Dvojitá trojčlenka
|
|
- Libuše Beránková
- před 9 lety
- Počet zobrazení:
Transkript
1 2..1 Dvojitá trojčlenka Předpoklady: 020 Př. 1: Čerpadlo o výkonu 1, kw vyčerpá ze sklepa vodu za hodiny. Za jak dlouho by vodu ze sklepa vyčerpalo čerpadlo o výkonu 2,2 kw? Čím výkonnější čerpadlo, tím rychleji čerpá vodu a tím kratší čas bude potřeba k jejímu vyčerpání nejde o přímou úměrnost nemůžeme počítat klasickou trojčlenkou. 1, kwh... hodiny 2,2 kwh... x hodin Množství vyčerpané vody zůstává stejné: 1, = 2, 2 x / : 2, 2 1, x = = 2,0 hodiny 2, 2 Výkonnější čerpadlo by vodu vyčerpalo za 2,0 hodiny. Pedagogická poznámka: Stačí, když žáci poznají, že nejde o přímo úměrnost nemohou tedy příklad počítat běžným postupem. Tato skutečnost by jim měla dojít nejpozději ve chvíli, kdy dojdou k výsledku, hodiny. Správný výsledek po žácích zatím nechci, kdo ho najde, zaslouží samozřejmě pochvalu. Řešení si ukazujeme, ale ještě z něj neděláme standardní postup. Př. 2: Jirka ujde za čtyři devítiny hodiny vzdálenost pět třetin km. Za jak dlouho ujde sedm čtvrtin km? Čím déle Jirka jde, tím větší vzdálenost ujde přímá úměrnost. 9 hod... km x hod... km x 9 = / (počet km za 1 hodinu se nemění) x = = 9 Jirka ujde sedm čtvrtin km za sedm patnáctin hodiny. Pedagogická poznámka: Následující příklad je první dvojitou trojčlenkou. Nechávám žákům čas na pokus o samostatné řešení (většina úspěšných pokusů je postavená na výpočtu ceny za 1 litr obsahu, občas někdo sestaví í výraz podobný okamžitému řešení, které ještě budeme probírat.), pak příklad řeším na tabuli. Vysvětlím, že jde o dvě trojčlenky, které můžeme řešit zvlášť. Napíšu první trojčlenku a nechám třídu ji vyřešit, pak jim dám šanci pokusit se o sestavení druhé trojčlenky. 1
2 Při řešení všech příkladů zdůrazňuji, že dvojitá trojčlenka je dobrým příkladem jednoho z nejpoužívanějších matematických postupů (převedení těžkého problému na více problémů jednodušších). Nejčastějším problémem je použití původních hodnot v druhé trojčlence místo hodnot vypočtených v první trojčlence. Pedagogická poznámka: Část žáků řeší dvojité trojčlenky přímým sestavením výrazu pro výsledek (více v hodině 02022). Tento způsob řešení nepotlačuji, ale trvám na tom, že následující příklady musejí spočítat také pomocí dvojité trojčlenky. Př. : lahví o objemu 0, litru stálo 20 Kč. Kolik by stálo 9 lahví o objemu 1, litru? Dvojitá trojčlenka (dvě závislosti najednou - cena závisí na počtu lahví i jejich objemu). lahví... 0, litru Kč 9 lahví... 1, litru... x Kč lahví... 0, litru Kč 9 lahví... 0, litru... y Kč Přímá úměra: čím více lahví, tím více zaplatíme. y 20 9 / 9 (cena jedné lahve se nemění) 20 y = 9 = 2112 Kč 9 lahví... 0, litru Kč 9 lahví... 1, litru... x Kč Přímá úměra: čím větší objem, tím větší cena. x 2112 = 1, 0, / 1, 2112 x = 1, 2, Kč 0, 9 lahví o objemu 1, litru by stálo 2,0 Kč. Pedagogická poznámka: Nejčastějším problémem je dosazení do druhé trojčlenky, kdy žáci nepoužívají hodnotu vypočtenou v první trojčlence, ale údaj ze zadání. Př. : čerpadel vyčerpá za hodiny čerpadla? 0 m vody. Kolik vody vyčerpají za hodin Dvojitá trojčlenka (dvě závislosti najednou - množství vody závisí na počtu čerpadel i jejich výkonu). čerpadel... hodiny... 0 m čerpadla... hodin... x čerpadel... hodiny... 0 m čerpadla... hodiny... y m m 2
