Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta



Podobné dokumenty
PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE

ENERGETICKÁ ZAŔÍZENÍ ENERGETICKÁ ZAŔÍZENÍ

Technologie výroby elektrárnách. Základní schémata výroby

Elektroenergetika 1. Technologické okruhy parních elektráren

VY_32_INOVACE_06_III./10._JADERNÉ ELEKTRÁRNY

Nezkreslená věda Jak funguje jaderná elektrárna

Jaderné reaktory a jak to vlastně funguje

Jaderné reaktory a jak to vlastně vše funguje

Elektřina a magnetizmus rozvod elektrické energie

Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ENERGIE

VŠB-TU OSTRAVA. Energetika. Bc. Lukáš Titz

Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

Simulace provozu JE s reaktory VVER 440 a CANDU 6

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

Kombinovaná výroba elektřiny a tepla

FLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon t/h tlak páry 1,4 10 MPa teplota páry C. Fluidní kotel

ESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A M

Digitální učební materiál

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

Vliv zdrojů elektrické energie na životní prostředí

Simulace provozu JE s bloky VVER 1000 a ABWR

Tento zdroj tepla nahrazuje chemickou energii, tj. spalování např. uhlí v klasické elektrárně.

Parní turbíny Rovnotlaký stupeň

Zpracování teorie 2010/ /12

Jaderná elektrárna. Martin Šturc

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny

1/62 Zdroje tepla pro CZT

Ele 1 Základy elektrotechnického kreslení, druhy výkresů, značky. Výroba a rozvod elektrické energie, výroba stejnosměrného a střídavého napětí.

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: devátý

13. VÝROBA A ROZVOD ELEKTRICKÉ ENERGIE Úvod Rozvod elektrické energie Energetická soustava Výroba elektrické energie

Inovace a zkvalitnění výuky prostřednictvím ICT Lopatkové stroje PLYNOVÉ TURBÍNY Ing. Petr Plšek Číslo: VY_32_INOVACE_ Anotace:

Zapojení špičkových kotlů. Obecné doporučení Typy turbín pro parní teplárny. Schémata tepláren s protitlakými turbínami

LOPATKOVÉ STROJE LOPATKOVÉ STROJE

ČÍSLO PROJEKTU: OPVK 1.4

Zdroje energie. Leonardo da Vinci Projekt. Udržitelný rozvoj v průmyslových prádelnách. Kapitola 1. Modul 5 Energie v prádelnách.

Moderní energetické stoje

Moderní kotelní zařízení

ení Ing. Miroslav Mareš EGP - EGP

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D.

1/79 Teplárenské zdroje

Termomechanika 5. přednáška

Popis výukového materiálu

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

EU peníze středním školám digitální učební materiál

Ekonomické a ekologické efekty kogenerace

Perspektivní metody. PROČ sušení pevných paliv? Většina dodané energie se ztrácí. Klasická metoda sušení horkými spalinami

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

ÚVOD DO PROBLEMATIKY PAROVZDUCHOVÝCH OBĚHŮ

Parní turbíny Rovnotlaký stupe

DODAVATELSKÝ PROGRAM

NA FOSILNÍ PALIVA: pevná, plynná, kapalná NA FYTOMASU: dřevo, rostliny, brikety, peletky. SPALOVÁNÍ: chemická reakce k získání tepla

ATOMOVÁ FYZIKA JADERNÁ FYZIKA

Simulace jaderné elektrárny s reaktorem VVER-440

Obsah. KVET _Mikrokogenerace. Technologie pro KVET. Vývoj pro zlepšení parametrů KVET. Využití KVET _ Mikrokogenerace

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou.

Expert na zelenou energii

Elektrárny A2B13PEL 2015 PEL 1

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen

Název: Potřebujeme horkou vodu

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Univerzální středotlaké parní kotle KU

DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM

TECHNICKÉ INFORMACE. Alfea. tepelné čerpadlo vzduch/voda

1. Dělení a provoz výroben elektrické energie (elektráren)

Využití separačního parogenerátoru v čistých technologiích

Stavba kotlů. Stav u parních oběhů. Zvyšování účinnosti parního oběhu. Vliv účinnosti uhelného bloku na produkci CO 2

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. Zařízení pro akumulaci tepla v napájecí vodě pro transformátory páry

Jaderná elektrárna Temelín (ETE)

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

ZÁKLADNÍ ŠKOLA A MATEŘSKÁ ŠKOLA KAŠAVA. Kašava Kašava ABSOLVENTSKÁ PRÁCE. Výroba energie. Radek Březík, 9. ročník.

Obsah: Princip fungování absorpčního stroje 2 Solární chlazení 4 Jednostupňový absorpční chladicí stroj BROAD v provozu OKK Koksovny (Koksovna

Pokročilé technologie spalování tuhých paliv

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

SPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti. Přírodní a umělá paliva BIOMASA. Doc. Ing. Tomáš Dlouhý, CSc.

