Moderní technologie pro konstrukci elektronických systémů (2) TLV, TV, LTCC, Polymerní TLV,



Podobné dokumenty
6 Hybridní integrované obvody, tenkovrstvé a tlustovrstvé technologie a jejich využití

TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III.

Studijní opora pro předmět Technologie elektrotechnické výroby

zařízení 2. přednáška Fakulta elektrotechniky a informatiky prof.ing. Petr Chlebiš, CSc.

Tlustovrstvá technologie: -kompletní technologický proces pro výrobu HIO. -Návrh -Modelování a simulace -Technologický postup -Aplikace

ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ

LOGO. Struktura a vlastnosti pevných látek

Lasery v mikroelektrotechnice. Soviš Jan Aplikovaná fyzika

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

APLIKAČNÍ TECHNOLOGIE

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory

Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev

Vakuové metody přípravy tenkých vrstev

TLUSTÉ VRSTVY TISK, VYTVRZENÍ, MĚŘENÍ

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008

2.3 Elektrický proud v polovodičích

Tenké vrstvy (TV ) Hybridní Integrované Obvody (HIO)

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.

Vakuová technika. Výroba tenkých vrstev vakuové naprašování

7. Elektrický proud v polovodičích

VY_32_INOVACE_6/15_ČLOVĚK A PŘÍRODA. Předmět: Fyzika Ročník: 6. Poznámka: Vodiče a izolanty Vypracoval: Pták

Základní typy článků:

1 Vytváření tlustovrstvé pasivní sítě

r W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes.

7. Elektrický proud v polovodičích

dodavatel vybavení provozoven firem Plošné spoje se SMD. návrh a konstrukce Obj. číslo: Popis Ing.

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ

12. Struktura a vlastnosti pevných látek

Elektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů

Mikro a nanotribologie materiály, výroba a pohon MEMS

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

Mol. fyz. a termodynamika

1. Kondenzátory s pevnou hodnotou kapacity Pevné kondenzátory se vyrábí jak pro vývodovou montáž, tak i miniatrurizované pro povrchovou montáž SMD.

TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ I. APLIKACE LITOGRAFIE

7. Kondenzátory. dielektrikum +Q U elektroda. Obr.2-11 Princip deskového kondenzátoru

Elektricky vodivý iglidur F. Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

Glass temperature history

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Bez PTFE a silikonu iglidur C. Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Plazmové svařování a dělení materiálu. Jaromír Moravec

Principy chemických snímačů

Zvyšování kvality výuky technických oborů

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o.

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Univerzita Tomáše Bati ve Zlíně

Maturitní témata fyzika

Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.

Adhezní síly v kompozitech

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

iglidur N54 Biopolymer iglidur N54 Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky.

ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY

Úvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství.

Pasivní obvodové součástky R,L, C. Ing. Viera Nouzová

iglidur H2 Nízká cena iglidur H2 Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty

FDA kompatibilní iglidur A180

Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů.

Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Zvyšování kvality výuky technických oborů

Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141

Nauka o materiálu. Přednáška č.14 Kompozity

Vysoké teploty, univerzální

Elektřina a magnetizmus polovodiče

Plazmové metody Materiály a technologie přípravy M. Čada

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu

Sklářské a bižuterní materiály 2005/06

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II.

Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.

VY_32_INOVACE_ELT-1.EI-20-VYROBA INTEGROVANEHO OBVODU. Střední odborná škola a Střední odborné učiliště, Dubno

Elektřina a magnetizmus závěrečný test

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Chemické metody přípravy tenkých vrstev

Univerzita Tomáše Bati ve Zlíně

Nízká cena při vysokých množstvích

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika

Netkané textilie. Materiály 2

Skupenské stavy látek. Mezimolekulární síly

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

Pro vysoká zatížení iglidur Q

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

SNÍMAČE PRO MĚŘENÍ TEPLOTY

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ

Speciální metody obrábění

Přednáška 3. Napařování : princip, rovnovážný tlak par, rychlost vypařování.

Uhlíkové struktury vázající ionty těžkých kovů

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

Teplotně a chemicky odolný, FDA kompatibilní iglidur A500

Druhy materiálů, princip vedení, vakuovaná technika. Ing. Viera Nouzová

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Silikonová lepidla a tmely

VY_32_INOVACE_ENI_3.ME_18_Technologie polovodičových součástek. Střední odborná škola a Střední odborné učiliště, Dubno Ing.

Přehled metod depozice a povrchových

Ochrana obalem před změnami teploty a úloha obalu při tepelných procesech v technologii potravin. Sdílení tepla sáláním. Balení pro mikrovlnný ohřev

Transkript:

Moderní technologie pro konstrukci elektronických systémů (2) TLV, TV, LTCC, Polymerní TLV, MCM

Obsah 1 Úvod 2 Tlusté vrstvy (Thick Films) 3 Tenké vrstvy (Thin Films) 4 Polymerní struktury 5 LTCC 6 Závěr - prognózy vývoje

1 Úvod Miniaturizace hardware Mikroelektronika Konstrukční (assembly) substráty (DPS, keram.) Obvodová Funkční Diskrétní prvky Optoelektronika Konstrukční prvky Polovodičové IO Vrstvové IO Mikrovlnná Moduly MCM Monolitické TV Akustoelektronika Pouzdra Na izolačních podložkách TLV.. LTCC Bioelektronika COIC, BGA, CSP CMOS, BiCMOS, CCD, BiCMOS. polymerní Kvantová elektronika atd. MEMS, atd.

