Vzhled termálních obrazových záznamů. Princip termálního snímání. Dálkový průzkum země v termální části spektra. Charakteristika. Fyzikální podstata



Podobné dokumenty
Fyzikální podstata DPZ

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

DPZ - IIa Radiometrické základy

Dálkový průzkum Země DPZ. Zdeněk Janoš JAN789

DPZ Dálkový Průzkum Země. Luděk Augusta Aug007, Vojtěch Lysoněk Lys034

Dálkový průzkum země v mikrovlnné části spektra

Školení CIUR termografie

DPZ - Ib Interpretace snímků

Teplota je nepřímo měřená veličina!!!

CW01 - Teorie měření a regulace

DPZ Dálkový průzkum Země. Lukáš Kamp, KAM077

Systémy dálkového průzkumu Země

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU

Faktory ovlivňující intenzitu záření. Spektrální chování objektů. Spektrální odrazivost. Spektrální chování. Spektrální chování objektů [ ]

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Spektrální chování objektů

1 Bezkontaktní měření teplot a oteplení

PROCESY V TECHNICE BUDOV 12

SKLENÍKOVÝ EFEKT 2010 Ing. Andrea Sikorová, Ph.D.

Infračervená termografie ve stavebnictví

Základy spektroskopie a její využití v astronomii

Dálkový průzkum země vmikrovlnnéčásti spektra

LABORATORNÍ CVIČENÍ Z FYZIKY

Spektrální chování objektů

2) Povětrnostní činitelé studují se v ovzduší atmosféře (je to..) Meteorologie je to věda... Počasí. Meteorologické prvky. Zjišťují se měřením.

Současné možnosti dálkového průzkumu pro hodnocení heterogenity půd a porostů na orné půdě

TERMOGRAFIE A PRŮVZDUŠNOST LOP

Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. emisivní p. ZS 2015/ Ing. Václav Rada, CSc.

Č ást 1 Základníprincipy, senzory, multispektrálnídata. Co je DPZ?

TERMOGRAFIE A PRŮVZDUŠNOST LOP

Mapování Země z vesmíru (úvod do metod dálkového průzkumu Země) Petr Dobrovolný Geografický ústav přírodovědecké fakulty Masarykovy univerzity v Brně

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1

TERMOVIZE A BLOWER DOOR TEST

Základy práce s IČT kamerou. Ing. Jan Sova, Centrum termografie

Dálkový průzkum Země (úvod, základní pojmy, historický přehled)

TRENDY ROZVOJE DPZ A JEJICH MOŽNOSTI VYUŽITÍ PRO INVENTARIZACI KONTAMINOVANÝCH MÍST

Bezkontaktní termografie

Měření teploty v budovách

DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)

ZPRACOVÁNÍ DAT DÁLKOVÉHO PRŮZKUMU

Klimatická změna minulá, současná i budoucí: Příčiny a projevy

Seminář I Teplota vzduchu & Městský tepelný ostrov..

Č ást 2 Kompozice v nepravých barvách Datové formáty Neřízená klasifikace. Program přednášky

Anotace předmětu. Dálkový průzkum Země. Odkazy. Literatura. Definice DPZ. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava

Dálkový průzkum Země. Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU

Dálkový průzkum země v mikrovlnné části spektra

Co všechno může vidět družice?

Nekonvenční metody snímání zemského povrchu

Základy pyrometrie. - pyrometrie = bezkontaktní měření teploty. 0.4 µm µm C C

Hlavní přednosti letecké fotografie: Konvenční (fotografické) metody snímání zemského povrchu. Fotografické materiály

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu:

17. Celá čísla.notebook. December 11, 2015 CELÁ ČÍSLA

Geografie, geografové na internetu.

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

Stručný úvod do spektroskopie

Otázky k předmětu Globální změna a lesní ekosystémy

Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE. Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090)

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA ŽIVOTNÍHO PROSTŘEDÍ KATEDRA INFORMATIKY A GEOINFORMATIKY VEGETAČNÍ INDEXY

Bezkontaktní me ř ení teploty

Předmět: ZEMĚPIS Ročník: 6. ŠVP Základní škola Brno, Hroznová 1. Výstupy předmětu

Termografie - měření povrchu železobetonového mostu

Pojmy vnější a vnitřní planety

Obnovitelné zdroje energie Budovy a energie

Otázky pro samotestování. Téma1 Sluneční záření

M e P S. Vyzařující plocha S je konstantní stejně jako σ a pokud těleso odvádí energii jen zářením

Toky energie v ekosystémech a evapotranspirace. Jakub Brom LAE ZF JU a ENKI o.p.s.

