Jednoduché polookruhy. Katedra algebry

Podobné dokumenty
On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Database systems. Normal forms

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

WORKSHEET 1: LINEAR EQUATION 1

2. Entity, Architecture, Process

Compression of a Dictionary

Litosil - application

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY RINGS OF ENDOMORPHISMS OF ELLIPTIC CURVES AND MESTRE S THEOREM

Lineární kódy nad okruhy

Základy teorie front III

EXACT DS OFFICE. The best lens for office work

Projekt: ŠKOLA RADOSTI, ŠKOLA KVALITY Registrační číslo projektu: CZ.1.07/1.4.00/ EU PENÍZE ŠKOLÁM

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Transportation Problem

Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY. Číslo Servisní Informace Mechanika:

Let s(x) denote the sum of the digits in the decimal expansion of x. Find all positive integers n such that 1 s(n!) = 9.

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

RNDr. Jakub Lokoč, Ph.D. RNDr. Michal Kopecký, Ph.D. Katedra softwarového inženýrství Matematicko-Fyzikální fakulta Univerzita Karlova v Praze

Introduction to MS Dynamics NAV

Functions. 4 th autumn series Date due: 3 rd January Pozor, u této série přijímáme pouze řešení napsaná anglicky!

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49


CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

DC circuits with a single source

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Dynamic programming. Optimal binary search tree

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES

Postup objednávky Microsoft Action Pack Subscription

Set-theoretic methods in module theory

Informace o písemných přijímacích zkouškách. Doktorské studijní programy Matematika

LOGBOOK. Blahopřejeme, našli jste to! Nezapomeňte. Prosím vyvarujte se downtrade

Právní formy podnikání v ČR

Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.

PART 2 - SPECIAL WHOLESALE OFFER OF PLANTS SPRING 2016 NEWS MAY 2016 SUCCULENT SPECIAL WHOLESALE ASSORTMENT

Problém identity instancí asociačních tříd

Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace


a rhomboid, a side, an angle,a vertex, a height, a perimeter, an area an acute angle, an obtuse angle, opposite sides, parallel sides

Chapter 7: Process Synchronization

Návrh ideální struktury a funkce krajské knihovny Bakalářská práce

CHAIN TRANSMISSIONS AND WHEELS

= = = : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = x = = 2 : 1.

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Student: Draw: Convex angle Non-convex angle

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

PAINTING SCHEMES CATALOGUE 2012

EU peníze středním školám digitální učební materiál

PRODEJNÍ EAUKCE A JEJICH ROSTOUCÍ SEX-APPEAL SELLING EAUCTIONS AND THEIR GROWING APPEAL

Brisk guide to Mathematics

AIC ČESKÁ REPUBLIKA CZECH REPUBLIC

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

='L 'C\ znacky Primossa + /Z / N&~m T" ' - -"" '" S/)e/"kE)' :" 7. El m. fp '

The Czech education system, school

POSLECH. Cinema or TV tonight (a dialogue between Susan and David about their plans for tonight)

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

Zelené potraviny v nových obalech Green foods in a new packaging

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

Configuration vs. Conformation. Configuration: Covalent bonds must be broken. Two kinds of isomers to consider

1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení.

Example 1. Let X be the euclidean plane, and, all pairs of points less than apart.

CZ.1.07/1.5.00/

METAL MOSAIC METAL MOSAIC METAL MOSAIC METAL MOSAIC METAL MOSAIC METAL MOSAIC METAL MOSAIC METAL METAL MOSAIC

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Název projektu: Multimédia na Ukrajinské

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

STLAČITELNOST. σ σ. během zatížení

Výroba souástí složitých výrobk pomocí NC stroje. Martin íhal

CZ.1.07/1.5.00/

HASHING GENERAL Hashovací (=rozptylovací) funkce

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky

Aktivita CLIL Chemie III.

