ZDRAVOTNÍ RIZIKA VYPLÝVAJÍCÍ Z EXPOZICE PM 10 V JIHOMORAVSKÉM KRAJI



Podobné dokumenty
PODÍL DOPRAVY NA ZDRAVOTNÍM STAVU OBYVATEL V MĚSTĚ BRNĚ

ZPRÁVA O ZDRAVÍ PARDUBICKÝ KRAJ vliv znečištění ovzduší

Zdravotní rizika expozic znečišťujícím látkám v ovzduší Ostravy O N D Ř E J M A C H A C Z K A

Odhad vlivu expozice aerosolovým částicím na populační zdraví v Česku

VLIV METEOROLOGICKÝCH PODMÍNEK NA ZNEČIŠTĚNÍ OVZDUŠÍ SUSPENDOVANÝMI ČÁSTICEMI

Název lokality Stehelčeves 53,91 41,01 40,92 48,98 89,84 55,06 43,67 Veltrusy 13,82 14,41

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

Vliv automobilových emisí na lidské zdraví

Ambulantní měření na území Jihomoravského kraje. Mgr. Robert Skeřil, Ph.D. Ing. Zdeněk Elfenbein Ing. Jana Šimková

Využití rozptylových studií pro hodnocení zdravotních rizik. MUDr.Helena Kazmarová Státní zdravotní ústav Praha

VLIV METEOROLOGICKÝCH PODMÍNEK NA KONCENTRACE ŠKODLIVIN V OVZDUŠÍ V AGLOMERACI BRNO A JIHOMORAV- SKÉM KRAJI

Znečištění ovzduší důsledky pro zdraví naší populace

Doprava, znečištěné ovzduší a lidské zdraví

Stav a vývoj kvality ovzduší v Praze-Satalicích v letech

Znečištěné ovzduší a lidské zdraví

VÝZNAMNÉ SMOGOVÉ SITUACE A JEJICH ZÁVISLOST NA METEOROLOGICKÝCH PODMÍNKÁCH V ČR

Znečištění ovzduší. Bratislava, 19. února 2014 MUDr. Miroslav Šuta. a lidské zdraví. Centrum pro životní prostředí a zdraví

A-PDF Split DEMO : Purchase from to remove the watermark

Znečištění ovzduší a zdraví

ZDRAVOTNÍ RIZIKA Z VENKOVNÍHO OVZDUŠÍ VÝVOJ B. Kotlík, H. Kazmarová, CZŢP, SZÚ Praha

Zdravotní ústav se sídlem v Brně

Znečištění ovzduší v České republice. MUDr. Miroslav Šuta. Bielsko-Biala, srpna Centrum pro životní prostředí a zdraví

Hodnocení úrovně znečištění ovzduší PM 10 ve vztahu ke zdraví obyvatel Ostravy

HODNOCENÍ ZDRAVOTNÍCH RIZIK Z POŽITÍ A DERMÁLNÍHO KONTAKTU NAFTALENU V ŘECE OSTRAVICI

Vliv ovzduší v MSK na zdraví populace v regionu


Měření v lokalitě Poliklinika Spořilov

Český hydrometeorologický ústav Úsek ochrany čistoty ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

Příloha č. 3: Hodnocení zdravotních rizik část 2: Znečištění ovzduší

PŘÍLOHA A IMISNÍ STUDIE PROGRAM ZLEPŠENÍ KVALITY OVZDUŠÍ PARDUBICKÉHO KRAJE DRUH A POSOUZENÍ ZNEČIŠTĚNÍ OVZDUŠÍ ZHOTOVITEL:

DOPRAVA A ZDRAVÍ. příspěvek k diskusi o řešení dopravní situace v Praze Ing. Miloš Růžička

Částice v ovzduší a zdraví. MUDr.Helena Kazmarová Státní zdravotní ústav

Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění

BZN. NO 2 (µg/m 3 ) PM 2,5. Pozaďové stanice ČR 6,9 15,6 13,5 0,7 0,52 0,08 3,30 0,40 0,67

Znečištění ovzduší města Liberce

Český hydrometeorologický ústav Úsek ochrany čistoty ovzduší Kvalita ovzduší a rozptylové podmínky na území ČR LEDEN 2015

