Buněčný cyklus. (B. Němec, 1900?)
|
|
- Ondřej Vacek
- před 6 lety
- Počet zobrazení:
Transkript
1 Buněčný cyklus (B. Němec, 1900?)
2 Buněčný cyklus úhly pohledu Strukturní události (replikace DNA, segregace chromozómů, cytokineze) Začlenění do ontogeneze mnohobuněčného organismu Regulační stránka
3 Regulace BC: historicko-metodický výlet... ale začalo to mnohem dřív...
4 Obecné schéma eukaryotního buněčného cyklu (G0) (1. pozorování - Howard and Pelc, 50. léta, rostliny!)
5 Výjimky z pravidel v rostlině suspensor fazolu: až 10 3 C
6
7 Endoreplikace = opak. S-fáze bez M. Endomitosa = opak. M-fáze bez S (po endoreduplikaci). Př. buněčné cykly řas Scenedesmus (Šetlík, Vondrejs 70- léta)
8
9 Otázky (pro ideální cyklus ): Jak je zajištěno, že ke zdvojení struktur dochází právě jednou za cyklus? Co udržuje pořadí a vzájemnou koordinaci zdánlivě nepříbuzných procesů? Co zajišťuje koordinaci růstu a dělení? Jak buňka ví, kam má dát nové struktury? (Wheals, 1976)
10 Metabolicko-energetické podmínky postupu buněčného cyklu The Journal of Cell Biology, Vol 37, , Copyright 1968 by Rockefeller University Press CONTROL OF CELL PROGRESSION THROUGH THE MITOTIC CYCLE BY CARBOHYDRATE PROVISION I. Regulation of Cell Division in Excised Plant Tissue* JACK VAN'T HOF From the Biology Department, Brookhaven National Laboratory, Upton, New York ABSTRACT A stationary phase in the root meristem of excised pea roots was established by prolonged carbohydrate deprivation in sterile culture medium. When the stationary phase had been established, cells that had collected in the G1 period of the mitotic cycle were induced to enter the S stage by subjection to relatively short intervals of carbohydrate provision (sucrose spurts). Progression and cycle location of the G1 cells induced to enter S were measured with tritiated thymidine and radioautography. The results indicated that the number of G1 cells induced to enter S increased directly with the spurt duration and that cells could be positioned and retained in the S and/or G2 periods by varying the duration of the spurt. The data support the hypothesis that S and maybe M stages have a relatively larger dependence on carbohydrate availability, and presumably a greater energy requirement, than G1 and G2.
11 0 sacharosa 6h sacharosa 12h sacharosa Znač. Thym. 0 sacharosa 6h sacharosa 12h sacharosa
12 Otázky (pro ideální cyklus ): Jak je zajištěno, že ke zdvojení struktur dochází právě jednou za cyklus? Co udržuje pořadí a vzájemnou koordinaci zdánlivě nepříbuzných procesů? Co zajišťuje koordinaci růstu a dělení? Jak buňka ví, kam má dát nové struktury? (Wheals, 1976)
13 Odpověď: 2 alternativní modely! (domino) (hodiny) (Hartwell 1974)
14 Model typu domino (L. Hartwell) Východisko: mutace buň. cyklu Saccharomyces
15 cdc mutace cdc4, kont. ts mut. v rest. tepl.
16 Vzájemná závislost a pořadí Závislost - pořadí vůči místu účinku inhibitorů Synchronní kultury výhodou (ne podmínkou) Pořadí funkce CDC genů
17 CDC28 Mapa funkcí CDC genů (Hartwell 1974)
18 Modely typu hodiny (T. Hunt, M. Kirschner, A. Murray)
19 MPF - maturation promoting factor
20 MPF = p34 + cyklin
21 Další doklad pro hodiny : fúze buněk (Rao and Johnson) (D. Dudits)
22 Sjednocení modelů (P. Nurse): CDC28 kóduje p34! cyclin-dependent kinase, CDK (dílčí procesy mohou běžet podle modelu domino)
23 Vlny CDK cyklinů CDK inhibitorů Regulace: transkripce proteolýza Modulace aktivity CDK
24 Vlny CDK cyklinů CDK inhibitorů Regulace: transkripce proteolýza Modulace aktivity CDK
25 Komplex CDK cyklin - CKI
26 Diversita CDK a cyklinů (živočišná terminologie) exocytosis via NSF (PCTAIRE! Liu et al. 2006) (Doerner lab 2005)
27 Diversita CDK a cyklinů (živočišná terminologie) exocytosis via NSF (PCTAIRE! Liu et al. 2006) (Doerner lab 2005)
28 Evoluce CDK Robbens et al. 2004
29 Guo and Stiller 2004 RNA proc.? G2M? P-TEFb 16 Arabidopsis CDK dosud zmeškáno, 2 CDK10/11 a 14 recentně duplik. CDK9 CdkC CdkB CdkA CAK + TFIIH CTD kinase CdkF CdkD CdkE
30 CDK: rozmanitost sekvencí i funkcí Kromě jádrové funkce i další (CLN, meiotické...) Spřízněnost s transkripčním aparátem (TFIIH, CTD kinázy) ALE rodina CCC (cell cycle control) kináz stará, CDK jsou mladá větev, divergence až v eukaryotech... a větve dosti slušně konzervovány. (Guo a Stiller 2004; Krylov et al., Curr. Biol. 13: , 2004)
31 Cykliny z Arabidopsis Wang et al Evoluce cyklinů
32 Cykliny - dělba práce Mitotické - klasické: A - S fáze B - mitosa G1 - heterogenní skupina; cell cycle commitment a???