Digitální učební materiál

BACHELOR S THESIS ALGEBRAS OF OBSERVABLES AND QUANTUM COMPUTING

User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com

Porovnání předpovídané zátěže se zátěží skutečnou (podle modelu III-C BMP ČHMÚ) Martin Novák 1,2

Elektroinstalační lišty a tvarovky. Elektroinstalační lišty / Cable trunkings

Výukový materiál zpracovaný v rámci projektu EU peníze do škol. illness, a text

Clifford Groups in Quantum Computing

Jakub Slavík. Nestandardní analýza dynamických systém DIPLOMOVÁ PRÁCE. Univerzita Karlova v Praze Matematicko-fyzikální fakulta

ActiPack rozšířil výrobu i své prostory EMBAX Od ledna 2015 jsme vyrobili přes lahviček či kelímků. Děkujeme za Vaši důvěru!

Automatika na dávkování chemie automatic dosing

II_ _Listening Pracovní list č. 2.doc II_ _Listening Pracovní list č. 3.doc II_ _Listening Řešení 1,2.doc

Vánoční sety Christmas sets

Aktuální trendy ve výuce a testování cizích jazyků v akademickém prostředí

Národní informační den společných technologických iniciativ ARTEMIS a ENIAC

Střední škola obchodní, České Budějovice, Husova 9, VY_INOVACE_ANJ_741. Škola: Střední škola obchodní, České Budějovice, Husova 9

Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

SPECIFICATION FOR ALDER LED

Goal: to construct some general-purpose algorithms for solving systems of linear Equations

Zubní pasty v pozměněném složení a novém designu

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

THE MARKING OF BOVINE ANIMALS IN THE CZECH REPUBLIC

Uživatelská příručka. Xperia P TV Dock DK21

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám

Transkript:

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Vítězslav Kala Jednoduché polookruhy Katedra algebry Vedoucí bakalářské práce: Prof. RNDr. Tomáš Kepka, DrSc. Studijní program: Obecná matematika, Matematické struktury 2007

Děkuji Sašovi Kazdovi za jeho nedocenitelnou pomoc při mém zápolení s L A TEXem. Prohlašuji, že jsem svou bakalářskou práci napsal samostatně a výhradně s použitím citovaných pramenů. Souhlasím se zapůjčováním práce a jejím zveřejňováním. V Praze dne 30. května 2007 Vítězslav Kala 2

Contents 1 Introduction 5 2 Some known facts about semirings 6 3 p-divisible semirings 9 4 Full congruence-simple semirings 11 Bibliography 18 3

Název práce: Jednoduché polookruhy Autor: Vítězslav Kala Katedra (ústav): Katedra algebry Vedoucí bakalářské práce: Prof. RNDr. Tomáš Kepka, DrSc. e-mail vedoucího: kepka@karlin.mff.cuni.cz Abstrakt: Kongruenčně jednoduché polookruhy jsou už charakterizované s výjimkou podpolookruhů R +. Dokonce ani podpolookruhy Q + dosud nejsou popsané. V práci dokazujeme tvrzení, že každý kongruenčně jednoduchý polookruh S Q + je p-dělitelný pro nějaké prvočíslo p (tedy že v p (q) > 0 pro každé q S (0, 1)). Pomocí něj potom klasifikujeme polookruhy S Q + takové, že pro x Q + \{1} platí x S právě tehdy, když 1/x S (takzvané plné polookruhy). Klíčová slova: polookruh, komutativní, jednoduchý, plný Title: Simple Semirings Author: Vítězslav Kala Department: Department of Algebra Supervisor: Prof. RNDr. Tomáš Kepka, DrSc. Supervisor s e-mail address: kepka@karlin.mff.cuni.cz Abstract: Congruence-simple semirings have already been characterized with the exception of the subsemirings of R +. Even the subsemirings of Q + have not been classified yet. In the work we prove the fact that every congruencesimple semiring S Q + is p-divisible for a prime p (i.e., v p (q) > 0 for all q S (0, 1)). This we use for the characterization of congruence-simple semirings S Q + such that if x Q + \{1} then x S if and only if 1/x S (the so called full semirings). Keywords: semiring, commutative, simple, full 4

