stokrát více, než je obyvatel naší republiky.
|
|
- Vojtěch Bednář
- před 6 lety
- Počet zobrazení:
Transkript
1 Difúze je samovolné rozptylování látky v kapalině či plynu, které probíhá tak dlouho, než je látka rozptýlena naprosto rovnoměrně, tedy než je všude stejná koncentrace této látky. Příkladem může být voňavka vystříklá ze spreje v jednom koutě místnosti. Za chvíli je rovnoměrně rozpýlena a je jí cítit všude stejně. Dalším příkladem je kostka cukru hozená do sklenice vody. I bez míchání po určité době se cukr rovnoměrně rozptýlí v celém objemu sklenice, takže voda bude všude stejně sladká. Látka se rozptyluje díky nárazům neustále se pohybujících částic (atomů či molekul) plynu či kapaliny. Difúze je tak zároveň elegantním důkazem existence atomů a molekul. Difůzi můžeme přirovnat k hromadě pinpongových míčků (pevná látka), kterou dáme na jedno místo doprostřed velmi rušného Václavského náměstí v Praze. Lidské davy (kapalina) budou neustále nárazy jednotlivých lidí (molekuly) roptylovat míčky po náměstí. Za několik hodin budou míčky více méně rovnoměrně rozmístěny po náměstí. Částice kapalin a plynů se pohybují ohromnou rychlostí. Čím vyšší je teplota, tím je i vyšší rychlost pohybu částic. Například při pokojové teplotě se molekuly vody pohybují průměrnou rychlostí 650 metrů za sekundu, tedy asi kilometrů za hodinu. Je to velmi slušná rychlost, kterou bychom za velkou přestávku, tedy za dvacet minut, dojeli z Prahy až do Paříže. Molekuly se však nepohybují přímočaře. Je jich totiž tak velké množství, že do sebe neustále narážejí. Například při pokojové teplotě do molekuly vody narazí za jednu vteřinu ostatní molekuly vody ne dvakrát či třeba pětkrát, ale nejméně sto miliardkrát!!!!! Připomeňme, že miliarda je tisíckrát větší než milión, že je to tedy číslo s devíti nulami nebo jinak řečeno je to
2 stokrát více, než je obyvatel naší republiky. Rychlost difúze závisí na teplotě. Čím vyšší teplota, tím se částice rychleji pohybují. Při rychlejších pohybech budou i rychleji narážet do látek a rychleji je rovnoměrně rozmístí. Vaším úkolem bude pozorovat difúzi potravinářského barviva při třech různých teplotách při 0 C, při 20 C a při 100 C. Seženeme si tři průhledné vysoké nádoby. Na dalších fotografiích jsou použity elegantní kelímky, které se jmenují long drink, mají objem asi 0,3 l a jsou k sehnání ve speciálních papírnictvích. V Kutné Hoře doporučuji největšího specialistu na kelímky, a to je obchod na konci České ulice. Prodejna se jmenuje tuším KOHAP a prodávají se zde I různé papírové krabičky a obaly. Nádoby ale mohou být samozřejmě i vysoké skleničky. Dále koupíme v drogerii sáček potravinářského barviva. Barva závisí na Vašem estetickém cítění, leč doporučuji nějakou výraznou barvu. Po pokusu obarvenou vodu nepijte, ač možná vypadá lákavě (óóó, jaká krásná malinovka.). Všeho moc škodí, a to i u potravinářských barviv. Vodu o teplotě 0 C vyrobíte tak, že kelímek s vodou necháte v ledničce. Nebude to přesně nula stupňů, ale to nevadí. 20 C teplou vodu připravíte tak, že vodu necháte delší dobu při pokojové teplotě. Při výrobě 100 C teplé vody (vařící se voda) pozor na opaření. Jako Vopařil o tom cosi vím :-) Nemusíme řešit, že voda po nalití do kelímku rychle snižuje teplotu. Kelímky seřaďte zleva doprava dle vzrůstající teploty. Ze sáčků na čaj vystřihneme čtverečky, které nám budou sloužita jako plováky, jako vory, které poplují po hladině vody v kelímcích a ponesou barvivo do té doby, než se difúzí samovolně rozptýlí. Na plováky nasypte hromádku barviva, a to na všechny plováky stejně. Plováky i s barvivem na hladinu vody v kelímcích doporučuji dávat jednoduchou lopatkou vyrobenou z narovnané kancelářské sponky (viz následné foto pomůcek). Aby pokus dával smysl, musí být plováky položeny na hladinu vody ve stejný okamžik. Nejlepší je pozvat členy rodiny, ať omohou. Jejich zdržení když je vše dobře připraveno je opravdu pár vteřin. Když budete vše dělat sami, plováky dávejte na hladiny vody v kelímcích od nejstudenější vody (kde je difůze nejpomalejší) k nejteplejší vodě a snažte se o co nejmenší časový rozdíl. Doporučuji si vše vyzkoušet nanečisto v jednom kelímku, než přistoupíte k ostré verzi. Předem dopručuji připravit si místo, ke budeme difůzi fotit. Foťák doporučuji dát na stativ či samozřejmě improvizovaně i na vyzkoušené jedno místo s připravenou podložkou, na které budou kelímky přesně v záběru. Při focení z jednoho bodu budou kelímky stále na tom samém místě a fotografie budou mnohem výstižnější.