Moderní technologie Polovodičové struktury (čipy) SoC WLP THSV 3D Interconnection + Packaging Tlusté vrstvy Tenké vrstvy LTCC - sítotisk, dispenze nevak. - naprašování, napařování vak. - sítotisk, dispenze, lis, punch nevak. Polymerní vrstvy sítotisk nevak. HIO MCM pouzdřící technologie (CSP. SOP, SOC) SMT, embeded.

Prerekvizity HIO, PM

HIO Pouzdření HIO povrchově montované s holými čipy pájení vývodů kovová plastová keramická pájení vývodů pouzdření fluidizací pouzdření máčením pouzdření zaléváním

Důvody pro použití HIO Výkonové obvody (dobrý odvod tepla, oddolnost) Vysokofrekvenční obvody (MPV, rozložené parametry) Přesné a odolné pasivní prvky a sítě Vysoká spolehlivost Malá sériovost Nekonvenční aplikace (senzory, antény, stínění, topná tělesa, elektroluminescenční prvky, fotovoltaické články atd.)

1 Úvod 2 Tlusté vrstvy 3 Tenké vrstvy 4 Polymerní struktury 5 LTCC 6 Závěr - prognózy vývoje

2 Tlusté vrstvy Pojmem tlustá vrstva označujeme vrstvu, jejíž tloušťka je řádově desítky mikrometrů. Tlusté vrstvy jsou nehomogenní směsi několika materiálových složek a jejich struktura má amorfní charakter. Materiály (ve formě pasty) pro výrobu tlustých vrstev obsahují několik složek: Funkční složku, která zajišťuje žádané elektrické vlastnosti vrstvy Adhesní (tavivovou) složku, která drží pohromadě částice funkční složky (matrice) Technologickou (pojivovou) složku zajištující dostatečnou viskozitu pasty během nanášení

Povrchové napětí a pojivová složka Povrchové napětí je efekt, při kterém se povrch kapalin snaží dosáhnout s nejmenší energií tedy co možná nejhladšího stavu s minimálním rozpětím, uplatňující se na rozhraní kapaliny s pevnou látkou Pojivovou složku tvoří organická rozpouštědla, jež tvoří 1/3 1/4 objemu past Vytváří v pastě tekutou suspenzi vhodnou pro tisk Během výpalu dojde k jejímu odpaření

VISKOZITA Viskozita charakterizuje vlastnosti kapalin (vnitřní tření v kapalinách) Je dána přímou úměrou mezi smykovou rychlostí s a smykovým napětím F uvnitř kapaliny Newtonovská kapalina jedině u ní lze dobře definovat hodnotu viskozity (glycerin, voda) Nenewtonovská kapalina viskozita není látkovou konstantou, ale závisí na rychlosti deformace resp. napětí tečení - Pseudoplastické - zdánlivá viskozita se s rostoucím tlakem zmenšuje (tlustovrstvé pasty) - Dilatantní kapalina - zdánlivá viskozita roste s tlakem (šlehačka) - Binghamské kapaliny - dochází k toku až po překročení určitého prahového smykového napětí, tzv. meze toku (bažina)

Viskozita F S Viskozita = Převrácená hodnota viskozity je tekutost = 1 Základní jednotka viskozity je poise (P). 1P = 1.00 g.cm -1.s -1 1Pa.s = 1 kg.m -1.s -1 = 10 P Voda má viskozitu 0,00899 Poise při 25 C a tlaku 1 atmosféry. (0,00899 P= 0,899 cp= 0.899 mpa s) Změna viskozity závisí na změně mechanického tlaku Chování pasty: 1 pasta po rozmíchání 2 počátek tisku 3 protlačení sítem 4 - vyrovnání

TLV pasty a rheologie (1) slavné zvolání starořeckého filozofa Herakleita Panta rhei!, neboli Vše plyne. Řecké slovo rhein znamená téci a rheologie je tedy nauka o toku a plynutí, přesněji řečeno, je to věda o časově závislých tokových a deformačních procesech v různých materiálech. Předmětem nauky o toku neboli rheologie jsou různé kapaliny, ale i mnoho dalších materiálů, které tvoří přechod mezi pevnými látkami a kapalinami. Za určitých okolností totiž všechny materiály tečou. Sem patří především čas. Ve starozákonním zpěvu prorokyně Debory se vyskytuje verš skály tekly před Hospodinem. Podle tohoto Debořina zpěvu bylo v rheologii zavedeno takzvané Debořino číslo t rel je relaxační doba daného materiálu, která charakterizuje rychlost molekulárních přeskupení. (je velice krátká pro tekutou vodu a velmi dlouhá pro tvrdou žulu) t obs je doba pozorování. Čím menší je Debořino číslo, tím tekutější se jeví daný materiál. (Pokud je pozorovací doba nekonečně dlouhá, tečou i skály. A také naopak, na samém počátku podmořské exploze se i voda může jevit jako velmi tvrdý a tuhý materiál).