Sledování a hodnocení kvality ovzduší v ČR

Kvalita ovzduší a emisní inventury v roce 2007

VZTAH MEZI INTENZITOU DOPRAVY, IMISEMI A METEOROLOGICKÝMI PODMÍNKAMI

Radim J. Šrám. Ústav experimentální mediciny AV ČR Praha. Magistrát hl. m. Prahy, Praha,

Kvalita ovzduší a rozptylové podmínky na území ČR

Český hydrometeorologický ústav Úsek kvality ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

Měření znečištění ovzduší, transhraniční přenos

ANALÝZY HISTORICKÝCH DEŠŤOVÝCH ŘAD Z HLEDISKA OCHRANY PŮDY PŘED EROZÍ

Vliv kvality ovzduší na lidské zdraví , Klub Atlantik Ostrava

Český hydrometeorologický ústav Úsek kvality ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

VYHODNOCENÍ KVALITY OVZDUŠÍ V LOKALITĚ PODOMÍ

Kvalita ovzduší v Jihomoravském kraji

Kvalita ovzduší v přeshraniční oblasti Slezska a Moravy - výsledky projektu Air Silesia

VÝSLEDKY MĚŘENÍ ZNEČIŠTĚNÍ OVZDUŠÍ

ODBORNÁ ZPRÁVA Pro potřeby PLL a. s. Jeseník VÝSLEDKY MĚŘENÍ ZNEČIŠTĚNÍ OVZDUŠÍ NA AUTOMATIZOVANÉ MONITOROVACÍ STANICI JESENÍK-LÁZNĚ V ROCE 2016

Český hydrometeorologický ústav Úsek kvality ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

Český hydrometeorologický ústav Úsek kvality ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

Blíž k lidem aneb vše v jednom. MUDr. Helena Kazmarová, RNDr. Bohumil Kotlík, Ph.D. Státní zdravotní ústav

Kvalita ovzduší v Jihomoravském kraji. Mgr. Robert Skeřil, Ph.D. Český hydrometeorologický ústav,

Generální rozptylová studie Jihomoravského Kraje. Rozptylová studie pro posouzení stávajícího imisního zatížení na území Jihomoravského kraje

Český hydrometeorologický ústav Úsek kvality ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

Návrh postupu pro stanovení četnosti překročení 24hodinového imisního limitu pro suspendované částice PM 10

Uran a jeho těžba z hlediska zdravotních rizik

Hodnocení rozptylových podmínek ve vztahu ke koncentracím znečišťujících látek. Josef Keder Hana Škáchová

ení kvality ovzduší oblasti Česka a Polska Kvalita ovzduší Ing. Rafał Chłond Ostrava 29. června 2010

ZNEČIŠTĚNÍ OVZDUŠÍ ODHAD ZDRAVOTNÍHO RIZIKA

Kvalita ovzduší a rozptylové podmínky na území ČR

Vybrané zdravotní ukazatele ve vztahu ke kvalitě ovzduší v MS kraji , Havířov

INDIKATIVNÍ MĚŘENÍ MS HAVÍŘOV Vyhodnocení za rok 2011

Český hydrometeorologický ústav Úsek ochrany čistoty ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

Porovnání předpovídané zátěže se zátěží skutečnou (podle modelu III-C BMP ČHMÚ) Martin Novák 1,2

Informační systém kvality ovzduší v oblasti Polsko -Českého pohraničí ve Slezském a Moravskoslezském regionu = projekt AIR SILESIA

Modelování imisí v dopravě

Zdroje dat o kvalitě ovzduší a možnosti práce s nimi imise RNDr. Leona Matoušková, Ph.D.

Vývoj stavu ovzduší. Příloha č. 2

Vybrané zdravotní ukazatele ve vztahu ke znečištěnému ovzduší v MSK Ostrava,

zdroj

Český hydrometeorologický ústav Úsek ochrany čistoty ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

Aktuální informace. Ústavu zdravotnických informací a statistiky České republiky. Praha

Informační systém kvality ovzduší v oblasti Polsko Českého pohraničí ve Slezském a Moravskoslezském regionu CZ.3.22/1.2.00/09.