3 Některá úskalí: 1. málo barviva Při použití málo barviva se voda zabarví jen světle a pokračující difůze není příliš vidět. 2. hodně barviva Při použití hodně barviva hrozí, že plovák se potopí a pokus je tím znehodnocen. Doporučuji si to vyzkoušet dopředu pro zvšení nosnosti můžete zvětšit papírový plovák. Doporučuji mít připravené několi dávek barviva i kelímků s příslušnou teplotou navíc při potopení se rychle můžeme kelímek I plovák s dávkou barviva vyměnit. 3. zamlžení stěn kelímku se studenou vodou Při vyndání kelímku se studenou vodou nastane známý efekt zamůžených brýlí - voda se začne srážet na studených stěnách kelímku a nebude moc vidět dovnitř. Doporučuji mít připravený papírový kapesník a těsně před focením stěny otřít. Vhodné je u položeného foťáku spusti samospoušť než doběhne, většinou se stěny stačí otřít.
4 Pomůcky plováky ze sáčků od čaje s nasypaným barvivem, kancelářská sponka normální a ohnutá tak, aby to byla jakási lopatka, pomocí které podebereme plovák s barvivem a položíme ho na vodní hladinu.
5 Příprava fotoateliéru v rohu pokoje u psacího stolu. V popředí improvizovaný stativ ze dvou knih. Jak je patrné, i zde zůstávám věrný přírodozpytným naukám (ať žijí kytičky!). Je předem vyzkoušeno, že když foťák na knihy položím, budou kelímky tak akorát v záběru.
6
7
8 Na následujících čtyřech snímcích je průběh difúze. Kelímky jsou seřazeny od nejstudenější vody vlevo po nejteplejší vodu vpravo. Je vidět, že v nejteplejší vodě proběhla difúze nejrychleji. Doporučuji průběh pokusu nafotit co největším počtem snímků. Potom vyberte ten nejlepší, na kterém je výborně vidět odlišná rychlost difůze a použijte ji v příslušném rozměru jako Vaši výslednou fotografii. Z uvedených 4 fotografií bych tedy volil druhý snímek. Výsledkem této laborky je tedy opět jen jeden snímek o rozměrech 1500 x 1200 pixelů (prosím, dodržujte!!!)