TLV pasty a rheologie (2) Středoškolská fyzika zná dva zákony, které jsou základem veškeré mechaniky. Jsou to: Newtonův zákon viskózního toku, který definuje viskozitu Hookův zákon o deformaci tuhých těles.

TLV pasty a rheologie (3) Newtonův zákon: proudí-li kapalina trubkou nebo kanálem, není její rychlost stejná po celém průřezu. U stěny je kapalina klidnější, ale směrem ke středu je proud stále prudší. Pozorování toku řeky přivedlo Isaaka Newtona na myšlenku, že uvnitř kapaliny existuje tření, které přenáší pohyb od jedné její vrstvy ke druhé. Mírou tohoto tření a zároveň charakteristikou dané kapaliny je viskozita. V jednoduchém případě (Newtonovské kapaliny voda) existuje přímá úměra mezi smykovou rychlostí s = γ a smykovým napětím F = τ. Konstanta úměrnosti mezi těmito dvěma veličinami je právě viskozita η: Daleko běžnější jsou kapaliny ne-newtonovské, které mění viskozitu v závislosti na tlaku a čase. Ty se nazývají tixotropní (tlusté vrstvy).

TLV pasty a rheologie (4) Zatímco Newtonův zákon viskózního toku je základem mechaniky kapalin, na opačné straně mechaniky materiálů je Hookův zákon deformace tuhých těles. Když jej Robert Hooke experimentálně objevil, dlouho se trápil pochybnostmi a nejprve zveřejnil v roce 1676 tajuplný anagram ceiiinosssttuv, o němž prohlásil, že skrývá skutečnou teorii pružnosti. Teprve o tři roky později uveřejnil úplný článek, v němž prozradil, že záhadný nápis lze přepsat do latinského výroku Ut tesion sic vis neboli Jaké protažení, taková síla. Při tahovém zatížení je mechanické napětí σ přímo úměrné deformaci ε neboli Ϭ se nazývá prostě napětím, ε relativním prodloužením a konstanta E Youngovým modulem pružnosti (modulem pružnosti v tahu). Grafem takového vztahu je přímka a její směrnice je tentokrát Youngův modul pružnosti E (odpor ideálně hookeovského tělesa proti deformaci závisí na její velikosti, ale vůbec nezávisí na rychlosti).

VISKOZITA Hladký váleček, svisle ponořeného do zkoumané kapaliny, motorek otáčí válečkem. Otáčivý pohyb z motorku na váleček přenášen spirálovou pružinou. Rotační (Brookfield) viskozimetr Viskozita kapaliny vyvolává moment síly, jehož velikost se projevuje torzní deformací pružiny, odečitatelnou na stupnici viskozimetru.

VISKOZITA Systémem pro měření v soustavě koaxiálních válců nebo v systému kužel deska Velký rozsah smykové rychlosti Měření v úzké kónicky se zmenšující mezeře Haake - Rotovisko viskozimetr

Sítotiskové pasty Materiály ve formě sítotiskových past lze rozdělit do tří základních skupin: vodivé, odporové, dielektrické a izolační speciální. Pro vodivé pasty se používají jako funkční složka drahé kovy (Au, Pd, Pt, Ag), především pro svoji stálost a netečnost vůčí vlivům prostředí. Jako funkční složka odporových materiálů se používají různé směsi drahých kovů, které u některých systémů vytvářejí oxidy (např. RuO 2 ). Hodnota odporu je nastavována poměrem vodivé (kovové) části a tavivové (skelné) složky. U dielektrických past tvoří funkční složku materiály používané pro keramické kondenzátory (typ I nebo II ) a u izolačních past různé typy skelných frit. Jako tlusté vrstvy mohou být nanášeny i další předem připravené funkční směsii. Tyto materiály řadíme do skupiny speciálních past, jako jsou např. termistorové, magnetické, luminescenční, stínící a také pasty pro chemické senzory a další. Pasty jsou připravovány mícháním a roztíráním (rozpracováním) příslušných komponent připravených ve formě práškových frit (s co nejdefinovanějším tvarem jednotlivých částic o průměru 5 m).

Tlusté vrstvy

Dodavatelé past Electro Science Laboratory DuPont Heraeus Tanaka, Senju, Sumitomo Metal Japan CLEC Group, Jiangyin Mengyou Electric (490)

Test znalostí Příklad: Navrhněte a nakreslete v minimální rozměrové konfiguraci tlustovrstvový rezistor R = 2k2 pastou 1 k Ω na čtverec pro výkonové zatížení P = 1 W, je-li na substrátu tloušťky 0,635mm jmenovité zatížení odporu Po = 200 m W / mm 2. S P P o 1 0,2 5mm 2 S l. w 2 S 2,2w 2 2 5mm 2,2w Zkouška správnosti navrženého odporu:

Depozice tlustých vrstev Nanášení tlustých vrstev se v mikroelektronice provádí následujícími způsoby: sítotiskem šablonovým tiskem writing - popisem (jehlou, hrotem, dispenzerem) jetting