Problematika rušení meteorologických radarů ČHMÚ

Mezinárodní konference Mikroklima a mezoklima krajinných struktur a antropogenních prostředí Skalní mlýn, Moravský kras,

Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. emisivní p. ZS 2015/ Ing. Václav Rada, CSc.

ELEKTROMAGNETICKÉ SPEKTRUM PRO POTŘEBY DPZ

Digitální fotogrammetrie

Sníh a sněhová pokrývka, zimní klimatologie

METODIKA PRO PŘEDPOVĚĎ EXTRÉMNÍCH TEPLOT NA LETECKÝCH METEOROLOGICKÝCH STANICÍCH AČR

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu:

Atmosféra, znečištění vzduchu, hašení

Příručka pro infračervenou měřicí techniku

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

RYBNÍKY POHLEDEM Z VÝŠKY

BEZDOTYKOVÉ MĚŘENÍ TEPLOTY

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

DRUŽICOVÁ DATA. distribuovaná společností ARCDATA PRAHA, s.r.o.

Viditelné elektromagnetické záření

Fyzikální praktikum FJFI ČVUT v Praze

Obnovitelné zdroje energie Solární energie

Přehled současných družicových systémů. METEOSAT vzhled jednotlivých pásem METEOSAT. METEOSAT analýza druhů oblačnosti

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření

Obrazové snímače a televizní kamery

Obrazové snímače a televizní kamery

stabilní základna pro skener na zemi, ve vzduchu, v kosmu na oběžné dráze

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ BAKALÁŘSKÁ PRÁCE

DPZ. Modelování s daty DPZ. Poměrové indexy. Vegetační indexy. Část 4. Modelování s daty DPZ Multitemporální analýza

Termovizní snímkování tepelných ostrovů v Hradci Králové

Městský tepelný ostrov..

TERMOMECHANIKA 15. Základy přenosu tepla

- a) rovníková dráha - b) šikmá oběžná dráha c) subpolární oběžná dráha.

Slunce zdroj energie pro Zemi

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Transkript:

Princip termálního snímání Dálkový průzkum země v termální části spektra etoda pasivní nepřímá Fyzikální podstata Charakteristika Termální oblast spektra zahrnuje vlnové délky od 3 µm (atmosférická okna v intervalech 3-5 µm a 8-12 µm) ntenzita elektromagnetického záření v těchto vlnových délkách je malá V těchto vlnových délkách převažuje vlastní vyzařování objektů nad odraženým slunečním zářením Dlouhovlnné vyzařování je vnějším projevem energie tělesa Termální část spektra umožňuje získat především informace o teplotních vlastnostech objektů Charakteristika Vzhled termálních obrazových záznamů Termální snímky lze vytvářet ve dne i v noci (denní a noční snímky) Termální snímky se vyznačují menší prostorovou rozlišovací schopností Z termálních snímků lze získat charakteristiky území, které jsou klasickými metodami zjistitelné pouze bodovým měřením. Termální snímek LANDSAT Thematic apper 6, 120 m pixel 1

Princip práce termálního skeneru Radiační (jasová teplota) Tradičním měřením teploty (teploměrem je měřena tzv. kinetická teplota (termodynamická meteorologie) - je interním projevem energie molekul Stefan-Boltzmannův zákon: 4 = σt Princip mechanooptického snímání Čidlo fotonové detektory ochlazované na nízkou teplotu Přístroje umožňují měřit radiační teplotu s přesností 0,1 o C. Objekty vyzařují energii jako funkci své teploty Vyzařování je vnějším projevem energie tělesa, která je v DPZ měřena Změřená vyzářená energie vyjadřuje tzv. radiační (jasovou) teplotu tělesa Radiace z reálných povrchů Reálný povrch emituje pouze část záření, které by emitovalo absolutně černé těleso o stejné teplotě Tato míra vyzařovací schopnosti každého reálného tělesa se nazývá koeficient vyzařování - emisivita (ε) ( ) ε = T R ( T) R (T) - intenzita vyzařování reálného objektu o teplotě T A (T) - intenzita vyzařování absolutně černého tělesa o teplotě T A Emisivita základních druhů povrchů Většina reálných povrchů se chová jako tzv. selektivní zářič Jejich emisivita nabývá hodnot 0 až 1 a mění se s vlnovou délkou Určité povrchy vyzařují jako černé těleso v určitých vlnových délkách (voda 6 až 14 µm). U takových povrchů není problém měřit teplotu metodami DPZ Emisivita základních druhů povrchů Hodnoty emisivity základních druhů povrchů na souši se výrazně mění v čase i v prostoru Silný vliv na měření tepelné energie metodou DPZ mají meteorologické podmínky Pro přesná měření teploty je nutné provádět tzv. atmosférické korekce V řadě případů lze z termálních snímků získat pouze kvalitativní informaci nterakce tepelného záření na zemském povrchu zákon zachování energie = A + R + T - intenzita záření dopadajícího na povrch tělesa A - intenzita pohlceného záření R - intenzita odráženého záření T - intenzita propouštěného (vedeného) záření = A + R + T 2