Identifikace zdrojů znečišťování ovzduší

Český hydrometeorologický ústav Úsek ochrany čistoty ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

INDEXACE SPÁSA NEBO PROBLÉM

Rozvoj metodiky tvorby map znečištění. Jan Horálek Pavel Kurfürst, Nina Benešová, Roman Juras, Jana Ďoubalová

Český hydrometeorologický ústav Úsek kvality ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

Vliv znečištěného ovzduší na lidské zdraví, zkušenosti z Programu Teplice

Zdravotní dopady znečištěného ovzduší v důsledku spalování uhlí a dřeva v lokálních topeništích

PM 10 NEBO PM 2,5. (ale co třeba PM 1,0 a < 1 µm) B. Kotlík 1 a H. Kazmarová 2 1

Vliv konzumace alkoholu na riziko vzniku rakoviny v české populaci

Vliv prachových částic PM 10 na standardizovanou denní úmrtnost ve třech oblastech České Republiky

Český hydrometeorologický ústav Úsek ochrany čistoty ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

Index kvality ovzduší - IKO

Hodnocení zdravotních rizik expozice hluku

ENVItech Bohemia s.r.o. Vyhodnocení kvality ovzduší v Otrokovicích v roce 2017

Koncentrace tuhých částic v ovzduší v bezesrážkových epizodách

Evropské výběrové šetření o zdravotním stavu v ČR - EHIS CR Základní charakteristiky zdraví

INFORMAČNÍ SYSTÉMY PRO KRIZOVÉ ŘÍZENÍ POUŽITÍ INFORMAČNÍCH SYSTÉMŮ PRO MODELOVÁNÍ A SIMULACE KRIZOVÝCH SITUACÍ - T6 ING.

Český hydrometeorologický ústav Úsek ochrany čistoty ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

DŮSLEDKY ZNEČIŠTĚNÍ OVZDUŠÍ Z DOPRAVY NA ZDRAVOTNÍ STAV POPULACE

Vyhodnocení kvality ovzduší v Jihomoravském kraji v letech

8. Závěr. VARIANTA 1: Výchozí stav v roce 2006, referenční stav

Hodnocení zdravotních rizik expozice hluku

Český hydrometeorologický ústav Úsek ochrany čistoty ovzduší. Kvalita ovzduší a rozptylové podmínky na území ČR

Transkript:

Mikulov 9. 11.9.28, ISBN 978-8-8669-55-1 ZDRAVOTNÍ RIZIKA VYPLÝVAJÍCÍ Z EXPOZICE PM 1 V JIHOMORAVSKÉM KRAJI Vladimír Adamec 1), Roman Ličbinský 1), Dagmar Komárková 2), Josef Navrátil 2) 1) Centrum dopravního výzkumu, v.v.i., Líšeňská 33a, 636 Brno vladimir.adamec@cdv.cz 2) Univerzita obrany, Kounicova 65, 612 Brno Abstract: Decreasing air quality that is one of the main environmental components is connected with progress of human society and technologies. Transport, industry and agricultural activities are significant pollution sources that emit pollutants to the air. These pollutants negatively affect not only environment but also human health. Air pollution thus becomes in recent years serious menace to people and risk factor causing negative health effects. These effects are dependent on pollutant type, exposure dimension, duration and frequency. Health risk assessment is focused in recent years on effects of particulate matters (PM) that concentrations in the air gradually increase and human population is exposed by inhalation of polluted air every day. Epidemiological results focused on these particles demonstrate negative effects on human health represented by from just eye irritation due to acute effects of short term high concentrations to increase of morbidity and mortality due to long term exposure when especially sensitive people can be negatively affected by low PM concentrations. Toxicity and genotoxicity of particulate matters are connected with their physical and chemical properties. Toxicity effects based on physical properties can cause damage of pulmonary tissue leading up to the pulmonary fibrosis, overloading of heart due to limited oxygen input and cardiovascular diseases origin. Genotoxic effects are dependent on PM chemical composition because many organic and inorganic compounds are adsorbed on their surface. Increase of chronic bronchitis occurrence that is on the fifth position among worldwide mortality is also the result of increased PM concentrations and some specific studies indicate also possible cancer origin especially of respiratory organs. Presented study is focused on health risk assessment due to exposure of air particulate matters mainly PM 1 in South Moravian region during years 24 26. Health effects represent the occurrence of bronchitis among children and total mortality. Assessment of this effects is based on calculation of odds ratio OR and relative risk RR. There are used factors for the assessment like annual average concentration of PM 1 and tabulated regression coefficient of value,2629 in calculation of OR and maximum daily concentration of PM 1 and tabulated regression coefficient of value,12 in calculation of RR. The worst situation of bronchitis occurrence among children is in Brno střed, where 9.6 % of children could have this disease in 24 caused by measured PM 1 concentration. The worst situation dealing with total mortality was in Znojmo in 24, where the risk of death was 1.49 times higher for exposed population due to measured P 1 concentrations. Health risk assessment result results indicate relatively high loading of inhabitants living near chosen monitoring stations in South Moravian region. Keywords: particulate matter, health risks, South Moravian region 1) Úvod S vývojem lidstva a technologií dochází k postupnému snižování kvality ovzduší, které je jednou z hlavních složek životního prostředí. Mezi hlavní zdroje znečištění patří zejména doprava, průmysl a zemědělství, prostřednictvím nichž se škodlivé látky dostávají do ovzduší. Zdravotní dopady jsou pak závislé na typu škodliviny, velikosti, délky a frekvence expozice. Znečištěné ovzduší se tak stává vážnou hrozbou pro lidstvo a rizikovým faktorem způsobující nepříznivé zdravotní účinky. V posledních letech se hodnocení zdravotních rizik soustřeďuje na účinky pevných částic (PM) jejichž koncentrace v ovzduší se neustále zvyšují a populace je jimi exponována inhalací z ovzduší každý den.