Chapter 1 Introduction Congruence-simple semirings are characterized in [1] (see 2.9). Only the subsemirings of R + have not yet been classified up to isomorphism. Even the subsemirings of Q + have not been classified yet. The aim of this work is to begin the classification of the subsemirings of Q +. In the third chapter we prove that every such semiring is p-divisible for a prime p (i.e., v p (q) > 0 for all q S (0, 1)), which is a useful property for the classification. In the fourth chapter we characterize the full congruence-simple semirings (i.e., such semirings that if x Q + \{1} then x S if and only if 1/x S). These semirings seem to be a good starting point for the general classification - every full subsemiring S Q + is a maximal one (i.e., if S T Q + and T is a congruence-simple semiring, then T = S or T = Q + ) and it seems that there are almost no other maximal subsemirings of Q +. The methods used for the characterization can be to some extent used also in the general case, unfortunately we have not even succeeded in characterizing the maximal semirings yet. Many examples of congruence-simple subsemirings of Q + can be obtained as intersections of the (defined) semirings T p (x), in fact every known (at least to the author) example of a congruence-simple subsemiring of Q + is of this form. Each of the semirings T p (x) is maximal. 5

Chapter 2 Some known facts about semirings 2.1 Definition A semiring S is a non-empty set with two binary operations - addition (+) and multiplication ( ) such that i) both operations are associative, i.e. (a + b) + c = a + (b + c) and (a b) c = a (b c) for all a,b,c S, ii) the addition is commutative, i.e. a + b = b + a for all a,b, iii) the multiplication is distributive over the addition, i.e. (a + b) c = a c + b c and c (a + b) = c a + c b for all a,b,c S. A semiring is commutative if moreover iv) the multiplication is commutative, i.e. a b = b a for all a,b S. We will be dealing only with commutative semirings, and so semiring will always mean a commutative semiring. 2.2 Definition Let S be a semiring. The semiring is said to be a) additively idempotent if a + a = a for each a S, b) multiplicatively idempotent if a a = a for each a S, c) additively cancellative if for all a,b,c S a + b = a + c implies b = c. d) multiplicatively cancellative if for all a,b,c S a b = a c implies b = c. 2.3 Definition Let S be a semiring. A (binary) relation r S S is a congruence of S if 6

i) r is an equivalence (i.e. r is reflexive ((a,a) r), symmetric (if (a,b) r then (b,a) r), and transitive (if (a,b), (b,c) r then (a,c) r)), ii) if (a,b) r and c S then (a + c,b + c) r and (ac,bc) r. 2.4 Definition Let S be a semiring. A non-empty subset I of S is an ideal of S if SI I and I + I I. A non-empty subset I of S is a bi-ideal of S if SI I and S + I I. 2.5 Definition Let S be a semiring. The semiring is said to be a) congruence-simple if S is non-trivial and id S, S S are the only congruences of S, b) ideal-simple if S is non-trivial and I = S for every ideal of S containing at least two elements. c) bi-ideal-simple if S is non-trivial and I = S for every bi-ideal of S containing at least two elements. 2.6 Theorem [1, 8.2] Let S be a non-trivial semiring that is additively and multiplicatively cancellative. Then S is congruence-simple if and only if S satisfies the following three conditions: i) For all a,b S there exists c S and n N such that b + c = na (i.e., S is archimedian). ii) For all a,b,c,d S,a b there exist e,f S such that ae + bf + c = af + be + d (i.e., S is conical). iii) For all a,b S there exist c,d S such that a = bc + d (i.e., S is bi-ideal-simple). 2.7 [1, 3.2] Let G( ) be an abelian group, o G. Put V (G) = G {o} and define x+y = y+x = o,x+x = x and xo = ox = o for all x,y V (G),x y. V (G) is clearly an additively idempotent semiring. 2.8 [1, 5.1] Let A be a non-zero subsemigroup of R(+). Denote W(A) = W(, ) the following (additively idempotent and multiplicatively cancellative) semiring: W(A) = A, a b = b a = min(a,b) and a b = b a = a+b for all a,b A. 7