Princip sítotisku

Síťoviny pro sítotisk

Parametry sít Počet ok na Průměr vlákna Tloušťka síta Světlost oka Světlost síta Teoret. objem protlač. pasty (palec/cm) (cm 2 ) ( m) ( m) ( m) (%) ( m 3 /oko) 35/14 196 220 410 500 48,2 197,5 60/24 576 145 265 275 42,8 113,5 80/32 1024 100 170 200 44,5 75,5 100/40 1600 80 130 167 45,7 59,5 130/51 2600 70 116 120 38,7 45 160/62 3844 64 112 92 32,2 38 205/81 6560 48 82 72 34 28 240/95 9025 48 67 50 22,7 19,5 305/120 14400 34 57 44 27,9 16 P á j e c í p a s t y T l u s t é v r s t v y

Výběr síta a zhotovení šablony Pokřivení (warp) / útek (weft) Tažením drátu na délku vznikají deformace - pokřivení, tažením drátu napříč vzniká útek. To vykompenzují jen ušlechtilé ocelové dráty se zvláštními vyššími požadavky na průměrné tolerance, průtažnost (plastičnost) a povrch drátu. Rozměr oka (w), průměr drátu (d) Dva nejdůležitější funkční rozměry sítě jsou rozměr oka w a průměr drátu d. Např. SD 50/30 50 = w (v m) 30 = d (v m)

Jemnost a světlost síta Jemnost síta (hustota) Počet drátů na cm (n) nebo inch (Mesh). 10mm n w( mm) d( mm) 25,4mm Mesh w( mm) d( mm) Světlost síta (oka) a 0 Jako rozevření síta je definována procentuální část všech síťových otvorů veškeré plochy sítě. Větší rozevření plochy znamená větší propustnost pasty. 2 w a0 100% w d např: SD 50/30:39%

Tloušťka síta a teoretický objem pasty Tloušťka síta Tloušťku síta významně ovlivňuje průměr drátu a tkací technika. Měření tloušťky se uskutečňuje v uvolněném stavu se senzorovým snímačem, při tlaku 1,8N (proti nehybné, rovinné podložce). Teoretický objem pasty v th Teoretický objem pasty je objem otevřeného oka, nenanesený na plochu substrátu. To udává konečnou teoretickou tloušťku smáčené vrstvy sítotisku v m. Při nedostatečném nanesení se musí použít síť s vyšším v th. v th w,d,d je v m 2 w cm m 3 2 / D w d

Typy sít Koenen (www.koenen.de)

Vztah mezi velikostí rámu síta a tištěným motivem Volba rámu Ocelová síta jsou podstatně více napnuté než syntetické. Sítotiskový rám musí být schopný udržovat natažené síto. Musí zachovat stabilní tvar k dosažení reprodukovaných výsledků tisku. Rám se doporučuje s hliníkovým pokovením nebo ocelovým profilem. Velikosti rámu Příliš malý rám vzhledem k tisknutému obrazu vede k přetěžování tkaniny síta a kpředčasné únavě. Aby se mohlo plně využít výhod ocelové tkaniny, jsou doporučeny následující geometrické vztahy. Princip výpočtu pro rámy v technologii TLV R=šířka stěrky W=délka stěrky H=odskok K~ 2. R L~ 3. W H~ (0,002-0,005). K

Velikost rámu vs. odtrh Tisk (odskok a protlačení) Potřebný odskok závisí na celé řadě faktorů, jako např. napnutí síta, viskozitě pasty, rychlosti stěrky, ale dokonce i na provedení šablony. Proto se pro odskok nemohou stanovit žádné všeobecně platné podmínky, kromě podmínky začínat vždy s co nejmenším odskokem. (Musí dojít k dokonalému přenosu pasty přes síto - když se nedostatečně přenese pasta z šablony, odskok se trochu sníží). Závěr: Čím větší velikost rámu, tím dokonalejší přenos pasty.

Realizace šablony Na tkaninu se nanáší fotocitlivý materiál. Po vysušení se exponuje UV zářením. Jako předloha šablony slouží diapozitiv. Osvícené místo se vytvrdí, neosvícené místo zůstává rozpustné ve vodě. Jako vývojka na síto je použita voda. V technologii tlustých vrstev se využívá sítotisková šablona k tisku vodivé cesty, odporové, izolační, skelné pájky a pájecí pasty na keramický substrát. Struktury v sériové produkci jsou realizovány až do 100 m šířky, ve výzkumu až do 40 m. U požadavku na silnou vrstvu se pokrývá šablona vrstvou o tloušťce 10-15 m. Tisk pájecí pasty je možný se sítem až do rozměru rastru 0,635mm. Při menším rozměru rastru by se měla použít kovová šablona. K dostání jsou materiály pro šablony (filmy) tloušťky od 80 do 400 m. S tkaninou 80 mesh s průměrem drátu od 0,065mm pro nanesení pájecí pasty, se dosahuje následující tloušťky vrstvy: tloušťka nanesené vrstvy = tloušťka filmu + 10% při 200 m filmu se tedy dosáhne tloušťky 220 m. V solární technologii se používají síta pro tisk kontaktů na křemík. Tím se dosahuje vyšší účinnosti solárních článků. Musí se nanášet extrémně jemná vodivá cesta, ale pokud je to možné, vysoká. Přitom se přibližuje až k hranicím možného rozlišení (realizována vodivá cesta je od 45 m).