3 Přímá úměra: čím více čerpadel, tím více přečerpané vody. y 0 = / (množství vody přečerpané jedním čerpadlem se nemění) 0 2 m y = = čerpadla... hodiny... 2 m čerpadla... hodin... x m Přímá úměra: čím více hodin, tím více přečerpané vody. x 2 = / 2,6 m x = = Čtyři čerpadla by za hodin vyčerpala,6 m. Pedagogická poznámka: Určitě se objeví hlasy, že předchozí příklad není přímá úměrnost, protože je o čerpadlech stejně jako první příklad. Říkám žákům na rovinu, že přesně z tohoto důvodu jsem oba příklady do hodiny zařadil. Skutečnost, že se v obou zadáních vyskytuje slovo čerpadlo v žádném případě neznamená, že jde o stejnou děj. Není možné dopředu stanovit, které příklady jsou a které nejsou přímá úměrnost, podle výskytu nějakých slov. Jedinou možností je u každého příkladu se zamyslet, zda popisuje přímou úměrnost nebo ne. Př. : Svícení patnácti žárovkami o výkonu 60 W stálo dohromady 1800 Kč za rok. Kolik by stálo svícení 20 LED žárovkami o výkonu W? Dvojitá trojčlenka - dvě závislosti najednou - množství spotřebované energie (a tedy i platba) závisí na počtu a výkonu žárovek. žárovek W Kč 20 žárovek... W... x Kč žárovek W Kč žárovek... W... y Kč Přímá úměra: čím větší výkon, tím větší spotřeba a tím větší platba za energii. y / (cena za instalovaný watt se nemění) 1800 y = = 0 Kč 60 žárovek... W... 0 Kč 20 žárovek... W... x Kč Přímá úměra: čím více žárovek, tím větší spotřeba. x 0 = 20 / 20
4 0 x = 20 = 200 Kč Svícení 20 LED žárovkami o výkonu W by stálo 200 Kč ročně. Př. 6: automobilů o nosnosti tun přepraví za pět dní 000 tun zeminy. Kolik tun zeminy přepraví za sedm dní 19 automobilů o nosnosti 10 t? Trojitá trojčlenka - tři závislosti najednou - množství přepravené zeminy závisí na počtu, výkonu aut i na počtu dní. automobilů... t... dní t 19 automobilů t... dní... x t Rozdělíme příklad na tří části. automobilů... t... dní t 19 automobilů... t... dní... y t Přímá úměra: čím více automobilů, tím více převezené zeminy. y / y = 19 6 t Výsledek použijeme k provedení druhého kroku. 19 automobilů... t... dní... 6 t 19 automobilů t... dní... z t Přímá úměra: čím větší nosnost automobilů, tím více převezené zeminy. x 6 10 / 10 6 x = tun Výsledek použijeme k provedení třetího kroku. 19 automobilů t... dní t 19 automobilů t... dní... x t Přímá úměra: čím více dnů, tím více převezené zeminy. x 908 / (množství zeminy převezené za jeden den se nemění) 6 x = 1200 tun 19 automobilů o nosnosti 10 přepraví za dní 1260 tun zeminy. Př. : Za sedm pětimetrových hranolů 10 x 10 na strop zaplatil Jarda 00 Kč. Kolik by zaplatil za pět sedmimetrových hranolů 12 x 12 cm? Cena dřeva za m je stejná. Zadání obsahuje příliš mnoho údajů musíme si ujasnit jejich význam. Cena za trámy závisí na: počtu trámů,
5 objemu trámů. Objem původního trámu: V = 0,1 0,1 = 0,0m. Objem nového trámu: V = 0,12 0,12 = 0,1008 m. hranolů... hranolů... 0,0m Kč 0,1008m... x Kč hranolů... 0,0m Kč hranolů... 0,1008m... y Kč Přímá úměra: čím větší trám, tím vyšší cena. y 00 = / 0,1008 (cena za instalovaný watt se nemění) 0,1008 0, 0 00 y = 0,1008 = Kč 0,0 hranolů... 0,1008m Kč hranolů... 0,1008m... x Kč Přímá úměra: čím více trámů, tím vyšší cena. x = / x = = 920 Kč Za pět sedmimetrových hranolů 12 x 12 cm zaplatí Jarda 920 Kč. Pedagogická poznámka: Přirozenějším způsobem výpočtu (který bych sám použil) je vypočítat objemy dřeva v obou případech a příklad vypočítat přes jednotkovou cenu. Shrnutí: Složitý příklad se dvěma závislostmi můžeme rozdělit na dva jednoduché.