Přírodní vědy s didaktikou prezentace
Přírodní vědy s didaktikou 2 5. prezentace POKUSY V PRAXI kombinovat vždy klasickou hodinu přírodovědy s hodinou věnovanou pokusům učitel musí mít předem připraveny všechny pomůcky a tyto pomůcky musí
Archimédův zákon I
3.1.11 Archimédův zákon I Předpoklady: 030110 Pomůcky: pingpongový míček, měděná kulička, skleněný válec s víčkem od skleničky, vajíčko, sůl, tři kádinky, barvy na duhu, průhledná brčka Př. 1: Do vody
Vrstvy cukerného roztoku
Vrstvy cukerného roztoku Úkol: Vyfotografovat tři různobarevné vrstvy cukerného roztoku v průhledné nádobě. Postup: Připravíme různě husté roztoky kuchyňského cukru, obarvíme je potravinářským barvivem
Vnitřní energie tělesa
Vnitřní energie tělesa vnitřní energie tělesa je energie všech částic, z nichž se těleso skládá. Jde především o kinetickou a potenciální energii, ale může jít také o elektrickou či chemickou energii,
3.3 Částicová stavba látky
3.3 Částicová stavba látky Malé (nejmenší) částice látky očekávali nejprve filozofové (atomisté) a nazvali je atomy (z řeckého atomos = nedělitelný) starověké Řecko a Řím. Mnohem později chemici zjistili,
Měření rychlosti rozpuštění kostek ledu v obyčejné a slané (sladké) vodě
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Měření rychlosti rozpuštění kostek ledu v obyčejné a slané (sladké) vodě Označení: EU-Inovace-F-8-07 Předmět: Fyzika
Projdou či neprojdou III: Pohyb částic v kapalině - difúze
Projdou či neprojdou III: Pohyb částic v kapalině - difúze Shrnutí Žáci pozorují difúzi- rozptyl částic v kapalině. Na základě Brownova pohybu se molekuly v kapalném prostředí vlivem tepelného pohybu zcela
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
Pomůcky a materiál: plastelína, talíř, lžička, lžíce, sklenice, voda, Jar, zelené potravinářské barvivo, jedlá soda, ocet
LÁVA Typ učiva: např. Anorganická chemie Časová náročnost: 15 minut Forma: např. ukázka/skupinová práce/práce ve dvojici Pomůcky a materiál: plastelína, talíř, lžička, lžíce, sklenice, voda, Jar, zelené
b) Máte dvě stejná tělesa, jak se pozná, že částice jednoho se pohybují rychleji než částice druhého?
TEPLO OPAKOVÁNÍ a) Co jsou částice a jak se pohybují? b) Máte dvě stejná tělesa, jak se pozná, že částice jednoho se pohybují rychleji než částice druhého? c) Co je vnitřní energie? d) Proč se těleso při
Mechanika plynů. Vlastnosti plynů. Atmosféra Země. Atmosférický tlak. Měření tlaku
Mechanika plynů Vlastnosti plynů Molekuly plynu jsou v neustálém pohybu, pronikají do všech míst nádoby plyn je rozpínavý. Vzdálenosti mezi molekulami jsou větší než např. v kapalině. Zvýšením tlaku je
Inovace výuky Fyzika F7/ 10. Barometr. Atmosférický tlak, tlak, teplota vzduchu, barometr, aneroid
Inovace výuky Fyzika F7/ 10 Barometr Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a příroda Fyzika Mechanické vlastnosti tekutin 7. ročník
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_106 Jméno autora: Mgr. Eva Mohylová Třída/ročník:
Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 3 Ing. Jakub Ulmann Digitální fotoaparát Jak digitální fotoaparáty
Kapalina, pevná látka, plyn
Obsah Co je to chemie? Kapalina, pevná látka, plyn Kyselina, zásada K čemu je chemie dobrá? Jak to vypadá v laboratoři? Bezpečnost práce Chemické pokusy Co je to chemie? Kapalina, pevná látka, plyn Kyselina,
Název: Škatulata, hejbejte se (ve sklenici vody)