Realizace šablony Jsou dva fotocitlivé systémy: Diazová sloučenina Chemické činidlo polyvinyl alkohol (PVA) je smíchán s fotocitlivou složkou. Rozklad se děje když jsou tyto složky nechráněné. Uvolní se nitrogen a volné radikály, které vedou kpřekřížení propojených molekul. Proto nebude exponovaná oblast rozpustná ve vodě. Reakce fotopolymerové sloučeniny při expozici Reakce diazové sloučeniny při expozici Fotopolymerová sloučenina Fotocitlivý komponent SBQ (Stil-Bazole-Quarternized) je smíchán s činidlem polyvinyl alkoholu. Exponovaná oblast se pospojuje, neozářená oblast zůstane vodorozpustná. Chemické sloučení (dvojné vazby) v molekulách probíhá velmi rychle, fotocitlivost je 5x větší než u Diazové sloučeniny. Skladovací stabilita je velmi vysoká; nanesené síto se může uchovávat až do 6 měsíců, patří to k výhodě fotopolymerového filmu, ten se používá v tloušťkách 10,15,20,25,30,40,50,80,100,150,200,250,300,350,400 m.

Tři metody nanášení: Přímé nanášení: Fotocitlivá emulse je aplikovaná přímo na tkaninu. Polopřímé nanášení: Sítotiskový film je vrstvený na tkaninu pomocí emulse. Kapilární nanášení: Sítotiskový film je přilnut ke tkanině smáčené vodním roztokem Je upřednostňována polopřímá metoda, protože zajišťuje optimální reprodukovatelnou nanášecí tloušťku a vysokou trvanlivost sítotiskové šablony. Pro sušení se používá teplota 40 C. Expozice K expozici je zapotřebí diapozitiv v měřítku 1:1. Uspořádání sítové a filmové předlohy při ozáření Vakuový rám na expozičním zařízení zaručuje optimální kontakt mezi Dia a emulzí a ještě více minimalizuje efekt zmenšení ozáření. Pro optimální výsledek musí být správně stanovena expoziční doba. (krátký čas = velké rozlišení, nízká mechanická stabilita; dlouhý čas = malé rozlišení-malá okrajová ostrost a nepružnost) Maximální spektrální citlivost filmu fotopolymeru a emulze je v oblasti UV od 340nm do 430nm, kdežto u Diazové sloučeniny leží v dlouhých vlnových délkách.

Zařízení pro sítotisk a šablonový tisk

Hlavní parametry tiskového procesu Operátor Stroj; Šablona Nespolehlivost! nutno omezit vliv Parametry tisku Upnutí DPS Klima typ Povrchová úprava rychlost tlak separace Úhel stěrky Tuhost X,Y Rovinnost Typ upnutí Stěrka Pasta Kvalita břitu Povrchové napětí Třída pasty Tixotropie

Faktory působící v průběhu tisku

Writing (dávkování popisem) PLOTTER DRIVE UNIT CONTROL UNIT DISPENSING UNIT X,Y,Z AXIS CAD data processing syringe and dispensing nozzle xy axis table + z axis holder Writing je nanášení tixotropních materiálů na podložky s pomocí dispenzeru, jehož hrot není v přímém dotyku se substrátem. Zařízení se skládá z: - řídící části generující data pro řízení procesu - depoziční jednotky s nanášecím hrotem - poziční jednotky s ovládáním pohybu ve směru os x, y, z

Writing (dávkování) Klíčovou částí zařízení je depoziční hlava se zásobníkem pasty a injekční jehlou, skrze kterou je pasta nanášena

Writing deponované vrstvy Příklad nanesené vodivé vrstvy ve tvaru cívky tlustovrstvá vodivá pasta AgPd

Jetting tryskání vs. dávkování Jetting (tryskání) je proces, ve kterém je kapalina v rychlé frekvenci vytlačována přes trysku. V každém cyklu tryskání je vytlačováno definované množství materiálu. Obvyklá frekvence tryskání je 100-200 Hz, někdy až 1000 Hz. Při dávkování jehlou kapalina zůstává na špičce jehly a poté je teprve aplikována na substrát. Adheze a povrchové napětí substrátu způsobují uchycení pasty na substrát, ale předtím, než se jehla posune do další pozice, musí nastat pohyb vzhůru v ose z. Rozdíl mezi tryskáním a dávkováním jehlou je v tom, že při tryskání je kapalina vytlačena z trysky tak, že se oddělí od trysky před spojením se substrátem.

Výpal tlustých vrstev Tlustá vrstva heterogenní systém s amorfní strukturou

Justování (trimování) TLV Dostavování hodnot rezistorů po výpalu se provádí buď otryskáváním křemenným pískem nebo trimováním s pomocí laseru (YAG) pracujícího v impulsním režimu jak je patrné z obr. Po každém kroku, v němž je odpálena vrstva ve tvaru kruhového svazku, je prováděno měření jmenovité hodnoty rezistoru až do dosažení nastavené hodnoty, kdy se proces ukončí. Bočním zářezem do rezistoru se zvětšuje dráha proudových siločar, resp. celkový počet čtverců rezistoru, takže jeho jmenovitá hodnota se zvyšuje. Používá se I zářezů, nebo zářez ve tvaru L. Jeho výhodou je i ta skutečnost, že při podélném řezu je nárůst hodnoty odporu pozvolnější než při řezu příčném.