Energetické zdroje budoucnosti

Elektroenergetika 1. Termodynamika

Kombinovaná výroba elektřiny a tepla v roce 2008

SPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti BIOMASA. doc. Ing. Tomáš Dlouhý, CSc. Obnovitelné palivo

DÁLKOVÉ VYTÁPĚNÍ (DISTRICT HEATING, CZT CENTRALIZOVAN ZÁSOBOVÁNÍ TEPLEM)

Obnovitelné zdroje energie

Digitální učební materiál

SVAŘOVÁNÍ KOMPONENT JADERNÝCH ELEKTRÁREN I.

Výroba elektrické energie (BVEE)

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.

ENERGETIKA TŘINEC, a.s. Horní Lomná

Kogenerace s parním strojem. Limity parního motoru

VÝROBA ELEKTRICKÉHO PROUDU

Expert na zelenou energii

ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze

PROVOZ JADERNÉHO REAKTORU

Přehled technologii pro energetické využití biomasy

J i h l a v a Základy ekologie

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

JADERNÁ ENERGETIKA aneb Spojení poznatků z fyziky a chemie. Jiří Kameníček

Transkript:

Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry. Následně je energie expandující páry přeměněna na mechanickou energii v turbíně (expanze = změna objemu). Lopatkám turbíny předá pára svou energii, tím dochází k roztáčení turbíny. Turbína následně roztáčí trojfázový generátor, z jehož svorek odvádíme elektrickou energii do rozvodné sítě. Tepelné (kondenzační) elektrárny pracují podle takzvaného Clausius-Rankinova cyklu, jako medium je použita voda, která během pracovního cyklu prochází kapalným a plynným skupenstvím: Teplo získané spalováním uhlí je v kotli předáno vodě, která se ve výparníku VY mění na páru. Parametry páry se dále upravují (zvyšuje se teplota) v přehříváku PP. Přehřátá pára je přivedena do turbíny T, kde dochází k její expanzi a tím vykonává mechanickou práci roztáčí turbínu. Turbína je mechanicky spojena s trojfázovým generátorem G. Po expanzi v turbíně přichází pára do kondenzátoru KO, kde je páře odebráno teplo a odvedeno do okolí. V kondenzátoru dochází ke kondenzaci páry a v kapalném skupenství přes napájecí čerpadlo NČ je voda přiváděna přes regenerativní ohřívák OV zpět do kotle. V regenerativním ohříváku je zvyšována teplota vody před vstupem do kotle. Tím se celkový koloběh uzavírá. Celková účinnost tepelných elektráren je mezi 30 a 40%. Pokud se veškeré získané teplo využívá výhradně pro výrobu elektrické energie výrobní zařízení se nazývá elektrárna. Pokud je část získaného tepla kromě výroby elektrické energie využita i pro jiné účely, například pro dálkové vytápění, pak se takové výrobní zařízení se nazývá teplárna. V teplárnách se pro výrobu el. energie využívá max. kolem 20% získané tepelné energie a zbytek je využit k vytápění, nebo jiným technologickým účelům. Teplárny mají větší účinnost, protože odpadní teplo není vypouštěno do okolí, ale je odváděno k dalšímu využití. Nevýhodou je fakt, že výroba el. energie je závislá na množství spotřebovávaného tepla. Pokud by odběr tepla u dalších spotřebitelů byl nulový, nebylo by možno ani dodávat el. energii, neboť výkon generátoru je závislý na množství páry procházející turbínou.

Hlavní části uhelné elektrárny: Uhelné mlýny (uhlí se mele na uhelný prach, který se v kotli se spaluje) Kotel Výparník Přehřívák Turbíny nízkotlaké a vysokotlaké Kondenzátor Ohříváky (regenerativní) Napájecí čerpadlo Generátor Transformátor Hlavní technologické okruhy v uhelné elektrárně: Okruh paliva a škváry Okruh vzduchu a kouřových plynů Okruh napájecí vody a páry Okruh chladící vody Elektrický okruh Technologické schéma elektrárny.