2.5.15 Trojčlenka III
.5.15 Trojčlenka III Předpoklady: 0051 Př. 1: Doplň tabulku, která udává vzdálenost, kterou je možné ujít za různé doby velmi rychlou chůzi. Kolik kilometrů ujdeme touto rychlostí za 1 hodinu? doba chůze
Odhady úměrností
.. y úměrností Předpoklady: 000 Pedagogická poznámka: V hodině nejdříve nechám žáky zapsat do sešitu odhady (cca minut jeden odhad za minuty), pak si je kontrolujeme. Hodnotíme body pokud je chyba odhadu
Úměrnosti - opakování
.. Úměrnosti - opakování Předpoklady: 00 Př. 1: Auto ujede za a hodin vzdálenost b km. Kolik km by ujelo za c hodin? Čím déle auto jede, tím větší vzdálenost ujede přímá úměrnost. a hodin b km c hodin
Poměry a úměrnosti II
1.1.12 Poměry a úměrnosti II Předpoklady: 010111 U následujících úloh je nutné poznat, zda jde o přímou nebo nepřímou úměrnost případně příklad, který není možné řešit ani jedním z obou postupů. Pedagogická
Základní škola Kaplice, Školní 226
Základní škola Kaplice, Školní 226 DUM VY_2_INOVACE_06MA autor: Michal Benda období vytvoření: 2011 ročník, pro který je vytvořen: 7 vzdělávací oblast: vzdělávací obor: tématický okruh: téma: Matematika
2.5.21 Nepřímá úměrnost III
.5.1 Nepřímá úměrnost III Předpoklady: 0050 Př. 1: Porovnej do dvou sloupců přímou a nepřímou úměrnost (předpis, základní vlastnost, postup při řešení příkladů,...). Přímá úměrnost Nepřímá úměrnost předpis
1.1.4 Poměry a úměrnosti I
1.1.4 Poměry a úměrnosti I Předpoklady: základní početní operace Poznámka: Následující látka patří mezi nejdůležitější, probírané na základní škole. Bohužel patří také mezi ty, kde je nejvíce rozšířené
2.5.11 Přímá úměrnost II
.5.11 Přímá úměrnost II Předpoklady: 00510 Př. 1: Jirka odebral za celý rok na zahradě pouze 300 kwh a zaplatil za 1575 Kč. Platí za kwh více nebo méně než je typická cena? Doplň pro jeho cenu za kwh tabulku.
2.5.1 Opakování - úměrnosti se zlomky
.. Opakování - úměrnosti se zlomky Př. : Spočti: a) b) c) 6 0 0 : 7 9 a) 0 6 = = = 7 7 b) 9 = = 6 0 c) 0 0 0 9 0 9 : = = = 7 9 7 0 9 0 6 Př. : Přímá úměrnost má předpis y = x. Doplň tabulku této přímé
1.1.5 Poměry a úměrnosti II
1.1.5 Poměry a úměrnosti II Předpoklady: 1104 U následujících úloh je nutné poznat, zda jde o přímou nebo nepřímou úměrnost případně příklad, který není možné řešit ani jedním z obou postupů. Pedagogická
Přímá a nepřímá úměrnost
Přímá a ne - rovnice: y = k.x + c - graf: přímka - platí: čím víc, tím víc - př.: spotřeba benzínu motorovým vozidlem a vzdálenost, kterou vozidlo urazí při stejném výkonu ne k - rovnice: y c x - graf:
1.2.5 Měříme objem III
1.2.5 Měříme objem III Předpoklady: 0204 Pomůcky: odměrné válce, 8 kostek Př. 1: Nakresli z pamětí schéma pro převádění jednotek objemu. Schéma pro převádění jednotek objemu: dvě řádky: o krychlové jednotky
Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku
Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,
2.5.12 Přímá úměrnost III
.5.1 Přímá úměrnost III Předpoklady: 00511 Př. 1: Narýsuj milimetrový papír grafy přímých úměrností. a) y = x b) y = x. U každé přímé úměrnosti si můžeme spočítat několik bodů (ve skutečnosti stačí jeden
Slovní úlohy o pohybu I
.2. Slovní úlohy o pohybu I Předpoklady: 0024 Př. : Běžec na lyžích se pohybuje na celodenním výletu průměrnou rychlostí km/h. Jakou vzdálenost ujede za hodinu? Za hodiny? Za hodin? Za t hodin? Najdi vzorec,
Hustota naposledy
1.4.1 Hustota naposledy Předpoklady: 010410 Pomůcky: Pedagogická poznámka: Tato hodina má smysl zejména v případě, že ji můžete realizovat ve třídě rozdělené na poloviny. V takovém případě je možné, že
Násobení přirozených čísel
1.1.11 Násobení přirozených čísel Předpoklady: 010110 Př. 1: Jarda jezdí do práce autem. Každý den tak ujede 4 km. Kolik kilometrů ujede za týden (5 pracovních dní)? Kolik kilometrů ujede za rok (50 pracovních
Přepočet přes jednotku - podruhé I
1.2.25 Přepočet přes jednotku - podruhé I Předpoklady: 010224 Pedagogická poznámka: Tato a následující hodina navazují na poslední hodinu úvodní kapitoly. Jde v podstatě o stejné problémy, ale s desetinnými
koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku.