Mikulov 9. 11.9.28, ISBN 978-8-8669-55-1 Výsledky epidemiologických studií, zaměřených na tyto částice, prokázaly negativní dopady na zdraví populace od pouhého očního podráždění, vlivem akutních účinků v důsledku krátkodobě vysokých koncentrací, až po zvýšení morbidity či mortality vlivem dlouhodobé expozice, kdy zejména u citlivých jedinců mohou vyvolat nepříznivé účinky i nízké koncentrace PM. Toxicita a genotoxicita suspendovaných částic souvisí zejména s jejich fyzikálními a chemickými vlastnostmi. Na základě fyzikálních vlastností se toxicita projevuje v podobě poškození plicních tkání vedoucí až k fibrotizaci plic, dochází k přetěžování srdce v rámci omezeného přístupu kyslíku a ke vzniku kardiovaskulárních chorob. Genotoxické účinky jsou závislé zejména na chemickém složení PM, jelikož na jejich povrch je vázána celá řada škodlivin organické i anorganické povahy. Možným důsledkem zvýšených koncentrací PM v ovzduší je také nárůst počtu úmrtí následkem chronické bronchitidy, která je na páté příčce celosvětové úmrtnosti, některé studie poukazují dokonce i na možný vznik rakoviny, zejména respiračních orgánů. Podle některých výzkumů byl pozorován až 4% nárůst rakoviny plic při dlouhodobé expozici vysokým koncentracím výfukových plynů dieselových motorů. Nejvíce ohroženou skupinou jsou tak právě ti obyvatelé, žijící v blízkosti silničních komunikací se zvýšenou intenzitou dopravy, dále pak lidé s oslabeným imunitním systémem, astmatici, kardiaci a děti, které inhalují výfukové plyny téměř přímo z výfuků [1, 2, 3, 4]. Podle nejnovějších průzkumů provedených Evropskou unií zemřelo v roce 2 v celé EU na nemoci související se znečištěním ovzduší pevnými částicemi 31 lidí a jemný prach v průměru snižuje délku života každého Evropana o devět měsíců [5]. 2) Materiál a metody Cílem hodnocení zdravotních rizik je na základě dostupných informací kvantitativně vyjádřit míru konkrétního zdravotního rizika za dané situace. Základní metodické postupy hodnocení zdravotních rizik byly vypracovány především Americkou agenturou pro ochranu životního prostředí (US EPA) a Světovou zdravotní organizací (WHO). V České republice byly tyto základní metodické podklady odhadu zdravotních rizik vydány Ministerstvem zdravotnictví a Ministerstvem životního prostředí ČR. Kvantifikace zdravotních rizik standardních škodlivin jako pevné částice, oxid uhelnatý, oxidy dusíku, oxid siřičitý, vychází z výsledků různých epidemiologických studií. Pro výpočet parametrů charakterizujících pravděpodobnost zdravotního rizika byl použit postup navržený v K. Aunanovou [6] s výpočtem hodnoty OR (resp. RR), který je rovněž doporučován WHO. Postup výpočtu využívá vztahu: OR ( RR) e ( C) kde: OR - odds ratio, je poměr pravděpodobnosti exponovaných osob v populaci s příslušnými zdravotními příznaky k počtu osob neexponovaných s týmiž příznaky C - příslušná imisní koncentrace, roční pro chronické, denní pro akutní rizika β - tabelovaný regresní koeficient,vztahující se k příslušné diagnóze Vztažením k prevalenci příznaků při nulové expozici příslušné populace touto škodlivinou zjistíme prevalenci příznaků v prostředí s konkrétní zvýšenou koncentrací látky v ovzduší. Za tímto účelem byl použit vztah: ORi * p pi 1 p OR * p p p i Kde: p - odhadnutá prevalence při nulové koncentraci škodliviny p i