2.9 Theorem [1, 10.1] A semiring S, S 3, is congruence-simple if and only if S is isomorphic to one of the following semirings: (1) the semirings V (G) for an abelian group G, (2) the semirings W(A) for a subsemigroup A of R(+) such that A R + A R, (3) fields, (4) zero-multiplication rings of finite prime order, (5) the subsemirings S of R + satisfying the conditions of 2.6. 2.10 Lemma [1, 9.1] A subsemiring S of Q + is archimedian and conical if and only if for every n N there exists m N such that k S for every n k m. 2.11 Lemma [1, 9.4] Let a,b,c,d N be such that a < b,c < d and gcd(a,b) = gcd(c,d) = gcd(a,c) = 1. Then 1/s S where s is the least common multiple of b and d and S is the subsemiring of Q + generated by a b, c d. 2.12 Theorem [1, 9.5] Let S be a congruence-simple subsemiring of Q + such that 1 S. Then S = Q +. 8

Chapter 3 p-divisible semirings 3.1 Definition Let p be a prime number, q Q \ {0}. Let n N be such that q = p n r, where r Z,s N, p r, p s. We define the p-valuation s of q as v p (q) = n. For n = p α 1 1 p α k k (p i are pairwise different primes) define that n divides q (n q) if v pi (q) α i for all i and that n does not divide q (n q) otherwise. 3.2 Lemma. Let p be a prime number and q 1,...,q n Q \ {0}. If v p (q i ) are pairwise different then v p (q 1 +... + q n ) = min{v p (q i )}. Proof. For i {1, 2,...,n} denote k i = v p (q i ) and let q i = p k i r i s i, where r i Z,s i N, p r i, p s i. Let k = min{k i } = k j. Then q 1 + q 2 +... + q n = p k n i=1 pk i k r i s i and so v p (q 1 +... + q n ) = k. = p k ( r j s j + p i j pk i k 1 r i s i ), 3.3 Lemma Let p 1,...,p k be prime numbers and a 1,...a k Q (0, 1) such that p i a i for i = 1,...k, k N. Let S be a semiring generated by a 1,...a k. Then there exists b S (0, 1) such that p i b for all i = 1,...,k. Proof. Let n N be such that n > k and a n i < 1 k (p 1... p k ) k for all i = 1,...,k. Put b i = a n i (p 1 p i 1 p i+1 p k ) i S. Now, b i < a n i (p 1...p k ) i a n i (p 1...p k ) k < 1 k, b = b 1 +... + b k < 1 and b S (0, 1). 9

v pi (b j ) = n v pi (a j ) + j for j i and v pi (b i ) = n v pi (a i ) for all i = 1,...,k. For l m clearly v pi (b l ) v pi (b m ), and so from 3.2 follows that v pi (b) = min{v pi (b j )} v pi (b i ) = n v pi (a i ) 0. 3.4 Lemma Let S Q + k be a semiring. If for all, m S (0, 1) l n (gcd(k,l) = gcd(m,n) = 1) is gcd(k,m) > 1 then there exists a prime p such that p a for all a S (0, 1). Proof. Let x S (0, 1), x = k (gcd(k,l) = 1) and let k = p a 1 l 1...p an n where p i are pairwise different primes. Assume for contradiction that for every i = 1,...,n there exists x i S (0, 1) such that p i x i. From 3.3 follows the existence of t S (0, 1) such that p i t for all i = 1,...,n. But t = x, gcd(x,y) = 1, p y i x for i = 1,...,n, which is a contradiction with gcd(x,k) > 1. 3.5 Lemma Let S Q + be a semiring, 1 S. Then there exists a prime p such that p a for all a S (0, 1). Proof. Let k, m S (0, 1), gcd(k,l) = 1 = gcd(m,n). If gcd(k,m) = 1 then l n by 2.11 1 1 S and also s = 1 S, where s is the least common multiple s s of l and n. Thus gcd(k,m) > 1 and the statement follows from 3.4. 3.6 Definition Let S Q + be a semiring. If there exists d N \ {1} such that d a for all a S (0, 1) then we call S d-divisible semiring. 3.7 Theorem Let S Q + be a congruence-simple semiring. Then there exists a prime p such that S is p-divisible. Proof. If 1 S then by 2.12 S = Q +. So 1 S and we can use 3.5. 3.8 Lemma a) Let p be a prime and i Z. Then {q q Q,v p (q) = i} is a dense set. b) Let p,q be primes and i,j Z. Then {q q Q,v p (q) = i,v p (q) = j} is a dense set. Proof. Easy. 10