2.2.2 Slovní úlohy vedoucí na lineární rovnice III Předpoklady: 22 Pedagogická poznámka: Příklady na míchání směsí jsou do dvou hodin rozděleny schválně. Snažím se tak zvýšit šanci, že si hlavní myšlenku
Kvadratické rovnice (dosazení do vzorce) I
.. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: 000 Rovnicí se nazývá vztah rovnosti mezi hodnotami dvou výrazů obsahujícími jednu nebo více neznámých. V této kapitole se budeme zabývat pouze
2.2.5 Dvě rychlosti. Předpoklady: Pomůcky:
2.2.5 Dvě rychlosti Předpoklady: 020204 Pomůcky: Př. 1: V tabulkách jsou výsledky z tělocviku. Která z dívek je nejrychlejší v běhu na 100 m? Která je nejrychlejší v běhu na 12 minut? Vytvoř dvě pořadí
Pedagogická poznámka: V následujícím příkladu nemusí všichni spočítat všechno. Pomalejší žáky je třeba přerušit, aby stihli spočítat příklad 6. Př.
2.5.3 Rozšiřování a krácení poměru Předpoklady: 020503 Př. 1: Děti zjišťovaly poměr mezi výškou a šířkou papíru A4. Které z následujících poměrů jsou správné? Které jsou přibližně správné? Které jsou špatně?
3.1.8 Hydrostatický tlak I
18 Hydrostatický tlak I Předpoklady: 00107 Pomůcky: Pedagogická poznámka: První příklad je kontrola výsledků z minulé hodiny Počítám ho celý na tabuli, druhou půlku nechávám volnou na obecné odvození Př
Soustavy více rovnic o více neznámých II
2..14 Soustavy více rovnic o více neznámých II Předpoklady: 21 Největší problém při řešení soustav = výroba trojúhelníkového tvaru (tedy vyrábění nul). Postup v dosavadních příkladech byl rychlý - využíval
Převrácená čísla
..0 Převrácená čísla Předpoklady: 007 Př. : Vypočti. Výsledek uveď v základním tvaru. a) 5 7 b) c) 0 9 d) 4 0 8 7 0 6 6 5 8 a) 5 7 5 = 7 = 4 0 7 5 4 b) 6 = = 8 6 c) 0 9 0 9 = = 7 0 9 0 d) 6 6 8 4 = = 5
0,2 0,20 0, Desetinná čísla II. Předpoklady:
1.2.2 Desetinná čísla II Předpoklady: 010201 Pedagogická poznámka: Je třeba zahájit tak, aby se stihl ještě společný začátek příkladu 7 (pokud někdo příklad 7 začne s předstihem, nevadí to, ale jde o to,
Rovnoměrný pohyb I
2.2. Rovnoměrný pohyb I Předpoklady: 02020 Pomůcky: Shrnutí minulé hodiny: Naměřený reálný rovnoměrný pohyb poznáme takto: Rozdíly mezi hodnotami dráhy v pohybové tabulce jsou při stálém časovém intervalu
( ) ( ) ( ) 2.9.24 Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919
.. Logaritmické nerovnice I Předpoklady: 08, 7, Pedagogická poznámka: Pokud mají studenti pracovat samostatně budou potřebovat na všechny příklady minimálně jeden a půl vyučovací hodiny. Pokud není čas,
Rovnice s neznámou pod odmocninou I
.7.15 Rovnice s neznámou pod odmocninou I Předpoklady: 711, 71 Pedagogická poznámka: Látka této hodiny vyžaduje tak jeden a půl vyučovací hodiny, pokud nepospícháte, můžete obětovat hodiny dvě a nechat
( x ) 2 ( B) ( ) ( ) ( ) Rozklad mnohočlenů na součin pomocí vzorců. Předpoklady: ) ( )( ) a) ( ) ( ) ( ) b) ( ) ( ) ( ) Př.