Název: Škatulata, hejbejte se (ve sklenici vody) Výukové materiály Téma: Povrchové napětí vody Úroveň: 2. stupeň ZŠ, popř. SŠ Tematický celek: Materiály a jejich přeměny Předmět (obor): Doporučený věk
Zkus být stavařem. nivelák, stativ, měřičská lať, různě vysoké podložky A, B, C
Zkus být stavařem I. Nivelace Komentář: Nivelací rozumíme vytyčování roviny a měření výškových rozdílů. Dost možná jste již při cestě kolem stavenišť zahlédli přístroj, který je pro nivelaci určený. Jedná
N-trophy. kvalifikace KVÍK! Soòa Dvoøáèková - Kristýna Fousková - Martin Hanžl. Gymnázium, Brno-Øeèkovice. http://kvik.wz.cz
N-trophy kvalifikace KVÍK! Gymnázium, Brno-Øeèkovice http://kvik.wz.cz KVÍK! O svíèce a plamínku Svíèky jsou vyrábìny z velkého množství rùzných látek, resp. smìsí. Zhruba mùžeme svíèky rozdìlit na parafínové,
Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S
MECHANICKÉ VLASTNOSTI PLYNŮ. Co už víme o plynech? Vlastnosti ply nů: 1) jsou snadno stlačitelné a rozpínavé 2) nemají vlastní tvar ani vlastní objem 3) jsou tekuté 4) jsou složeny z částic, které se neustále
KINETICKÁ TEORIE STAVBY LÁTEK
KINETICKÁ TEORIE STAVBY LÁTEK Látky kteréhokoliv skupenství se skládají z částic. Prostor, který těleso zaujímá, není částicemi beze zbytku vyplněn (diskrétní struktura látek). Rozměry částic jsou řádově
1.6.4 Vaříme. Předpoklady: 010603. Pomůcky: vařič (nejlépe plynový nebo plynový kahan), teploměr Vernier, PC, kastrůlek,
1.6.4 Vaříme Předpoklady: 010603 Pomůcky: vařič (nejlépe plynový nebo plynový kahan), teploměr Vernier, PC, kastrůlek, Pedagogická poznámka: Naměření pokusu by nemělo trvat déle než 20 minut. 20 minut
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Míček upustíme z výšky na podlahu o Míček padá zvětšuje se, zmenšuje se. Celková mechanická energie se - o Míček se od země odrazí a stoupá vzhůru zvětšuje se, zmenšuje se.
LOGO. Molekulová fyzika
Molekulová fyzika Molekulová fyzika Molekulová fyzika vysvětluje fyzikální jevy na základě znalosti jejich částicové struktury. Jejím základem je kinetická teorie látek (KTL). KTL obsahuje tři tvrzení:
Látkové množství n poznámky 6.A GVN
Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové
SEZNAM POKUSŮ TEPLO 1 NÁVODY NA POKUSY MĚŘENÍ TEPLOT. Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.
TEPLO TA1 419.0008 TEPLO 1 SEZNAM POKUSŮ MĚŘENÍ TEPLOT Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.) KALORIMETRIE Teplotní rovnováha. (2.1.) Studium kalorimetru. (2.2.) Křivka
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Směsi VY_32_INOVACE_03_3_01_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou SMĚSI Směsi jsou složitější látky, které
Závody kostek ledu Pokus pro samostatnou práci
Závody kostek ledu Pokus pro samostatnou práci Oblast: Člověk a příroda Předmět: Fyzika Tematický okruh: Teplo a teplota Ročník: 6. Klíčová slova: měření teploty, laboratorní práce, led, tání, slaná a
OTÁČENÍ a TOČENÍ Točte kbelíkem Pomůcky:
Předměty se vždy pohybují přímočaře, pokud je něco nepřinutí změnit směr. Uvedení předmětů do velkých otáček může přinést překvapivé výsledky. O některých těchto jevech se přesvědčíme sami provedením pokusů.
CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO.
CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. 01) Složení látek opakování učiva 6. ročníku: Všechny látky jsou složeny z částic nepatrných rozměrů (tj. atomy, molekuly,
ZMIZENÍ GUMOVÉHO MEDVÍDKA