nterakce tepelného záření na zemském povrchu Charakteristiky, které popisují schopnost povrchu absorbovat, odrážet a vést elektromagnetické záření: α( λ ) = A ρ( λ ) = α(λ) - pohltivost ρ(λ) - odrazivost τ(λ) - propustnost α( λ) + ρ( λ) + τ( λ) =1 R τ( λ ) = Z Kirkhofova zákona plyne, že emisivita objektu je rovna jeho pohltivosti na dané vlnové délce. Položku propustnosti τ(λ) lze považovat v DPZ za rovnu nule T Emisivita reálných povrchů ε( λ) + ρ( λ) =1 Čím nižší je odrazivost tělesa, tím vyšší je jeho emisivita a naopak. Emisivita vodních ploch v termální části spektra je blízká 1 Emisivita povrchů, které výrazně odrážejí záření je nízká (kovové povrchy) Emisivita reálných povrchů Stefan - Boltzmannův zákon pro reálná tělesa =εσt 4 Vztah mezi radiační a reálnou teplotou povrchu 1 T rad 4 =ε T kin Kalibrace termálních obrazových záznamů Kalibrace založená na současných pozemních měřeních teploty vzduchu Kalibrace založená na snímání referenčních ploch o známé teplotě Radiační teplota povrchů je v důsledku emisivity nižší než teplota kinetická (reálná). Zdroje termálních snímků Termální snímky poskytují všechny meteorologické družicové systémy (ETEOSAT, NOAA) a to i v několika pásmech Snímky jsou vytvářeny i na snímcích družic pro výzkum přírodních zdrojů (LANDSAT, TERRA) Termální snímání se často provádí i z letadel (termovize) Velká většina termálních obrazových záznamů poskytuje pouze kvalitativní informaci Pásmo 3B 3,6-3,9 µm Termální snímky z družice NOAA, skener AVHRR, 1100 m pixel 3

Pásmo 4 10,3-11,3 µm Termální snímky z družice NOAA, skener AVHRR, 1100 m pixel Pásmo 5 11,5-12,5 µm Termální snímky z družice NOAA, skener AVHRR, 1100 m pixel Vzhled a vlastnosti termálních snímků Termální snímky jsou většinou zobrazovány ve stupních šedi. Obvykle světlé tóny na snímku reprezentují teplé povrchy. Na meteorologických snímcích je škála tónů opačná. Někdy se teplotní rozdíly vyjadřují v barevné stupnici Vzhled a vlastnosti termálních snímků Protože obrazy zachycují dlouhovlnnou část spektra mimo viditelné vlnové délky, mají často velmi neočekávaný vzhled daný teplotními rozdíly povrchů na snímku. V důsledku rozdílných teplotních vlastností povrchů mají denní a noční snímky velmi odlišný vzhled. Termální obrazové záznamy často nezobrazují ani hlavní terénní tvary ají málo orientačních bodů, často se proto používají v kombinaci s fotografií, snímkem z optické části spektra či mapou Vzhled a vlastnosti termálních snímků Vzhled termálních obrazových záznamů je ovlivňován teplotními vlastnostmi povrchů (vodivost, tepelná kapacita, tepelná setrvačnost). Vzhled snímků je ovlivňován dále též topografií, orientací snímaných povrchů. Vegetační kryt vytváří velmi komplexní povrch s množstvím ke Slunci orientovaných nebo naopak zastíněných částí. Voda výrazně mění teplotní vlastnosti povrchů. Termální snímky mohou sloužit k mapování půdní vlhkosti či obsahu vody ve vegetačním krytu. Vzhled a vlastnosti termálních snímků Krátkovlnné sluneční záření bude ovlivňovat vzhled termálních snímků pouze v oblasti 3-5 µm a nebude mít vliv na delší vlnové délky (8-14 µm). Denní snímky v první uvedené části spektra (3-5 µm) budou obsahovat tzv. termální stíny v částech, kam nedopadá přímé sluneční záření. nožství přijatého záření bude modifikovat také orientace svahů. Tyto efekty jsou minimalizovány na obrazových záznamech pořízených těsně před východem Slunce. 4