Chapter 4 Full congruence-simple semirings 4.1 Definition Let S Q + be a semiring. If x S 1 x x Q + \ {1} then S is said to be full. S for all 4.2 Let S Q + be a congruence-simple semiring. It follows from 2.6 and 2.10 that for all n N there exists m N such that k S for all k m. Let n m be the minimal number satisfying this condition, denote a S (n) = m 1. n Then a S (n) is the least number satisfying: 1) n a S (n) N. 2) If k > a n S(n) then k S. n 4.2.1 Lemma If S is full then 1 S. Proof. By 2.12 if 1 S then S = Q + and also 1 2, 2 S. 4.2.2 Lemma If S is full then a S (n) 1 for all n N. Proof. Easy, because n n S. 4.2.3 Lemma Let d N \ {1} and k N. If d k and S is full and d-divisible, then a S (k) = 1. 11

Proof. If a S (k) > 1 then k+1 S, and so k k assumption that S is d-divisible. k+1 S, a contradiction with the 4.3 Let S be full p-divisible semiring for a prime p; denote T = S (0, 1). Then by 2.6 is S bi-ideal-simple and for all a,b S there exist c,d S such that a = bc + d. If a < b then c T. Now, let V p (S) = min{v p (x),x T } (V p (S) exists because T and v p (x) > 0 for all x T). Furthemore, let s define B pr = { pr T s N and p s} for all r N. s s If > a pr S(pr) then s pr S and S, and so B pr s pr is finite for all r N. R = {pr B pr } is non-empty; let β(pr) = minb pr for pr R. For i V p (S) put R i = {p i r B p i r,p r}. 4.3.1 Lemma R i for i V p (S). Proof. For i = V p (S) is R i by definition (see 3.5) and there exists p Vp(S) r R s i, p r and p s. Let i > V p (S). Then 1 > p Vp(S) i r and by 3.8a) there exists u p i s v Q (p Vp(S) i r, 1 ), v s p i p ( u ) = 0 and gcd(u,v) = 1. v p i u v Then 1 > pi u v > pvp(s) r s and so pi Vp(S) su rv > 1. p rv, and so by 4.2.3 a S (rv) = 1 and by 4.2 pi Vp(S) su rv = pvp(s) r s pi Vp(S) su rv = pi u v S. S and also Thus pi u v T and R i. 4.3.2 Lemma Let p be a prime and pr T, r,s N and p s. Then for s all t N such that p t and 1 > pr pr pr is T. t s t Proof. The case of t = s is trivial, and so let t s. pr > pr t 1 > pr t = pr s s, so s > 1, p t and by 4.2.3 a s t S(t) = 1. This implies s S and T. t t 4.4 Let S be full p-divisible semiring for a prime p; let T,R,R i,b pr,v p (S) and β(pr) be as in 4.3. As shown in 4.3.2, for pr R is B pr = { pr pr,s N,p s and β(pr)}. s s For i V p (S) we can define c i = inf{β(p i r) p i r R i }. By 4.3.1 R i and so c i is a real number. 12