TLV vícevrstvové (multilayer)

1 Úvod 2 Tlusté vrstvy 3 Tenké vrstvy 4 Polymerní struktury 5 LTCC 6 Multičipové moduly 7 Závěr - prognózy vývoje

3 Tenké vrstvy Tenké vrstvy jsou amorfní, polykrystalické nebo monokrystalické struktury vytvářené řízeným nanášením materiálů v uzavřeném vakuovém prostoru, v elektronice nejčastěji fyzikálními metodami, napařováním nebo naprašováním. Tloušťka tenkých vrstev se pohybuje v rozmezí desetin až jednotek m, v důsledku čehož neplatí tytéž fyzikální konstanty a vlastnosti jako u běžných objemů materiálů. To předurčuje jejich mimořádné elektrické vlastnosti (vrstvový odpor, teplotní součinitel odporu a pod.), což je právě v elektronice při realizaci struktur využíváno.

Tenké vrstvy Parametr Tenké vrstvy Tlusté vrstvy Rozlišení čára/mezera m 10 (5) 100 (50) Vrstvový odpor vodičů m 1 30, (5) Předhodnota pro rezistory 100 500 10, 100, 1000, 10 4, 10 5, 10 6 TCR ppm. K -1 100 (30) 100 400 Stabilita, 70 C, 1000 h % 0,1 0,5 P ztrátový W cm 2 0,2 1,5 Proudový šum V/V 0,05 0,3 (100 ) 3 (100 k )

Způsoby nanášení tenkých vrstev Fyzikální vakuové nanášení Physical vapor deposition (PVD) představuje několik různých způsobů depozice tenkých vrstev na principu kondenzace materiálu na substrát. Odpařování materiálu může probíhat teplotně, laserem, bombardováním ionty apod. Tak lze nanášet kovy, slitiny i izolanty a to i ve více vrstvách. Fyzikální metody nanášení (PVD) : - Teplotní odpařování - Odpařování elektronovým paprskem - Naprašování - Laserové (pulzní) depozice Chemické vakuové nanášení (CVD) Chemical vapor deposition (CVD) využívá odpařování v průběhu chemických reakcí. CVD techniky: Plazmové odpařování (CVD) nebo smíšená fyzikálně-chemické vakuové nanášení

Vakuové napařování Počet částic Nv odpařený za jednotku času z jednotkové plochy je: Nv = 3,5. 1022. p/ (M.T) -1/2 kde p je rovnovážný tlak nasycených par M je molekulární hmotnost T je teplota p 1 d exp Vrstva vzniká vypařením materiálu ve vakuové komoře a jeho ulpěním na připravených substrátech Tlak Pa 10 1 10-1 10-3 10-5 10-7 cm 0,5 51 510 5,1. 10 4 5,1. 10 6

Vytváření tenkých vrstev napařováním Zahřívání zdroje - napařovaného materiálu v uzavřeném vakuovém prostoru Tavení a odpařování kovů (500-2000 C) Kondenzace na chladnějším povrchu (substrát, stěny napařovací komory) Reakce s okolní atmosférou (Al Al 2 O 3 ) Vakuum vzniká čerpáním ve vzduchotěsné komoře 1Torr ~ 1mm rtuti (normální tlak 760 Torr) Vesmír asi 10-15 Torr Člověk 740 Torr sáním (v malém objemu), Pro napařování je třeba asi 10-7 Torr (vysoké vakuum) Střední volná dráha je asi 45m (pro 10-6 Torr a molekulu velikosti 3.10-10 m), vzdálenost zdroje od substrátu je 20 cm

Zařízení pro vakuové napařování -Tepelné odpařování -Odporové odpařování -Elektronovým paprskem -Pulsní (Flash)

Katodové naprašování Při naprašování je terč z vodivého materiálu umístěn ve vakuové komoře a je připojen na vysoký záporný potenciál řádově tisíce voltů. Do komory se vipouští pracovní plyn (obvykle argon) a tlak se udržuje na hodnotě řádově jednotky pascalu. Před terčem vzniká doutnavý výboj, přičemž kladné ionty bombardují záporný terč a záporné elektrony dopadají na uzemněnou kostru komory - anodu. Množství materiálu naprášené za jednotku času lze vyjádřit vztahem: Q = k. Ui / (p. d) kde k je konstanta úměrnosti Ui je pracovní napětí p je tlak d je vzdálenost mezi katodou a anodou

Systémy pro naprašování

Magnetronové naprašování Relative Sputtering Rates Table Ag 2.16 C 0.05 Mo 0.53 Ta 0.43 Al 0.73 Cr 0.60 Ni 0.65 Ti 0.38 Al203 0.15 Cu 1.00 Si 0.39 Zr 0.65 Au 1.76 Mg 0.26 SiO2 0.45 W 0.39 Před terčem je vytvořeno magnetické pole definovaného tvaru elektromagnetem nebo permanentními magnety. Takové zařízení se nazývá magnetron. Elektrony, které při klasickém naprašování unikají z prostoru před terčem, se v tomto případě v důsledku Lorentzovy síly pohybují po šroubovici podél siločar. Tak se výrazně prodlužuje jejich dráha, prodlužuje se i doba jejich setrvání v oblasti výboje a zvyšuje se pravděpodobnost ionizace dalších atomů pracovního plynu.