1.8.7 Rozklad mnohočlenů na součin pomocí vzorců Předpoklady: 010806 Př. 1: Vypočti. ( 1) ( + ) ( + 1) ( ) 1 + = + 1 + 6 + 9 = 10 8 + 1 = 9 + 6 + 1 + = 8 + 10 Př. : Zapiš druhou mocninu závorky jako mnohočlen
( 4) 2.2.12 Slovní úlohy vedoucí na lineární rovnice III. Předpoklady: 2211
2.2.2 Slovní úlohy vedoucí na lineární rovnice III Předpoklady: 22 Pedagogická poznámka: Většina příkladů z této hodiny patří do skupiny příkladů na společnou práci. Termín nezavádím. Existují příklady,
Soustavy více rovnic o více neznámých III
2..15 Soustavy více rovnic o více neznámých III Předpoklady: 214 Největší problém při řešení soustav - výroba trojúhelníkového tvaru (tedy vyrábění nul). Postup v dosavadních příkladech byl rychlý - využíval
Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.
Slovní úlohy - řešené úlohy Úměra, poměr Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Každý rozměr zvětšíme tak, že jeho
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 40, 4, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli (nejlépe tak, aby se zápis mohl otočit nebo jinak schovat
Zase zlomky. Předpoklady: = = = = = = = = 1+ +
..8 Zase zlomky Předpoklady: 00 Př. : 8 b) + = = = 8 8 b) 8 = = = = = + + Př. : Myš má krk tvořený sedmi obratli. Délka krku myši je rovna /0 délky krku žirafy. Kolik obratlů tvoří krk žirafy? Matematický
MÉNĚ ENERGIE VÍCE KOMFORTU aneb energie kolem nás
MÉNĚ ENERGIE VÍCE KOMFORTU aneb energie kolem nás CO JE TO SPOTŘEBA1 KWH ENERGIE? 1 kwh představuje: 6,5 hod. puštěné televize o příkonu 150 W 1 hodinu žehlení vyprání 5 kg prádla (1 prací cyklus) uvaření
2.3.1 Rovnice v součinovém tvaru
.. Rovnice v součinovém tvaru Předpoklady: 70, 0 Pedagogická poznámka: Hodina obsahuje poměrně dost příkladů (0). I když je někteří stihli vypočítat, mám trochu obavu, zda postup nebyl příliš rychlý. Pokud
Řešení příkladů na rovnoměrně zrychlený pohyb I
..9 Řešení příkladů na rovnoměrně zrychlený pohyb I Předpoklady: 8 Pedagogická poznámka: Cílem hodiny je, aby se studenti naučili samostatně řešit příklady. Aby dokázali najít vztah, který umožňuje příklad
PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST
PŘÍMÁ EPŘÍMÁ ÚMĚRNOST y kx, kde k je Pro kladné veličiny x, y, které jsou přímo úměrné, platí kladné číslo, které se nazývá koeficient přímé úměrnosti. Kolikrát se zvětší x, tolikrát se zvětší y. Kolikrát
Čtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:
Čtyřúhelníky Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 3: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 4: Sestroj rovnoběžník ABCD, je-li
Slovní úlohy I
..1 Slovní úlohy I Předpoklady: 0008 Pedagogická poznámka: Slovní úlohy jsou problém, hlavně pro to, že neexistuje jednoznačný algoritmus na jejich řešení. Této první hodiny se však problémy netýkají,
Datum, období vytvoření:
Identifikátor materiálu: EU-OPVK-ICT2/3/1/14 Datum, období vytvoření: říjen 2013 Vzdělávací oblast : Člověk a příroda Vzdělávací obor, tematický okruh: Elektrická práce, energie a výkon Předmět: Fyzika
Závislost odporu kovového vodiče na teplotě
4.2.1 Závislost odporu kovového vodiče na teplotě Předpoklady: 428, délková a objemová roztažnost napětí [V] 1,72 3,43 5,18 6,86 8,57 1,28 proud [A],,47,69,86,11,115,127,14,12,1 Proud [A],8,6,4,2 2 4 6
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2
4.3.3 Goniometrické nerovnice
4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
Přehled učiva matematiky 7. ročník ZŠ
Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři
Matematika. Až zahájíš práci, nezapomeò:
9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Měření složeného elektrického obvodu