4.4.1 Lemma Let i V p (S) and x Q (0, 1) such that x c i and v p (x) = i. Then x S if and only if x > c i. Proof. Let x T, x c i, v p (x) = i and x = p i r, p r, p s. Then s pi r R i, and so x β(p i r) c i. Because x c i, it is x > c i. On the other hand, let x Q (0, 1), x > c i, v p (x) = i and x = p i r, s where p r and p s. From the definition of c i follows that there exists p i u R i such that x β(p i u) = pi u c v i. Then r u s v implies a S (su) = 1 and rv S. Then also x = pi r = pi u su s v 4.4.2 Lemma If i V p (S) then c i > 0. and rv su rv su S. 1. p su Proof. Clearly c i 0. Assume that c i = 0. By 4.4.1 pi T and for all r > r pi, p r, is r S, a contradiction with the definition of a p i S (p i ) (see 4.2). 4.4.3 Lemma If i,j V p (S), then c i c j = c i+j. Proof. 1) c i c j c i+j c i = inf{b p i r;p i r R i } and so there exists a sequence x k {b p i r,p i r R i } such that lim x k = c i. Similarly there exists a sequence y k {b p j s,p j s R j } such that limy k = c j. Now, v p (x k y k ) = i + j, x k y k c i+j and c i c j c i+j. 2) c i c j c i+j. M i = {q,q Q,v p (q) = i} is a dense set in Q (see 3.8a)). So there exists a sequence x k M i, 0 < x k < c i, k N, such that lim x k = c i. Similarly there exists a sequence y k {q,q Q,v p (q) = j}, k N, such that 0 < y k < c j and lim y k = c j. Now, by 4.4.1 x k,y k T, (because S is full) 1 1 1 x k y k S, thus x k y k S, and so x k y k T. x k y k Q (0, 1), v p (x k y k ) = i + j, by 4.4.1 x k y k c i+j, and so c i c j c i+j. 4.5 Let S be full p-divisible semiring for a prime p; let V p (S) be as in 4.3 and c i as in 4.4. c i+i i = c i i+1 and so there exists x R such that c i = x i for all i V p (S). Let s denote X p (S) = x. 13

4.5.1 Lemma Let there exist i V p (S) such that c i S. If c j Q for some j V p (S) then c j S. all j V p (S). Proof. If c j Q \S, then 1 c j S and also 1 c i j c ij = c j i S. = 1 c ij S, a contradiction with 4.5.2 Lemma One of the following statements holds: a) Let i V p (S) and x Q (0, 1), v p (x) = i. Then x S if and only if x c i. b) Let i V p (S) and x Q (0, 1), v p (x) = i. Then x S if and only if x > c i. Proof. Easy from 4.4.1 and 4.5.1. 4.5.3 Lemma One of the following statements holds: a) Let x Q (0, 1). Then x S if and only if v p (x) V p (S) and x X p (S) vp(x). b) Let x Q (0, 1). Then x S if and only if v p (x) V p (S) and x > X p (S) vp(x). Proof. Combine 4.5.2 and 4.3. 4.5.4 Lemma One of the following statements holds: a) Let x Q (1, ). Then x S if and only if v p (x) 1 V p (S) or x > X p (S) vp(x). b) Let x Q (1, ). Then x S if and only if v p (x) 1 V p (S) or x X p (S) vp(x). Proof. Easy from 4.5.3 and the fact that S is full. 4.6 Statement There is no full pq-divisible semiring S for p,q primes, p q. Proof. Let S be a full pq-divisible semiring. Then S is full p-divisible semiring. {x Q,v p (x) = V p (S) and v q (x) = 0} is a dense set according to 3.8b), and so there exists t Q such that v p (t) = V p (S), v q (t) = 0 and (X p (S)) vp(t) < t < 1. It follows from 4.5.3 that t S. 14

But S is also full q-divisible semiring and t S again by 4.5.3 - a contradiction. 4.7 Let p be a prime, x (0, 1) and k N. Define U k p(x) = {t Q (0, 1),v p (t) k and t > x vp(t) } {t Q (1, ),v p (t) 1 k or t x vp(t) }, V k p(x) = {t Q (0, 1),v p (t) k and t x vp(t) } {t Q (1, ),v p (t) 1 k or t > x vp(t) }, U p (x) = U 1 p(x) and V p (x) = V 1 p(x). 4.7.1 Lemma If k 2 then U k p(x) (resp. V k p(x)) is not a semiring. Proof. By 3.8a) there exists β (x k, 1) Q such that v p (β) = b and there also exists α (1, 1) Q such that v β p(α) = 1 b. α,β U k p(x) (resp. α,β V k p(x)). But v p (αβ) = 1 and α β U k p(x) (resp. α β V k p(x)), a contradiction. 4.7.2 Theorem Let S be a full congruence simple subsemiring of Q +. Then there exists a prime p and x (0, 1) such that S = U p (x) or S = V p (x). Proof. Combine 3.7, 4.3, 4.5, 4.5.3, 4.5.4 and 4.7.1. 4.7.3 Observation U p (x) = {t Q (0, 1),t > x vp(t) } {t Q (1, ),t x vp(t) }. V k p(x) = {t Q (0, 1),t x vp(t) } {t Q (1, ),t > x vp(t) }. 4.7.4 Lemma U p (x) (resp. V p (x)) is a semiring. Proof. Easy. 4.7.5 Lemma U p (x) (resp. V p (x)) is archimedean and conical. Proof. By 2.10 we must prove that for every n N there exists m N such that k S for every k m. n Let m > n. For k m it holds that k m > x vp(n) n n x vp(n) x vp(k) x vp(n) = x vp( k n ), and so k U n p(x) (resp. k V n p(x)). 15