2) Jaderné elektrárny Princip jaderné elektrárny je ve své podstatě shodný s principem kondenzační uhelné elektrárny. Jen jako zdroj tepla je místo spalování uhlí využíváno teplo získané rozpadem těžkých prvků (uran, plutonium), kotel je tak nahrazen reaktorem. Tomuto procesu rozpadu se říká štěpení, druhou možností získávání energie z jádra je proces spojování jader jaderná fúze. Tento druhý způsob umožňuje uvolňování nepoměrně většího množství energie, zatím však nedosahuje stádia průmyslového využití a je zatím ve stádiu výzkumu. Schéma štěpné reakce. Činnost dvouokruhové jaderné elektrárny: Teplo získané v reaktoru R rozpadem jader paliva přebírá chladivo primárního okruhu (voda) a v parogenerátoru PG jej předá sekundárnímu okruhu. Cirkulaci chladiva v primárním okruhu zajišťují cirkulační čerpadla HCC. Voda v sekundárním okruhu se v parogenerátoru mění v sytou páru, která je odváděna k expanzi ve vysokotlaké a nízkotlaké turbíně VT,NT. Turbína je zdrojem pohybové energie pohánějící trojfázový generátor G. Za turbínou dochází v kondenzátorech KO ke kondenzaci páry a přes napájecí čerpadlo se uzavírá sekundární okruh zpět do parogenerátoru. Výhodou tohoto dvouokruhového řešení (primární a sekundární okruh) je skutečnost, že pára pohánějící turbínu není radioaktivní. Radioaktivitu vykazuje pouze chladící voda v primárním okruhu. Na světě existují kromě jedno a dvouokruhových i tříokruhové jaderné elektrárny.

Jaderný reaktor: Reaktor je zařízení uzpůsobené k tomu, aby uvnitř mohlo docházet ke štěpné reakci jaderného paliva. Reaktor je uzpůsoben k odvodu tepla vznikajícího při této reakci, toto vzniklé teplo je dále energeticky využíváno. Reaktor je zajištěn tak, aby vlivem štěpné reakce nedošlo k jeho poškození a následnému úniku radioaktivních látek do okolí. Podle kombinace základních součástí palivo, moderátor, chladivo existuje velké množství různých typů reaktorů (moderátor slouží k snížení energie zpomalování neutronů). Nejrozšířenější dělení reaktorů je podle použitého moderátoru a chladiva, jako palivo se nejčastěji používá přírodní, nebo obohacený uran: 1) Lehkovodní reaktor LWR chladivem a moderátorem je voda (reaktory typu VVER se používají v ČR). 2) Těžkovodní HWR moderátorem je těžká voda, chladivem je plyn, nebo těžká voda. 3) Grafitové moderátorem je uhlík (grafit) chladivem je voda, oxid uhličitý, nebo hélium (těchto reaktorů je mnoho typů). 4) Rychlé reaktory FBR jsou bez moderátoru, chladivem je sodík Schéma lehkovodního reaktoru VVER používaného v ČR. Množství tepla (energie) uvolněného spálením jednoho 1kg paliva výhřevnost Druh paliva Uvolněné teplo v MJ Dřevo (obnovitelný zdroj) 12-14 MJ Hnědé uhlí 17MJ Černé uhlí 21 30MJ Zemní plyn 17MJ Ropa 37MJ Benzín 44MJ Vodík 95MJ Palivo pro jaderné elektrárny (teplo získané štěpením) 3 900 000 MJ

3) Plynové elektrárny Plynové elektrárny (elektrárny se spalovací turbínou) od parního oběhu kondenzačních elektráren se liší tím, že pracovní látka nemění během oběhu své skupenství. Pracovní látkou je vzduch vháněný kompresorem. Tyto elektrárny jsou dvojího druhu a to s otevřeným oběhem (na obrázku) a s uzavřeným oběhem. Elektrárny se spalovací turbínou využívají skrytou energii paliva (většinou plyn, ale palivo může být i v kapalném, nebo pevném skupenství) spalovaného ve spalovací komoře pod stálým tlakem vzduchu vytvářeným kompresorem K. Ve spalovací komoře dochází ke smíšení vzduchu se spalinami a vytvoření pracovní látky o teplotě až 1200 C. Odtud odchází látka do turbíny T, kde dochází k expanzi (změna objemu) a výstupu do okolí. Turbína roztáčí generátor a z jeho svorek je odebírán elektrický výkon. Aby tento systém pracoval, potřebuje k rozběhu natlakovat startovacím motorem M. Systém s uzavřeným oběhem se odlišuje od výše zmíněného tím, že pracovní látka (vzduch) nepřichází do přímého styku se spalinami. Pracovní látka má svůj oběh uzavřený a oddělený od spalin. V ohřívači pouze přebírá uvolněné teplo vzniklé spalováním paliva a je odvedena k expanzi do turbíny. Tento druh elektráren má několik výhod: - Rychlý rozběh na plný výkon a rychlé odstavení - Nižší investiční náklady - Možnost rychlé výstavby a plné automatizace - Malý zastavěný prostor Nevýhody elektráren se spalovací turbínou: - Spalování drahého paliva (většinou plyn) Tento druh elektráren se u nás využívá pouze k pokrytí náhlého nárůstu spotřeby el. energie. Kombinací elektráren se spalovací turbínou a klasického parního oběhu kondenzačních elektráren vznikla paroplynová elektrárna. To vede k podstatnému zvýšení účinnosti výroby elektrické energie.