Mikulov 9. 11.9.28, ISBN 978-8-8669-55-1 p i - prevalence všech sledovaných příznaků při dané koncentraci škodliviny ve srovnání s nulovou prevalencí p - prevalence sledovaných příznaků vyvolaných expozicí PM. V případě znalosti relativního rizika (RR), jenž se pro malé hodnoty obou prevalencí rovná hodnotě OR, což platí pro většinu standardních škodlivin nebo ze znalosti prevalencí p a p i můžeme jednoduše vypočítat podíl exponované populace, která je postižena příslušným zdravotním příznakem. Výpočet nárůstu prevalence vlivem prašnosti lze tak získat ze vztahů: p i RR * p p p i Pro výpočet odhadu rizika výskytu bronchitidy u dětí byl použit výpočet OR, do něhož vstupovaly roční koncentrace PM 1 (jelikož se jedná o chronické riziko) a regresní koeficient o hodnotě β =,2629 (,273,5187, 95%). Na základě popsaného vztahu byla zjištěna prevalence všech výskytů bronchitid u dětí při dané koncentraci PM 1. Výsledek byl poté snížen o hodnotu příslušné nulové prevalence, v tomto případě p =,3 [6]. Celková úmrtnost byla hodnocena na základě výpočtu RR, kde byly použity veličiny maximální denní koncentrace PM 1 a regresní koeficient β =,12 (,6,19, 95 %), jenž se vztahuje k celkové úmrtnosti. Poté byla zjištěna příslušná prevalence, která dále byla snížena o nulovou prevalenci 25,1 [6]. V rámci studie se však nepodařilo získat přesný počet obyvatel žijících na uvažovaných lokalitách, proto lze brát práci jako návod obecného postupu hodnocení zdravotních rizik vyvolaných z expozice PM 1. Jako vstupní data pro hodnocení zdravotních rizik byly využity údaje o koncentracích PM 1 naměřené na vybraných stanicích sítě automatického p imisního monitoringu v městě Brně (Tuřany, Kroftova, střed, Dobrovského) a dalších částech jihomoravského kraje (Mikulov Sedlec, Hodonín, Kuchařovice, Znojmo) v průběhu let 24 až 26. 3) Výsledky a diskuse Ze získaných dat vyplývá (tab. 1), že v Brně byly roční limity PM 1 v rámci sledovaných stanic, překročeny na stanici Brno střed ve všech sledovaných rocích a nepatrně na stanici Brno Kroftova v roce 26. Příčinou překročení ročních limitů PM 1 na stanici Brno střed je způsobeno pravděpodobně umístěním stanice v centru města v bezprostřední blízkosti křižovatky dvou frekventovaných komunikací. Dopravní zatíženost na stanici Brno Kroftova je menší v porovnání se stanicí Brno střed. Naopak průměrné roční koncentrace PM 1, naměřené na vybraných stanicích mimo Brno, nepřekračují legislativní limity. Tento rozdíl je dán nižší hustotou osídlení a nižší dopravní intenzitou v těchto oblastech. Rozdílnost v naměřených průměrných ročních koncentrací PM 1 může záviset také na typu a umístěním měřící stanice. Stanice Brno střed a Brno Kroftova, na kterých byly naměřeny vyšší koncentrace PM 1 než stanovuje limit, jsou stanice dopravní, umístěné do 5 m od komunikace s velkou intenzitou dopravy. Výjimkou je lokalita Znojmo, která je také stanice dopravní, ale k překročení PM 1 zde nedošlo. Důvodem může být delší vzdálenost od dopravní komunikace (7 m). Ostatní vybrané měřící stanice jsou klasifikovány jako pozaďové, Vliv antropogenních zdrojů PM 1 je u těchto stanic minimální spíše jsou ovlivněny zemědělstvím [8]. V roce 25 byl oproti roku 24 zaznamenán nárůst koncentrací PM 1 na lokalitách klasifikovaných jako pozaďové zejména na stanicích Mikulov Sedlec, Znojmo, Kuchařovice, Hodonín. Jedním z možných důvodů nárůstu koncentrací PM 1 na pozaďových stanicích v roce 25 oproti roku 24 mohou být nižší teploty naměřené v roce 25, kdy v topných mě-