ZMIZENÍ GUMOVÉHO MEDVÍDKA O CO JDE? Biochemický pokus, na kterém si studenti prakticky vyzkouší, jak fungují enzymy. KAM TO ZAŘADIT? Učivo: enzymy JAKÉ POMŮCKY BUDOU POTŘEBA? Několik stejně velkých nádobek
Návod k obsluze ŘEZAČKA EBA 435 E EBA 435 EP
ŘEZAČKA Návod k obsluze EBA 435 E EBA 435 EP 1 Bezpečnostní opatření Prosím přečtěte si instrukce k obsluze a dodržujte bezpečnostní upozornění. Návod k obsluze musí být vždy dostupný. Stroj nesmí být
Tepelná výměna - proudění
Tepelná výměna - proudění Proč se při míchání horkého nápoje ve sklenici lžičkou nápoj rychleji ochladí - Při větrání místnosti (zejména v zimě) pozorujeme, že chladný vzduch se hromadí při zemi. Vysvětlete
F8 - Změny skupenství Číslo variace: 1
F8 - Změny skupenství Číslo variace: 1 1. K vypařování kapaliny dochází: při každé teplotě v celém jejím objemu pouze při teplotě 100 C v celém objemu kapaliny pouze při normální teplotě a normálním tlaku
1.2.9 Tahové a tlakové síly
129 Tahové a tlakové síly Předpoklady: 1201, 1203, 1207 Teď když známe Newtonovy pohybové zákony, můžeme si trochu zrevidovat a zopakovat naše znalosti o silách Podmínky pro uznání síly: Existuje původce
MATEMATIKA. 1 Základní informace k zadání zkoušky. 2 Pravidla správného zápisu řešení. 3.2 Pokyny k uzavřeným úlohám 7-15 DIDAKTICKÝ TEST
MATEMATIKA PŘIJÍMACÍ ZKOUŠKY DIDAKTICKÝ TEST B TS-M5MBCINT Maximální bodové hodnocení: 50 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 15 úloh. Časový limit pro řešení didaktického
HYDROSTATICKÝ PARADOX
HYDROSTATICKÝ PARADOX Vzdělávací předmět: Fyzika Tematický celek dle RVP: Mechanické vlastnosti tekutin Tematická oblast: Mechanické vlastnosti kapalin Cílová skupina: Žák 7. ročníku základní školy Cílem
Průvodce fotografováním: Ubytování v soukromí
Průvodce fotografováním: Ubytování v soukromí Těší nás, že spolupracujete s Booking.com. Fotografie hrají zásadní roli při výběru ubytování online a pomáhají návštěvníkům stránky se rozhodnout. Vzhledem
Ukázkové snímky pořízené bleskem NIKON CORPORATION. V této příručce jsou představeny různé metody použití blesku SB-N7 a ukázkové snímky
Ukázkové snímky pořízené bleskem V této příručce jsou představeny různé metody použití blesku SB-N7 a ukázkové snímky NIKON CORPORATION 2012 Nikon Corporation TT2L01(1L) 8MSA581L-01 Cz Obsah Zvolte typ
Vzestup vodní hladiny za pomoci svíčky
Středoškolská technika 2013 Setkání a prezentace prací středoškolských studentů na ČVUT Vzestup vodní hladiny za pomoci svíčky Pham Nhat Thanh Gymnázium Cheb Nerudova 7, 350 02 Cheb Úvod Naším úkolem je
1.5.2 Jak tlačí voda. Předpoklady: Pomůcky: mikrotenové pytlíky, kostky, voda, vysoký odměrný válec, trubička, TetraPackové krabice
1.5. Jak tlačí voda Předpoklady: 010501 Pomůcky: mikrotenové pytlíky, kostky, voda, vysoký odměrný válec, trubička, TetraPackové krabice Domácí úkol z minulé hodiny Př. 1: Jakým tlakem tlačíš na podlahu,
Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.
MATEMATIKA 5 M5PZD16C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60
Acidobazický indikátor anthokyan
Acidobazický indikátor anthokyan Anthokyan je barvivo obsažené v mnoha rostlinách. Je odvozen ze dvou řeckých slov: anthos (květ), kyaneos (modrý). Pokud tedy slovo anthokyan přeložíme do češtiny, znamená
Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.
Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou
TECHNIKA FOTOAPARÁTY, DATA A PŘÍSLUŠENSTVÍ ČÁST 1.