Denní chod radiační teploty Termální snímky denní a noční Termální snímky denní a noční Termální snímky denní Terén bývá světlejší než voda, voda bývá velmi tmavá. Tmavšími tóny bývá znázorněn i lesní porost. Teplotní rozdíl mezi lesem a okolní volnou krajinou může být až 5 o C. V denních hodinách je vedle vlastního dlouhovlnného vyzařování objektů registrováno i vyzařování okolních objektů nebo zpětné záření atmosféry, bývají denní snímky charakterizovány značnou tónovou proměnlivostí. Z tohoto důvodu se také často provádí termální snímání po západu Slunce, kdy jsou ještě patrné teplotní kontrasty různých povrchů. Termální snímky noční Na nočních snímcích bývají vodní plochy naopak teplejší než terén, který na rozdíl od vody teplo poměrně rychle ztrácí. Při teplotní inverzi, kdy se v údolích hromadí studený vzduch, bývají nižší polohy znázorněny tmavšími tóny než teplejší vyšší polohy. Teplotní mapování Při přesné kalibraci termálních obrazových záznamů jich lze využít k sestavování map teplotních charakteristik studovaného území. Cílem je nalézt vztah mezi hodnotou obrazového prvku a teplotou objektu: 4 DN = A+ B ε T DN - hodnota naměřená termálním radiometrem A, B - kalibrační konstanty radiometru ε - emisivita T - kinetická teplota 5

Příklady aplikací Teplotní charakteristiky povrchů Na termálních snímcích lze sledovat: Jevy a procesy bodové (např. lokalizace termálních pramenů) Jevy a procesy plošné (např. lesní požáry). mapování povrchové teploty půdy odhady radiační bilance území studium teplotního znečištění určování druhů hornin lokalizace geologických zlomů mapování půdních druhů a vodního obsahu půd lokalizace netěsností zavlažovacích kanálů zjišťování teplotních charakteristik vulkánů studium evapotranspirace lokalizace teplých a studených pramenů a gejzírů studium cirkulace v nádržích, jezerech i mořích lokalizace lesních požárů a požárů uhelných slojí onitorování lesních požárů Hodnocení rizika vzniku požárů Detekce ohnisek a rozsahu požárů apování následků požárů Peloponéský poloostrov Družice RESURS SU-SK, Pixel 600 m onitorování požárů Fire Atlas onitorování požárů 6

Fire 3 algoritmus detekce požárů ze snímků (NOAA-14 AVHRR) (T3) > 315 K Yes Fire pixel Kalibrace, radiometrická a geometrická korekce snímků NO Fire clear pixel 1. Vyhledávání podezřelých pixelů pomocí 3. pásma AVHRR 2. Algoritmus detekce ploch postižených požárem T3 - T4 > 14 K T4 260 K R2 < 0.22 Land cover cropland or grassland T4 - T5 < 4.1 K and T3 - T4 19 K One of neighbour pixels successful at first 6 tests Eliminates warm background Eliminates clouds Eliminates highly reflective clouds & surface Eliminates cropland and grassland false fires Eliminates thin clouds with warm background Eliminates single pixel fire Li et al., 1998 CCRS WWW TRUE FRE PXEL Li et al., 1998 CCRS WWW apování SST (Sea Surface Temperature) z družicových měření Výpočet SST ze snímků družice NOAA AVHRR Využitelnost SST: Studium kolísání klimatu Studium jevu ENSO Vstup do GC (Global Circulation odels) SST = a 0 + a 1 T3 + a 2 T4 a 0,a 1,a 2 konstanty odvozené empiricky z regresního vztahu T3 radiační (jasová) teplota 3. pásma AVHRR (3,55 3,93 mikrometrů) T4 radiační (jasová) teplota 4. pásma AVHRR (10,3 11,3 mikrometrů) apování povrchové teploty oceánu Teplotní poměry golfského proudu Družice TERRA, skener ODS Teplotní poměry jsou mapovány na základě odhadu radiační teploty z termálních snímků v oblasti 11 a 12 mikrometrů. 7

apování extrémních projevů konvekce Teplota horní vrstvy bouřkové oblačnosti (Cb) apování rozsahu lávových proudů Havaj, série nočních snímků z družice ASTER, plocha 9 x 12 km apování rozsahu lávových proudů Studium vulkánů Etna, termální snímek z družice ASTER, plocha 24 x 30 km Sopka Popocatepetl (exiko) Družice TERRA, skener ASTER 8

apování oblaků sopečného popela Sopka Cleveland (Aleutské ostrovy) snímky z družice ODS apování teplotních poměrů New York, 16.9.2001 New York, 18.9.2001 apování tepelného ostrova města Lokalizace poruch teplovodů Termovize letecké snímání 9

http://www.geog.ucsb.edu/~jeff/115a/remote_sensing/thermal/thermal irinfo.html http://www.realclimate.org/index.php?p=43 http://en.wikipedia.org/wiki/urban_heat_island http://employees.oneonta.edu/baumanpr/geosat2/urban_heat_sland/ Urban_Heat_sland.htm http://adaptation.nrcan.gc.ca/perspective/health_3_e.php 10