4.2.13 Měření složeného elektrického obvodu Pedagogická poznámka: Následující příklady by se za hodinu samozřejmě stihnout nedaly. Aby byla hodina využita co nejlépe, postupuji následovně. Před touto hodinou
2.1.9 Lineární funkce II
.1.9 Lineární funkce II Předpoklad: 108 Př. 1: Přiřaď k jednotlivým čarám na obrázku, jednotlivé variant zadání příkladu o Orlické přehradě: a) původní zadání (přítok 000 m /s, odtok je 1000 m /s, 500
Rovnoměrný pohyb IV
2.2.4 Rovnoměrný pohyb IV Předpoklady: 02023 Pomůcky: Př. : erka jede na kole za kamarádkou. a) Za jak dlouho ujede potřebných 6 km rychlostí 24 km/h? b) Jak daleko bude po 0 minutách? c) Jak velkou rychlostí
2.5.28 Procenta okolo nás II
2.5.28 Procenta okolo nás II Předpoklady: 020527 Tématické příklady po skončení lyžařského kurzu Př. 1: První družstvo mělo původně 12 členů. Uplynulo několik pár dní výcviku a 25 % členů zůstalo na chatě
2.3.5 Ekvivalentní úpravy
.. Ekvivalentní úpravy Předpoklady: 000 Př. : Vyřeš rovnice. Jaký je společný rys řešení všech příkladů? a) + = 7 b) = 9 c) = d) = a) + = 7 = 7 = 9 b) = 9 = 9: = 7 c) = d) = 0 = = 7 = + = + = = 9 9 9 9
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 2 9 9:02 Trojčlenka označuje postup při řešení úloh
1.3.6 Rovnoměrný pohyb po kružnici I
..6 Rovnoměrný pohyb po kružnici I Předpoklady: 0, 05 Pedagogická poznámka: Na začátku jsem předpokládal, že rovnoměrný pohyb po kružnici je možné probrat za jednu hodinu (díky analogii s běžným rovnoměrným
2.3.20 Grafické řešení soustav lineárních rovnic a nerovnic
.3.0 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =
( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204
9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 1 Trojčlenka označuje postup při řešení úloh přímé
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní
VÝKON ZDROJE ENERGIE PRO DOMÁCNOST?
Středoškolská technika 2013 Setkání a prezentace prací středoškolských studentů na ČVUT VÝKON ZDROJE ENERGIE PRO DOMÁCNOST? Michal Brückner, Miloslav Smutka, Tomáš Hanák VOŠ a SPŠ Studentská 1, Žďár nad
1.1.4 Převody jednotek II
..4 Převody jednotek II Předpoklady: 000 Pomůcky: voda, olej, trychtýř, dvě stejné kádinky. Pedagogická poznámka: Druhou částí hodiny je třeba začít nejpozději 5 minut před koncem. Př. : Převeď na jednotky
INTERNETOVÉ ZKOUŠKY NANEČISTO 1. kolo řešení matematika
INTERNETOVÉ ZKOUŠKY NANEČISTO 1. kolo řešení matematika 1. Zimní bundu zdražili v obchodě o 22 % a po zdražení stála 5 68 Kč. Kolik korun stála bunda před zdražením? 122 % 5 68 Kč 1 % 44 Kč 100 % 4 400
( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209
9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve
Další vlastnosti kombinačních čísel
9.. Další vlastnosti kombinačních čísel Předpoklady: 97, 98 Kombinační čísla udávají počet kombinací bez opakování = neuspořádaných k-tic sestavených z n prvků bez opakování. n! Platí: = - počet možností
Cíl a následující tabulku. t [ s ] s [ mm ]
1.1.8 Rychlost I Předpoklady: 010107 Pomůcky: Rychlost: kolik ukazuje ručička na tachometru, jak rychle se míhá krajina za oknem, jak rychle se dostaneme z jednoho místa na druhé. Okamžitá rychlost se
Rovnoměrný pohyb II
2.2.12 Rovnoměrný pohyb II Předpoklady: 020210 Pomůcky: Př. 1: Jakou vzdálenost urazí za pět minut automobil jedoucí rychlostí 85 km/h? 5 t = 5min = h, v = 85 km/h 5 s = vt = 85 km = 7,1 km Automobil jedoucí
( ) ( ) Binomické rozdělení. Předpoklady: 9209
9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů b) dá alespoň jeden koš c) dá nejdříve
1.3.2 Rovnoměrný pohyb po kružnici I
..2 Rovnoměrný pohyb po kružnici I Předpoklady: 0, 0 Pedagogická poznámka: Na začátku jsem předpokládal, že rovnoměrný pohyb po kružnici je možné probrat za jednu hodinu (díky analogii s běžným rovnoměrným
1.1.3 Převody jednotek