Mikulov 9. 11.9.28, ISBN 978-8-8669-55-1 sících byla průměrná teplota v roce 24 +,26 C, zatímco v roce 25 bylo naměřeno pouze,48 C. Větší zima pravděpodobně vedla k intenzivnějšímu vytápění v lokálních topeništích, které jsou také významným zdrojem PM 1. Průměrná teplota v měsících leden, únor, březen, listopad a prosinec 25 byla nižší v porovnání s rokem 24 [9]. Denní imisní limit byl v lednu 26 překročen na stanici Znojmo 25x, Brno střed 24x, Brno Tuřany a Mikulov 19x, Brno Kroftova 16x, Kuchařovice 14x, Hodonín 13x a Brno Dobrovského 9x [7]. Tato překročení byla způsobena dlouhou zimou s velmi nepříznivými rozptylovými podmínkami v důsledku teplotních inverzí. Velmi silně se teplotní inverze projevila hlavně v druhé polovině ledna a počátkem února roku 26, kdy všechny stanice vysoko překračovaly platné imisní limity po dobu zhruba 2 dní. Maximální hodnoty 24hodinových průměrných koncentrací PM 1 se v Brně pohybovaly okolo 2 µg.m -3 [1]. Na grafech 1 8 na obr. 1 jsou znázorněny průměrné koncentrace v jednotlivých čtvrtletích hodnocených let. Hodnoty průměrných koncentrací PM 1 jsou v prvním a čtvrtém čtvrtletí vyšší než hodnoty v druhém a třetím čtvrtletí, tudíž při nejnižších naměřených teplotách byly určeny nejvyšší koncentrace PM 1 a naopak. Toto kolísání hodnot průměrných koncentrací PM 1 může mít spojitost zejména. s vertikální stabilitou atmosféry. Lepší ventilací v teplejším období (konvekce) jsou částice snadněji rozptylovány, zatímco v chladnějších měsících (inverze) je ventilace omezená a dochází tak k hromadění PM 1 ve spodních vrstvách atmosféry, poblíž místa svého vzniku. V zimě se na přítomnosti částic mohou také výrazně podílet lokální topeniště. Hodnocení zdravotních rizik prokázalo, že možnost výskytu bronchitidy u dětí v Brně se pohybuje v intervalu od,28 do,96 a mimo Brno od,23 do,46. Při srovnání těchto intervalů lze vysledovat dvojnásobně vyšší horní hranici intervalu v Brně než na sledovaných lokalitách mimo Brno. Nejnižší hodnota možnosti výskytu bronchitidy v Brně byla naměřena v roce 26 pro lokalitu Brno Dobrovského a nejvyšší hodnota v roce 24 Brno střed. Z toho vyplývá že 2,8 % exponovaných dětí v lokalitě Brno Dobrovského v roce 26 a 9,6 % exponovaných děti v lokalitě Brno střed v roce 24 mohlo mít příznaky bronchitidy způsobené danou roční koncentrací. Lokalitě Hodonín (oblast mimo Brno) odpovídá nejnižší míra možnosti výskytu bronchitidy u dětí, kdy 2,3 % exponovaných dětí v této lokalitě v roce 24 mohlo mít příznaky bronchitidy v důsledku expozice PM 1. Naopak nejvyšší pravděpodobnost byla zaznamenána na lokalitě Znojmo, kde u 4,6 % exponovaných se mohla vyskytnout bronchitida zapříčiněná roční koncentrací PM 1. Z výsledků odhadu pravděpodobnosti celkové úmrtnosti, která je vyvolána expozicí PM 1 na sledovaných lokalitách vyplývá, že interval počtu úmrtí v Brně se pohybuje od 1,12 do 1,28 a mimo Brno od 1,11 do 1,49. Je zde patrná vyšší horní hranice intervalu pro mimo brněnskou oblast. Nejnižší relativní riziko v Brně bylo na lokalitě Brno Kroftova v roce 24, kde u exponované populace bylo 1,12krát vyšší riziko počtu úmrtnosti vyvolané expozicí PM 1, nejvyšší pak na lokalitách Brno střed a Brno - Kroftova v roce 26, kde u exponované populace bylo 1,28krát vyšší riziko počtu úmrtí z expozice PM 1. Z pohledu celkové úmrtnosti v oblasti mimo Brno bylo zjištěno nejnižší relativní riziko 1,11 v Hodoníně v roce 25. Z toho vyplývá, že u exponované populace bylo 1,11krát vyšší riziko počtu úmrtí vlivem expozice PM 1 než u neexponované. Naopak nejvyšší bylo stanoveno ve Znojmě v roce 24, kde u exponované populace bylo 1,49krát vyšší riziko počtu úmrtí z expozice PM 1. Toto riziko bylo nejvyšší vzhledem ke sledovaným rokům a i vybraným měřícím stanicím v Brně. Každé hodnocení zdravotního rizika je nevyhnutelně spojeno s určitými nejistotami, danými použitými daty, expozičními