Čtyři stadia růstu tenké vrstvy: tvoření zárodků narůstání ostrůvků spojování center vyplňování mezer Na keramických substrátech jsou tenké vrstvy využívány pro realizaci především pasivních sítí (vodivé, odporové a dielektrické vrstvy), i když u některých materiálů lze pozorovat i polovodičové vlastnosti (byl realizován i tenkovrstvý tranzistor TFT). Typickými materiály pro nanášení tenkých vrstev napařováním jsou Au, Al, CrNi, Ta a další vodivé i nevodivé materiály pro naprašování.

Vytváření struktury obvodu Vytváření tenkých vrstev může probíhat dvěma způsoby: aditivním s následným odleptáváním selektivním s pomocí masek Glazování substrátu Depozice odporové vrstvy Depozice vodivé (dielektrické) vrstvy Teplotní stabilizace vrstev Selektivní leptání Trimování rezistorů

Sendvičová TV struktura a postup vytváření pasivní sítě

Topologie TV HIO Topologie osazeného obvodu [10 : 1]

Základní architektura matrice TV tranzistorů pro displej z kapalných krystalů. S každým obrazovým prvkem resp. pixlem displeje je spojen jeden TV tranzistor. TV tranzistory generují různá napětí jež způsobují různou orientaci molekul v kapalné suspenzi. To ovládá také rozdílné množství světla procházejícího TV matricí a barevným filtrem, a zajiš tuje tak tvorbu obrazu na displeji.

1 Úvod 2 Tlusté vrstvy 3 Tenké vrstvy 4 Polymerní struktury 5 LTCC 6 Závěr - prognózy vývoje

4 Polymerní struktury Polymerace je reakce, při níž se spojuje (řetězí) obrovský počet jednoduchých nenasycených nízkomolekulárních sloučenin (monomerů) ve velké molekuly (makromolekuly), aniž při této reakci vznikají vedlejší nízkomolekulární zplodiny. Polymerace jsou schopny jen takové monomery, které obsahují v molekule jednu nebo více dvojných vazeb.

Polymerní struktury Polymery, které mají uhlíkové atomy v řetězci střídavě propojeny jednoduchými a dvojitými vazbami označujeme jako konjugované. Nejjednodušší takovou látkou je polyen, který se označuje jako polyacetylén, protože jej lze připravit polymerací acetylénu. Ten normálně vzniká ve formě tmavého prášku nepatrné vodivosti, jestliže se však dopuje příměsí jodu, vodivost se o mnoho řádů zvýší a lze připravit kovově lesklé filmy s vodivostí blížící se mědi. Vodivost polyacetylénu je způsobena solitony. Solitony jsou nelineární poruchy, které mohou přenášet energii a šířit se rozptylujícím prostředím, aniž by přitom byly samy rozptylovány. CH n V polyacetylénu existují dva typy solitonů: neutrální (beznábojový) a nabitý (kladný nebo záporný), vznikající na polyacetylénovém řetězci účinkem dopantů.

Polymery pro elektroniku Vodivé se strukturou PANI a PEDOT N N O O (PANI polyanilyn je ušlechtilejší než Cu) H H n S n (PEDOT - konjugovaný polymer s pozitivním nábojem založený na bázi polythiophenu Polovodivé PENTACENE a Poly-3 Hexyl- Thiophene (PENTACENE polycyklický aromatický úhlovodík složený z pěti lineárně slitých benzenových jader) Poloizolační polymery PPV a PPP Polymery izolační PVP a PI

Polymerní struktury Vodivé polymery jsou tvořeny systémem konjugovaných dvojných vazeb. Kromě konjugace je dalším nezbytným předpokladem elektrické vodivosti přítomnost nositelů náboje, které zprostředkovávají jeho transport po řetězci. Ty vznikají procesem, který je v analogii s klasickými polovodiči nazýván dopování. Je však podstatný rozdíl mezi dopováním anorganických a organických polovodičů. U anorganických polovodičů výrazně ovlivňují elektrické vlastnosti již stopové koncentrace dopující látky, u polymerů je potřeba koncentrací řádově vyšších, jednotek až desítek procent.

Polymerní struktury Dopanty jsou látky schopné vytvořit s polyacetylénem sloučeniny spřenosem náboje (tzv. charge transfer). Jestliže dopant polyacetylénu poskytuje elektrony, jedná se o donor (např. alkalické kovy). Když dopant naopak elektrony z polyacetylénu odčerpává jedná se o akceptor. Patří sem halogenové prvky (chróm, bróm, jód), halogenidy polokovů a nekovů, a také kyseliny a jejich soli. Následkem dopování dochází k vytvoření elektronových děr ve valenčním pásu (p-dopování) nebo k přenesení elektronů do vodivostního pásu (n-dopování). Dochází i ke změně charakteru vazeb podél polymerního řetěze jak je vidět na obr.