.. Převody jednotek Předpoklady: 000 Pomůcky: Př. : Převeď ze základní jednotky na jednotku v závorce. a) 500 m[ km ] b) 0,05A [ µa ] c) 0, N[ kn ] d) 0,000 0045m[ nm ] e) 450 000J[ GJ ] f) 0,00 F[ nf
1.2.9 Usměrňování zlomků
9 Usměrňování zlomků Předpoklady: 0008 Pedagogická poznámka: Celá hodina by měla být naplňováním jediné myšlenky Při usměrňování rozšiřujeme zlomek tím, co potřebujeme Fakt, že si příklad upravíme, jak
Petr Husar, www.e-matematika.cz nesnesitelně snadná matematika! Test z matematiky základní školy úroveň 2 řešení
Test z matematiky základní školy úroveň 2 řešení Každá otázka je za 1 bod, celkový počet bodů je 20. 1. Tři podnikatelé srovnávali své výdaje za měsíc listopad. Novákovy výdaje byly dvakrát větší než Šindelářovy
4 Rovnice a nerovnice
36 Rovnice a nerovnice 4 Rovnice a nerovnice 4.1 Lineární rovnice a jejich soustavy Požadované dovednosti řešit lineární rovnice o jedné neznámé vyjádřit neznámou ze vzorce užít lineární rovnice při řešení
( ) Slovní úlohy vedoucí na soustavy rovnic I. Předpoklady:
4..7 Slovní úlohy vedoucí na soustavy rovnic I Předpoklady: 0405 Pedagogická poznámka: Naprostou většina chyb při sestavování rovnic v následujících příkladech tvoří obrácené rovnosti ve kterých studenti
F - Elektrická práce, elektrický výkon, účinnost
F - Elektrická práce, elektrický výkon, účinnost rčeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VAIACE Tento dokument byl kompletně vytvořen, sestaven
Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.
Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,
( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924
5 Logaritmické nerovnice II Předpoklad: Pedagogická poznámka: Většina studentů spočítá pouze první tři příklad, nejlepší se dostanou až k pátému Pedagogická poznámka: U následujících dvou příkladů je opět
Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků
Zadané hodnoty: n motoru M motoru [ot/min] [Nm] 1 86,4 15 96,4 2 12,7 25 14,2 3 16 35 11 4 93,7 45 84,9 5 75,6 55 68,2 Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků m = 1265 kg (pohotovostní hmotnost
2.9.3 Exponenciální závislosti
.9.3 Eponenciální závislosti Předpoklady: 9 Pedagogická poznámka: Látka připravená v této hodině zabere tak jeden a půl vyučovací hodiny. Proč probíráme tak eotickou funkci jako je eponenciální? V životě
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
Kyvadlová doprava vody
Kyvadlová doprava vody Vypracoval Ing. Martin Řeh ehák ebného počtu cisteren při p provádění kyvadlové dopravy vody Dálková doprava vody pomocí CAS (kyvadlová), je nejčastěji využívaný způsob dopravy vody.
4.2.3 Oblouková míra. π r2. π π. Předpoklady: Obloukovou míru známe z geometrie nebo z fyziky (kruhový pohyb) rychlé zopakování.
.. Oblouková míra Předpoklady: 8 Obloukovou míru známe z geometrie nebo z fyziky (kruhový pohyb) rychlé zopakování. Př. : Jsou dány dvě kružnice o poloměrech r a r. Do tabulky doplň délky oblouků těchto
Název DUM: Elektrická energie v příkladech I
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Elektrická energie
4.4.8 Zase nějaké... Předpoklady: ,6 l benzínu stálo 993,24 Kč. Kolik Kč by stálo 44,8 litru benzínu?
..8 Zase nějaké... Předpoklad: 000 Př. :, l benzínu stálo 99, Kč. Kolik Kč b stálo,8 litru benzínu? Čím více benzínu koupíme, tím více musíme zaplatit přímá úměrnost., litru 99, Kč,8 litru 99, = /,8 (cena
2.9.3 Exponenciální závislosti
.9.3 Eponenciální závislosti Předpoklady: 9 Pedagogická poznámka: Látka připravená v této hodině zabere tak jeden a půl vyučovací hodiny. Proč probíráme tak eotickou funkci jako je eponenciální? V životě
Za účelem získání praktických zkušeností s výstavbou a provozem byl na východě Čech realizován projekt energeticky úsporného domu "Pod Strání".