Mikulov 9. 11.9.28, ISBN 978-8-8669-55-1 faktory, odhady chování dané exponované populace apod. Hlavním faktorem nejistoty v rámci této studie je absence měsíčních dat v roce 24 na lokalitě Brno střed za měsíc srpen, září a říjen. V těchto měsících došlo k předávání měřící stanice Magistrátem Brna k užívání ČHMÚ, proto nemohly být naměřeny koncentrace PM 1. Řešením této absence bylo zprůměrováním měsíčních průměrných hodnot PM 1 naměřených v lednu, únoru, březnu, dubnu, květnu, červnu, červenci, listopadu a prosinci roku 24 v této lokalitě. Výsledný průměr byl dosazen za chybějící měsíční průměrné koncentrace v srpnu, září a říjnu. Výsledky studie vyplývají z naměřených koncentrací PM 1 ve vnějším ovzduší a nejsou zde zahrnuty i další faktory ovlivňující zdraví člověka jako je např. kouření, dědičnost, stres, životní styl apod. Dalším faktorem ovlivňující výsledky hodnocení rizik je neznalost počtu exponované populace, což neumožnilo přesněji určit přímo počty ohrožených obyvatel v uvažovaných oblastech. 4) Závěr Na základě řady epidemiologických studií bylo prokázáno, že pevné částice PM 1 způsobují nepříznivé efekty na zdraví člověka, podmíněné zejména jejich fyzikálními a chemickými vlastnostmi. Při porovnání naměřených průměrných ročních koncentrací PM 1 na vybraných lokalitách s legislativními limity bylo zjištěno jejich překročení pouze na dvou měřících stanicích v Brně. Na lokalitě Brno střed došlo k překročení imisních limitů ve všech třech sledovaných rocích o 5 až 18,6 µg.m -3. Na lokalitě Brno Kroftova nebyl v roce 26 rovněž dodržen limit, ale jeho překročení činilo pouze,2 µg.m -3. Rovněž maximální denní koncentrace PM 1 překračovali denní imisní limit a to zejména v chladných obdobích roku. Nejvyšší maximální denní koncentrace byla naměřena ve Znojmě v roce 24 a činila 332,7 µg.m -3. Koncentrace PM 1 dosahují nejvyšší hodnot v průběhu roku v zimních měsících a naopak nejnižších v letě. Tento vývoj je ovlivněn zejména meteorologickými podmínkami. Pozornost při hodnocení zdravotních rizik vyplývajících z expozice PM 1 byla soustředěna na výskyt bronchitidy u dětí a celkovou úmrtnost exponované populace. Ze získaných výsledků vyplynulo, že z hlediska výskytu bronchitidy u dětí je nejhorší situace na lokalitě Brno střed, kde v roce 24 pravděpodobně onemocnělo bronchitidou 9,6 % dětí vlivem expozice PM 1. V případě celkové úmrtnosti byla nepříznivá situace v roce 24 ve Znojmo, kde u exponované populace bylo 1,49krát vyšší riziko počtu úmrtí vlivem expozice PM 1. Výsledky vyhodnocení zdravotních rizik vyvolaných expozicí PM 1 indikuje poměrně vysokou zátěž obyvatel v okolí sledovaných monitorovacích stanic v Jihomoravským kraji. 5) Použitá literatura [1] Transport-related health effects with a particular focus on children, 24, THE PEP, WHO, UNECE. [2] DORA, C., PHILLIPS, M.(Eds.): Transport, environment and health. WHO, 2. [3] KRZYZANOWSKY, M., KUNA-DIBBERT, B., SCHNEIDER, J. (Eds.): Health effects of transport-related air pollution, 25, WHO Europe. [4] CICCONE G., FORASTIERE F., AGABITI N., BIGGERI A.: Road Traffic and Adverse Respiratory Effects in Children. Occupational and Enviromental Medicine, 55, 11, 1998, p. 771-778. [5] WATKISS, P., PYE, S., HOLLAND, M.: CAFE CBA: Baseline analysis 2 to 22, CAFE Programe, 25. [6] AUNAN, K.: Exposure-Response functions for health effects of air pollutants based on epidemiological findings, University of Oslo, 1995.