TECHNIKA FOTOAPARÁTY, DATA A PŘÍSLUŠENSTVÍ ČÁST 1. Možnosti a uplatnění digi-fotografie Principy práce digi-fotoaparátu Parametry, funkce a typy digi-fotoaparátu Technika a příslušenství TYPY DIGITÁLNÍCH
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný
Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)
Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny
ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika
ZMĚNY SKUPENSTVÍ LÁTEK ČÁST 01
ZMĚNY SKUPENSTVÍ LÁTEK ČÁST 01 A) Výklad: Změny skupenství látky Látka se může vyskytovat ve třech různých skupenstvích PEVNÉM, KAPALNÉM nebo PLYNNÉM. Např. voda (H 2 O)- může se vyskytovat jako krystalický
Obnovitelné zdroje energie. Sborník úloh
Energetická agentura Zlínského kraje, o.p.s. Obnovitelné zdroje energie Sborník úloh V rámci projektu Energetická efektivita v souvislostech vzdělávání Tato publikace vznikla jako sborník úloh pro vzdělávací
Kalorimetrická měření I
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Kalorimetrická měření I Úvod Teplo Teplo Q je určeno energií,
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s
1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření
1.2.5 Měříme objem III
1.2.5 Měříme objem III Předpoklady: 0204 Pomůcky: odměrné válce, 8 kostek Př. 1: Nakresli z pamětí schéma pro převádění jednotek objemu. Schéma pro převádění jednotek objemu: dvě řádky: o krychlové jednotky
Laboratorní cvičení z kinetiky chemických reakcí
Laboratorní cvičení z kinetiky chemických reakcí LABORATORNÍ CVIČENÍ 1. Téma: Ovlivňování průběhu reakce změnou koncentrace látek. podmínek průběhu reakce. Jednou z nich je změna koncentrace výchozích
58. ročník fyzikální olympiády kategorie G okresní kolo školní rok
58. ročník fyzikální olympiády kategorie G Zadání 1. části K řešení můžeš použít kalkulačku i tabulky. 1. Neutrální atom sodíku má ve svém jádru a) 10 protonů b) 11 protonů c) 10 elektronů d) 12 protonů
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Autor Mgr. Petr Štorek,Ph. D.
1.2.3 Měříme objem I. Předpoklady: Pomůcky: odměrné válce, 8 kostek. Objem - velikost části prostoru, který předmět zaujímá.
1.2. Měříme objem I Předpoklady: 0202 Pomůcky: odměrné válce, 8 kostek Objem - velikost části prostoru, který předmět zaujímá. Pedagogická poznámka: Pojem objemu žáci formulují společně. Snažím se, aby
POKYNY FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ
POKYNY Prostuduj si teoretický úvod a následně vypracuj postupně všechny zadané úkoly zkontroluj si správné řešení úkolů podle řešení FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ 1) Vliv koncentrace reaktantů čím
START A ZASTAVENÍ 1. Kouzlo s padajícím pomerančem Pomůcky:
Může být těžké uvést předměty do pohybu a ještě těžší může být jejich zastavení. Předměty mají tendenci zůstávat v klidu, když se nepohybují nebo pokračovat v pohybu, pokud se pohybují. Tento jev se nazývá
Podvodní sopky 9-11. Author: Christian Bertsch. Mat. years. Vzdělávací obsah: Člověk a příroda / Fyzika
9-11 years Mat Vzdělávací obsah: Člověk a příroda / Fyzika Klíčové pojmy: Hustota pevných a kapalných látek Cílová věková skupina: 9-11 let Délka aktivity: 3 hodiny Shrnutí: Žáci si osvojí pojem hustota
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_64 Jméno autora: Mgr. Eva Mohylová Třída/ročník:
VY_32_INOVACE_05_II./5._Vlastnosti kapalin
VY_32_INOVACE_05_II./5._Vlastnosti kapalin Vlastnosti kapalin Základní vlastnosti kapalin (opakování) Tekuté (dají se přelévat) Nemají stálý tvar (zaujímají jej podle nádoby) Snadno dělitelné (kapky) Nestlačitelné
KINETICKÁ TEORIE LÁTEK
ZÁKLADNÍ POZNATKY V mechanice je pohled na tělesa makroskopický makros = veliký, na zákon zachování energie pohlížíme tak, že nás nezajímá částicová struktura, v molekulové fyzice se zajímáme o tom, co
Tři experimenty, které se nevejdou do školní třídy. Mgr. Kateřina Vondřejcová
Tři experimenty, které se nevejdou do školní třídy Mgr. Kateřina Vondřejcová Centrum talentů M&F&I, Univerzita Hradec Králové, 2010 1.. experiiment:: Změř s Thallésem výšku svojjíí školly Obr. 1: Thalés
Obor: 12 Tvorba učebních pomůcek, didaktická technologie Model tepelného čerpadla VZDUCH/VODA
Obor: 12 Tvorba učebních pomůcek, didaktická technologie Model tepelného čerpadla VZDUCH/VODA práce SOČ Autor: Moński Jakub Ročník studia: druhý Název, adresa školy: SPŠ, Karviná, Žižkova 1818, Karviná
TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení
katalog 2016 bytové a komerční PVC
katalog 2016 bytové a komerční PVC flexibilita komfort odolnost Junior Plus je flexibilní, elastická, heterogenní PVC podlahová krytina o tloušťce 2,2 mm a nášlapné vrstvě 0,5 mm. Díky třídě zátěže 33-42
2.5.17 Dvojitá trojčlenka
2..1 Dvojitá trojčlenka Předpoklady: 020 Př. 1: Čerpadlo o výkonu 1, kw vyčerpá ze sklepa vodu za hodiny. Za jak dlouho by vodu ze sklepa vyčerpalo čerpadlo o výkonu 2,2 kw? Čím výkonnější čerpadlo, tím
Vlastnosti látek a těles. Zápisy do sešitu
Vlastnosti látek a těles Zápisy do sešitu Tělesa a látky Látky jsou ve skupenství pevném, kapalném nebo plynném. Tělesa mohou být z látek pevných, kapalných nebo plynných. Mají omezený objem. Vlastnosti
DOMÁCÍ HASICÍ PŘÍSTROJ (ČÁST 2)
DOMÁCÍ HASICÍ PŘÍSTROJ (ČÁST 2) Hasicí přístroje se dělí podle náplně. Jedním z typů je přístroj používající jako hasicí složku oxid uhličitý. Přístroje mohou být různého provedení, ale jedno mají společné:
ZAZVOŇ A VYHRAJ! Počet hráčů: 2 6 osob Věk: od 6 let Délka hry: cca 20 minut
ZAZVOŇ A VYHRAJ! Počet hráčů: 2 6 osob Věk: od 6 let Délka hry: cca 20 minut Obsah: 72 hracích karet - 64 karet s ovocem, 3 karty se slonem, 3 karty s opicí, 2 karty s prasátkem 1 zvonek 1 pravidla hry
PLYNY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
PLYNY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní vlastnosti Velké vzdálenosti mezi molekulami Neustálý neuspořádaný pohyb molekul ( důsledek: tlak ) Vzájemné vzdálenosti molekul nejsou stejné
1.8.3 Hydrostatický tlak
.8.3 Hydrostatický tlak Předpoklady: 00802 Z normální nádoby s dírou v boku voda vyteče, i když na ni netlačí vnější síla. Pokus: Prázdná tetrapacková krabice, několik stejných děr v boční stěně postupně
1.8.1 Méně než nula I
1.8.1 Méně než nula I ředpoklady: Krokování se provádí na krokovacím pásu. Hráči (etr a irk na začátku stojí na prostředním startovním políčku a jsou otočení doprava. etr udělá dva kroky dopředu:. ak krok
Název a registrační číslo projektu: Číslo a název oblasti podpory: Realizace projektu: Autor: Období vytváření výukového materiálu: Ročník:
Název a registrační číslo projektu: CZ.1.07/1.5.00/34.0498 Číslo a název oblasti podpory: 1.5 Zlepšení podmínek pro vzdělávání na středních školách Realizace projektu: 02. 07. 2012 01. 07. 2014 Autor:
Pitný režim. Vítejte na našem dialyzačním středisku
Pitný režim Vítejte na našem dialyzačním středisku Proč musím omezovat příjem tekutin? Jednou z hlavních funkcí ledvin je udržet v těle rovnováhu tekutin. Pokud ledviny selžou, tělo se těžko zbavuje jejich
12. SUŠENÍ. Obr. 12.1 Kapilární elevace
12. SUŠENÍ Při sušení odstraňujeme z tuhého u zadrženou kapalinu, většinou vodu. Odstranění kapaliny z tuhé fáze může být realizováno mechanicky (filtrací, lisováním, odstředěním), fyzikálně-chemicky (adsorpcí
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
TEXTILNÍ. Marta Drozdová Marie Kilebusová
TEXTILNÍ šperky a doplnky Marta Drozdová Marie Kilebusová Upozornění pro čtenáře a uživatele této knihy Všechna práva vyhrazena. Žádná část této tištěné či elektronické knihy nesmí být reprodukována a
Přednáška 5. Martin Kormunda
Přednáška 5 Metody získávání nízkých tlaků : čerpací rychlost, časový průběh čerpacího procesu, mezní tlak, zbytková atmosféra, rozdělení tlaku v systému při čerpání. Zásady návrhu vakuových systémů. Metody
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
pitný režim Vítejte na našem dialyzačním středisku
pitný režim Vítejte středisku Proč musím omezovat příjem tekutin? Jednou z hlavních funkcí ledvin je udržet v těle rovnováhu tekutin. Pokud ledviny selžou, tělo se těžko zbavuje jejich přebytku a vzniká
MATEMATICKÉ DOVEDNOSTI
Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA04Z9 MATEMATICKÉ DOVEDNOSTI B Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu
Návod k laboratornímu cvičení. Oddělování složek směsí I
Návod k laboratornímu cvičení Oddělování složek směsí I Úkol č. 1: Usazování Pomůcky: dělící nálevka, držák, svorka, stojan, kádinka Chemikálie: voda, potravinářské barvivo, olej 1. Dělící nálevku upevníme
Paprsky světla létají úžasnou rychlostí. Když dorazí do našich očí, donesou
SVĚTLO Paprsky světla létají úžasnou rychlostí. Když dorazí do našich očí, donesou nám mnoho informací o věcech kolem nás. Vlastnosti světla mohou být ukázány na celé řadě zajímavých pokusů. Uvidíš svíčku?