Energeticky úsporné domy - projekt "Pod Strání" O potřebě stavět energeticky úsporné domy dnes snad již nikdo nepochybuje. S teoretickými informacemi, jak navrhovat a stavět tyto domy se setkáváme dnes
4.3.2 Goniometrické nerovnice
4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Lineární rovnice
2. Lineární rovnice označuje rovnici o jedné neznámé, ve které neznámá vystupuje pouze v první mocnině. V základním tvaru vypadá následovně: ax + b = 0, a 0 Zde jsou a a b nějaká reálná čísla, tzv. koeficienty
Cíl a následující tabulku: t [ s ] s [ mm ]
.. Rychlost Předpoklady: 0 Rychlost: kolik ukazuje ručička na tachometru jak rychle se míhá krajina za oknem jak rychle se dostaneme z jednoho místa na druhé Okamžitá rychlost se při jízdě autem neustále
( ) ( ) Obsahy. Předpoklady:
1.4. Obsahy Předpoklady: 0409 Př. 1: Jarda a Pavel si koupili zahradu a dohadují se, kdo nakoupil lépe. Jardova zahrada má tvar čtverce o straně m, Pavlova tvar obdélníku o stranách 0 m x 30 m. Kolik metrů
Dělení desetinných čísel desetinným číslem II
1.2.22 Dělení desetinných čísel desetinným číslem II Předpoklady: 1221 Př. 1: Platí: 8 : 4 = 2. Doplň další dvojice tak, aby jsme jejich vydělením získali stejný výsledek jako u podílu 8 : 4. Jak souvisí
Titul: Letectví Spotřeba paliva letadla
Titul: Letectví Spotřeba paliva letadla Témata: procenta, modelování, rychlost, vzdálenost, čas, hmotnost, hustota Čas: 90 minut Věk: 13-14 Diferenciace: Vyšší úroveň: Může být vzat v úvahu odpor vzduchu
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny rovinné
1.1.8 Sčítání přirozených čísel
.. Sčítání přirozených čísel Předpoklady: 000 Pedagogická poznámka: Pokud při formulaci pravidel necháváte žáky zapisovat samostatně, nedostanete se dále než k příkladu. Což využívám schválně, další hodinu
Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)
Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny
2.5.27 Promile. Předpoklady: 020526
2.5.27 Promile Předpoklady: 020526 Pedagogická poznámka: Na odhady nechávám jen chvíli cca 2 minut. Pak si kontrolujeme výsledky (2, 1, 0, -1 bod) a říkáme si, jak k odhadu dospět. Pak si žáci zjistí přesné
2.1.2 Stín, roční období
2.1.2 Stín, roční období Předpoklady: 020101 Pomůcky: svítilny do žákovských souprav (v nouzi svítilny na kolo s jednou LED) 3 kusy, kartónová kolečka na špejlích, igelitový obal na sešit Pedagogická poznámka:
Dispatcher 3 Kniha jízd
Dispatcher 3 Kniha jízd 1 Obsah: Základní popis programu.. 3 Vložení vozidla.. 4 Vložení záznamu o jízdě.. 6 Import dat z GPS off-line jednotky LUPUS.. 8 Import tankovacích karet.. 10 Sloučení jízd v jednom
součet druhé mocniny čísla zvětšeného o jedna a odmocniny z jeho trojnásobku
.7. Zápisy pomocí výrazů I Předpoklady: 70 Pedagogická poznámka: Hodina obsahuje poměrně málo příkladů, protože se snažím, aby z ní všichni spočítali opravdové maximum. Postupujeme tedy pomalu a kontrolujeme
Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581. Václav Mayerhofer. Datum: 21. 4. 2013. Ročník: 8., 9.
VY_32_INOVACE_5MAY18 Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581 Autor: Václav Mayerhofer Datum: 21. 4. 2013 Ročník: 8., 9. Vzdělávací oblast: Člověk a příroda
Dláždění I. Předpoklady:
1.3.18 Dláždění I Předpoklady: 010317 Pedagogická poznámka: tato hodina se věnuje opakování výpočtů povrchů a bylo by zřejmě možné ji zařadit i do úvodního opakování. Nakonec jsem ji přidal na toto místo,