná genetika Mutace jako změna genetické informace a zdroj genetické variability Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Využití živých organismů pro uskutečňování definovaných chemických procesů pro průmyslové nebo komerční aplikace Organismus je geneticky upraven metodami genetického
Vytvořilo Oddělení lékařské genetiky FN Brno
GONOSOMY GONOSOMY CHROMOSOMY X, Y Obr. 1 (Nussbaum, 2004) autosomy v chromosomovém páru homologní po celé délce chromosomů crossingover MEIÓZA Obr. 2 (Nussbaum, 2004) GONOSOMY CHROMOSOMY X, Y ODLIŠNOSTI
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
Stavba prokaryotické buňky
Prokaryota Stavba prokaryotické buňky Stavba prokaryotické buňky Tvary bakterií Rozmnožování bakterií - 1) příčné dělení nepohlavní 2) pučení 3) pomocí artrospór artrospóra vzniká fragmentací vláken u
Základní učební text: Elektronické zpracování Biologie člověka; přednášky Učebnice B. Otová, R. Mihalová Základy biologie a genetiky člověka,
Základní učební text: Elektronické zpracování Biologie člověka; přednášky Učebnice B. Otová, R. Mihalová Základy biologie a genetiky člověka, Karolinum 2012 Doporučená literatura: Kočárek E. - Genetika.
Struktura, vlastnosti a funkce nukleových kyselin, DNA v jádře, chromatin.
Struktura, vlastnosti a funkce nukleových kyselin, DNA v jádře, chromatin. Nukleové base - purinové a pyrimidinové Ribonukleosidy - base + ribosa Deoxyribonukleosidy base + 2 - deoxyribosa Nukleotidy,
Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci
Evoluce RNA Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci Po určité období měl obě funkce jeden typ sloučenin, RNA - informační i
BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů
Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením:
Otázka: Molekulární základy dědičnosti Předmět: Biologie Přidal(a): Mulek NUKLEOVÉ KYSELINY -nositelkami genetické informace jsou molekuly nukleových kyselin tvořené řetězci vzájemně spojených nukleotidů,
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Crossing-over. over. synaptonemální komplex
Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Využití houbových organismů v genovém inženýrství MIKROORGANISMY - bakterie, kvasinky a houby využíval
ZÁKLADY BAKTERIÁLNÍ GENETIKY
Zdroj rozmanitosti mikrorganismů ZÁKLADY BAKTERIÁLNÍ GENETIKY Různé sekvence nukleotidů v DNA kódují různé proteiny Různé proteiny vedou k různým organismům s různými vlastnostmi Exprese genetické informace
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Zaměření bakalářské práce (témata BP)
Zaměření bakalářské práce (témata BP) Obor: Buněčná a molekulární diagnostika - zadává katedra - studenti si témata losují Obor: molekulární biologie a genetika - témata BP vychází z vybraného tématu DP
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Počítačové vyhledávání genů a funkčních oblastí na DNA
Počítačové vyhledávání genů a funkčních oblastí na DNA Hodnota genomových sekvencí záleží na kvalitě anotace Anotace Charakterizace genomových vlastností s použitím výpočetních a experimentálních metod
Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách
Molekulární biotechnologie č.8 Produkce heterologního proteinu v eukaryontních buňkách Eukaryontní buňky se využívají v případě, když Eukaryontní proteiny syntetizované v baktériích postrádají biologickou
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 6. Struktura nukleových kyselin Ivo Frébort Struktura nukleových kyselin Primární struktura: sekvence nukleotidů Sekundární struktura: vzájemná poloha nukleotidů
Sekvenování genomů. Human Genome Project: historie, výsledky a důsledky. MUDr. Jan Pláteník, PhD. Počátky sekvenování
Sekvenování genomů Human Genome Project: historie, výsledky a důsledky MUDr. Jan Pláteník, PhD. (prosinec 2006) Počátky sekvenování 1965: přečtena sekvence trna kvasinky (80 bp) 1977: vynalezena Sangerova
Výukový materiál zpracován v rámci projektu EU peníze školám
http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;
MECHANIZMY EPIGENETICKÝCH PROCESŮ
MECHANIZMY EPIGENETICKÝCH PROCESŮ METYLACE DNA Metylace DNA Adice metylové skupiny (CH 3 ) na 5. uhlík cytosinu Obvykle probíhá pouze na cytosinech 5 vůči guanosinu (CpG) Cytosin NH 2 5-Metylcytosin NH
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
Inovace studia molekulární a buněčné biologie. reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. Z.1.07/2.2.00/07.0354 Předmět: KBB/OPSB íl přednášky: Dokončení problematiky Molekulární podstaty genetické informace, objasnění principu replikace