(pl'uměr asi třikrát větší než průměr kapátka). Kruh po celém obvodě nastříháme (šířka asi
Veletrh nápadů učitel!! /ljziky I!'IH!'!lIMre!II'!!lI!l!l ~i ~ fy:dhu Věra Bdlnková, J. Šimečková, Z. Bobek 1. Toncicí potápěč (karteziónek) Potřeby: plastová láhev (1,5 I), kapátko, kádinka S obarvenou
Vnitřní energie. Teplo. Tepelná výměna.
Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie
Spalování CÍL EXPERIMENTU MODULY A SENZORY POMŮCKY MATERIÁL. Experiment C-5
Experiment C-5 Spalování CÍL EXPERIMENTU Studium procesu hoření a spalování. Měření hladiny kyslíku v průběhu hoření svíčky. MODULY A SENZORY PC + program NeuLog TM USB modul USB 200 Oxymetr NUL 205 POMŮCKY
STRUKTURA A VLASTNOSTI KAPALIN
STRUKTURA A VLASTNOSTI KAPALIN Struktura kapalin je něco mezi plynem a pevnou látkou Částice kmitají ale mohou se také přemísťovat Zvýšením teploty se a tím se zvýší tekutost kapaliny Malé vzdálenosti
Fyzikální korespondenční škola 2. dopis: experimentální úloha
Fyzikální korespondenční škola 2. dopis: experimentální úloha Uzávěrka druhého kola FKŠ je 28. 2. 2010 Kde udělal Aristotelés chybu? Aristotelés, jeden z největších učenců starověku, z jehož knih vycházela
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
Pracovní list číslo 01
Pracovní list číslo 01 Měření délky Jak se nazývá základní jednotka délky? Jaká délková měřidla používáme k měření rozměrů a) knihy b) okenní tabule c) třídy.. d) obvodu svého pasu.. Jaké díly a násobky
Jednotky objemu
1..17 Jednotky objemu Předpoklady: 016 Pedagogická poznámka: V hodně je nutné postupovat tak, aby se s příkladem 7 (převody) začalo nejpozději 15 minut před zvoněním. Př. 1: Převeď na jednotku v závorce.
Jak na dokumentaci. Pozn.: Update 14. 4. 2009
Jak na dokumentaci Pozn.: Update 14. 4. 2009 Tento kousek textu by vám měl ukázat směr, jakým je dobré postupovat při pořizování dokumentace trati. Existuje jistě vícero způsobů, já se budu věnovat tomu,
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Funkce kvadratická funkce Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti
POVLTAVSKÉ SETKÁNÍ BALTÍKŮ - 9.ročník - 17.10. a 18.10. 2014
POVLTAVSKÉ SETKÁNÍ BALTÍKŮ - 9.ročník - 17.10. a 18.10. 2014 1. Úloha výcvik samuraje (24 bodů) a. Každý samuraj se musí učit. V této úlozu probíhá jeho výcvik. Na ploše se najednou objeví nápis stejný
FYZIKA. Newtonovy zákony. 7. ročník
FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt
Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.
Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_466A Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad
Diskrétní náhodná veličina. November 12, 2008
Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.