Polymerní struktury Tlustovrstvé polymerní materiály tvoří: pigmenty (plniva): - vodivé - odporové - dielektrické polymery (organické materiály): - termosety (epoxydové a fenolové pryskyřice) - termoplasty (akrylové pryskyřice) - rozpouštědla

Polymerní tlusté vrstvy Pro PTF technologii se používají buď standardní nebo speciální pasty. Standardní pasty vodivé pasty odporové pasty dielektrické pasty se zásadně skládají z funkčního systému, polymeru a rozpouštědel. Funkčním systémem u vodivých past je stříbro a v poslední době měď, u odporových past grafit a čedič a u dielektrických past jsou používány horniny jako slída, oxid hlinitý nebo chromdioxid. Polymery po vypaření rozpouštědel drží části funkčního systému pohromadě (koheze) a zaručují také adhezi pojiv k substrátu. Polymery se dělí na dvě kategorie: - polymery, které zahřátím vytvoří pevné struktury a proto jsou využívány pro tisk na pevné podložky. Epoxidové a fenolové pryskyřice jsou příkladem teplotně neroztažných polymerů. - polymery, které po vytvrzení jsou měkké a podstatně ohebnější, a proto je jim dávána přednost jako materiálům pro flexibilní substráty.

Polymerní tlusté vrstvy PTF můžeme tisknout na různé typy substrátů (podložek) a to na flexibilní (polyamid, polyester,pvc) nebo na tuhé (keramika, epoxidové sklo nebo kov). Po natisknutí vrstvy metodou sítotisku na substrát musí být umožněno její usazení (tisk přes mřížku vede k přenášení motivu ok od sítě). Dále se vrstva před vypálením zasušuje. Tím se odstraní těkavé látky. Při nanášení na nestabilizovanou polyesterovou fólii se doporučuje nezatvrzovat pastu nad 100 C, poněvadž se v důsledku vyšších teplot mohou změnit rozměry fólie. Při použití stabilizovaných polyesterových fólií může být zasušováno až do teploty 150 C po dobu 5 až 15 minut.

Technologie výroby polymerních TLV Výrobní proces je podobný po sítotisku následuje vytvrzení - určuje finální vlastnosti. PFT jsou vypalovány nejen konvenčními metodami jako je průtahová tunelová pec a pec sinfračerveným ohřevem, ale také ohřev kondenzací plynné fáze a výpal za pomoci mikrovln. Průtahová tunelová pec Tato pec je sice oblíbená pro výpal PFT kvůli jednoduché a snadné manipulaci, ale vlastnosti vrstvy vytvrzené v tomto typu pece nejsou tak dobré, protože schopnost tepelného předu ze vzduchu do substrátu je nízká. Pasta je vytvrzená v peci při teplotě 120 až 160 C za dobu 30 až 60 minut. Pec s infračerveným ohřevem Tento typ pece je v praxi nepoužívanější. Má vysokou schopnost tepelného převodu, proto doba výpalu může být na rozdíl od tunelové pece snížena na jednu třetinu. Ohřev kondenzací plynné fáze Princip tohoto systému spočívá ve využití latentního tepla z kondenzace inertní kapaliny, jejíž teplota varu je relativně vysoká. Používané kapaliny jsou Fluorinert FC - 43 a FC - 70, jejichž teploty varu jsou 174 a 215 C. Pasta může být vytvrzená v plynné fázi za dobu 2 až 3 minut. Výpal s pomocí mikrovln Tento způsob výpalu není oblíben, ale je to ideální metoda pro PFT, která se výrazně liší od tří předchozích zmíněných metod. Absorbovaná mikrovlnná energie vyvolává rotaci dipolárních molekul, které v pastě vdůsledku tření produkují teplo. Rychlé vytvrzení je výsledkem působení vnitřního tepla. Pasta je dobře vytvrzená během pouhých 2 až 3 minut v mikrovlnách, jejichž frekvence je 2,45 GHz

Aplikace PTF Typickými aplikacemi technologie PTF jsou: Realizace vodivých cest a spojů na substrátech Realizace rezistorů a potenciometrů na substrátech Náhrada plátovaných kontaktů klávesnic Dodatečné vodivé vrstvy na obou stranách desek základní vrstva pro senzory u vstupů kreditních karet ochrana měděných drah a kontaktů ne desce plošných spojů místo zlacení tranzistory z polymerů tlustovrstvové senzory

Aplikace PTF membránová klávesnice

Aplikace PTF senzory Kapacitní senzor Teplotní (odporový) senzor

Aplikace PTF multifunkční senzor

Organické světloemitující diody OLED Organické světlo emitující diody OLED, jsou klasické světlo emitující diody (LED) na emisní elektroluminiscenšní vrstvě, která reaguje na elektrický proud. Tato vrstva organického polovodičového materiálu se nachází mezi dvěmi elektrodami, kde alespoň jedna z těchto elektrod je transparentní. OLED se používají napřiklad v televizních přijímačích na podsvícení obrazovek, u počítačových monitorů nebo u PDA či mobilních telefonů. Hlavní výhodou je nízká teplená vodivost a fungování bez podsvícení (jsou tenčí a lehčí než displeje z tekutých krystalů.