Mikulov 9. 11.9.28, ISBN 978-8-8669-55-1 [7] Český hydrometeorologický ústav. PM1 - Suspendované částice frakce PM1 : Hodinové, denní, čtvrtletní a roční imisní charakteristiky [online]. [cit. 28-4-17]. Dostupný z WWW: <http://www.chmu.cz/uoco/isko/tab_roc/26_enh/cze/pollution_hdqy/hdqy_czbbm_ PM1.html>. [8] Český hydrometeorologický ústav. Informace o kvalitě ovzduší v ČR. [online]. [cit. 28-4-1]. Dostupný z WWW: <http://www.chmu.cz/uoco/isko/isko2/locality/pollution_locality.html>. [9] Český hydrometeorologický ústav. Podrobný přehled imisních hodnot [online]. [cit. 28-4-16]. Dostupný z WWW: <http://www.chmi.cz/uoco/isko/tab_roc/26_enh/cze/pollution_overview.html>. [1] Český hydrometeorologický ústav. Znečištění ovzduší na území České republiky v roce 26. Praha : 27. Dostupný z WWW: <http://www.chmi.cz/uoco/isko/groc/gr6cz/obsah.html>. 6) Tabulková a grafická příloha Tab. 1 Průměrné roční koncentrace PM 1 na vybraných stanicích AIM v µg m -3 [7] Název stanice 24 25 26 Brno-Tuřany 31,4 33,4 36,2 Brno-Kroftova 28,8 32,1 4,2 1) Brno-střed 58,6 1), 2) 47,9 1) 45, 1) Brno-Dobrovského 35,2 34, 26,5 Mikulov-Sedlec 24,7 28,5 28, Hodonín 22,7 25,5 27,5 Kuchařovice 26,3 29,1 3,3 Znojmo 34,4 37,5 35,7 Legenda: 1) naměřené koncentrace překračují legislativní limit 2) V srpnu, září a říjnu nebyla stanice v provozu vzhledem k předávání měřící stanice Magistrátem Brna do správy ČHMÚ. Průměrné koncentrace v těchto měsících byly nahrazeny aritmetickým průměrem dostupných dat v rámci tohoto roku.

Mikulov 9. 11.9.28, ISBN 978-8-8669-55-1 Obr. 1. Vývoj čtvrtletních průměrných koncentrací PM 1 na vybraných lokalitách 1 9 8 7 6 5 4 3 2 Čtvrtletní průměrné koncentrace PM 1 Brno - střed K o n c e n tra c e (µ g m - 3 ) 1 9 8 7 6 5 4 3 2 Čtvrtletní průměrné koncentrace PM 1 Brno - Tuřany 1 1 24 25 26 24 25 26 K o n c e n tra c e (µ g m - 3 ) 1 9 8 7 6 5 4 3 2 Čtvrtletní průměrné koncentrace PM 1 Brno - Kroftova 1 9 8 7 6 5 4 3 2 Čtvrtletní průměrné koncentrace PM 1 Brno - Dobrovského 1 1 24 25 26 24 25 26 1 Čtvrtletní průměrné koncentrace PM 1 Mikulov - Sedlec 1 Čtvrtletní průměrné koncentrace PM 1 Hodonín 9 9 8 7 6 5 4 3 2 8 7 6 5 4 3 2 1 1 24 25 26 24 25 26

Mikulov 9. 11.9.28, ISBN 978-8-8669-55-1 1 Čtvrtletní průměrné koncentrace PM 1 Kuchařovice 1 Čtvrtletní průměrné koncentrace PM 1 Znojmo 9 9 8 7 6 5 4 3 2 K o n c e n tra c e (µ g m - 3 ) 8 7 6 5 4 3 2 1 1 24 25 26 24 25 26