4.7.6 Lemma If there exists a U p (x) (resp. a V p (x)) such that a = x vp(a), then U p (x) (resp. V p (x)) is not bi-ideal simple. Proof. By 2.6 if S = U p (x) (resp. S = U p (x)) is bi-ideal simple, then there exists c S such that a ac S. Since a ac x vp(a ac) = x vp(a) x vp(1 c), it follows that 1 c x vp(1 c). If S = V p (x) then 1 c S and so 1 S, a contradiction. So S = U p (x), 1 c = x vp(1 c) S, c S, but then v p (c) 1, v p (1 c) = 0 and 1 c = x 0 = 1, a contradiction. 4.7.7 The following conditions are equivalent: 1) x = p ( k l )1 i, where k,l N, p k, p l, i Z. 2) There exists a U p (x) such that a = x vp(a). 3) There exists a V p (x) such that a = x vp(a). Proof. Easy. 4.8 Let p be a prime and x (0, 1). Denote T p (x) = {t Q +,t > x vp(t) }. 4.8.1 T p (x) is congruence-simple semiring. Proof. The proof that T p (x) is archimedean and conical semiring is similar to the proofs of 4.7.4 and 4.7.5. According to 2.6 we must prove that T p (x) is bi-ideal-simple, i.e. that for all a,b T p (x) there exists c T p (x) such that a bc T p (x). w = a x vp(a) > 0. Let i N be such that i > v p (a) v p (b) and w > b xi (x i ց 0 for i, and so there exists such i). According to 3.8a) there exists c Q such that v p (c) = i and w > c > b x i = x vp(c), and so c T p (x). v p (c) = i > v p (a) v p (b) and so v p (a) < v p (bc) and by 3.2 v p (a bc) = v p (a). Then a bc > a w = x vp(a) = x vp(a bc) and a bc T p (x). 4.8.2 Lemma If T p (x) = T q (y), than p = q and x = y. Proof. Easy (use 4.6). 16

4.9 Corollary a) Let S be a full congruence-simple subsemiring of Q +. Then there exists a prime p and x (0, 1), x p ( k l )1 i for k,l N, p k, p l and i Z such that S = T p (x). The choice of p and x is unique. b) Let p be a prime and x (0, 1) such that x p ( k l )1 i for kl N, p k, p l and i Z. Then T p (x) is a full congruence simple semiring. Proof. Combine 4.7.2, 4.7.6, 4.7.7, 4.8.1 and 4.8.2. 4.10 Remark It is not hard to observe that if p 1,p 2,...,p n are primes and x 1,x 2,...,x n (0, 1) then n i=1 T p i (x i ) is a congruence-simple semiring. It follows from 4.7.6 and 4.7.7 that the semiring T p (x) is a maximal congruence-simple subsemiring of Q + (i.e., if S T Q + and T is a congruence-simple semiring, then T = S or T = Q + ). Also, if {q i i I} are primes and {y i (0, 1) i I} for some index set I and S = i I T q i (y i ) is a congruence-simple semiring, then there exist primes p 1,p 2,...,p n and x 1,x 2,...,x n (0, 1) such that S = n i=1 T p i (x i ). Thus, by taking the intersections of finitely many of T p (x) we get congruencesimple semirings; every known (at least to the author) example of a congruencesimple subsemiring of Q + is of this form. 17

Bibliography [1] R. El Bashir, J. Hurt, A. Jančařík and T. Kepka, Simple commutative semirings, J. Algebra 236 (2001), 277 306. 18