33 Cykliny - dělba práce Mitotické - klasické: A - S fáze B - mitosa G1 - heterogenní skupina; cell cycle commitment U rost. Cyc D v G1
34 Současný stav u rostlin (Francis 2007)
35 (příklad ovšem živočišný...)
36 G0 (příklad ovšem živočišný...)
37 Pocket proteins - příbuzenstvo cyklinů: prb a spol.
38 Transkripční regulace - E2F, prb S-fázní geny: TK, RNR... A. th. zeus 1. zygotické dělení, TK!
39 Dim.Prot. Komp. inh. Jako monom.
40
41 Mechanismus represe je možná trochu složitější... Rb indukuje deacetylaci histonů, což brání transkripc přísluš. oblasti chromatinu
42 Na kontrole transkripce a cyklu se podílejí ARP4,6,7! (přes kondensaci chromatinu pleiotropní, vliv též na kvetení a senescenci květů...) (Meagher et al. 2005, 2007)
43 Regulace CDK: např. fosforylací Wee1 kinasa a Cdc25 působí proti sobě.
44 A to ještě není všechno: CDK mají i další fosforylační místa. Y15 T14 T14 Y15 T161 Y15 Y15 T14 T161 cdc25 T14 Y15 T14 T161 T161 wee1 cyklin T161
45 ... jakožto jedna z cest ke spřažení cyklu a růstu (S. pombe) wee1 Mut. WT OX
46 Exprese kvasinkového Cdc25 v rost. buňkách má fenotyp (Orchard et al.... Suchomelová, Lipavská )
47 Proteolýza v regulaci BC Anaphase promoting complex Skp1 - Cullin - F-box ubikvitinem regulovaná proteolýza
48 Proteolýza v regulaci BC Anaphase promoting complex Skp1 - Cullin - F-box ubikvitinem regulovaná proteolýza
49 Proteolýza v regulaci BC Anaphase promoting complex Skp1 - Cullin - F-box ubikvitinem regulovaná proteolýza
50 Amatomie APC/cyklosomu (cyclosome) E3 Ubi-ligasa Podjednotky: Cdc16, Cdc23, Cdc26, Cdc27, BimE + 3 další Regulace: Cdc20 nebo Cdh1 Cdc20 sám degradován via APC Cdh1 je substrátem CDK (inaktivační P ace!) kvasinka: mnd fenotyp
51 Další role APC: separace chromosomů Sesterské chromatidy drží pohromadě kohesinové komplexy. místo proteolyt. štěpení SMC (structural maintenance of chromosomes) SCC (sister chromatid cohesion) (C. H. Haering)
52 Ústřední hodiny buněčného cyklu centrální oscilátor ( cell cycle engine ) vstupy velikost signály poškození... výstupy gen. exprese mitosa, cytokinese... Jak vůbec lze zajistit pravidelný chod - oscilace?
53 Minimální oscilátor (jeden z mnoha) Je lepší než jiné?? Problém robustnosti! Turing v čase (Ingolia a Murray, Curr. Biol. 2004)
54 Oscilátor v kontextu tradičního pohledu Tyson and Novak, J. Theor. Biol. 210: , 2001
55 Dva stavy cyklových hodin Růst Start Stav CDK APC DNA (ORC) G1 prereplik. S/M postreplik. Nedoreplikovaná DNA Neúplná metafáze Finish (Novak et al., Phil.Trans.R.Soc.Lond.B 353: , 1998)
56 Model minimálního cyklu Jádro: CDK/cykliny + APC Start regul. růstem Finish regul. dokončením replikace + vřeténka prostřednictvím aktivátoru APC (ACT) Osciluje v širokém rozmezí parametrů! (Novak et al., Phil.Trans.R.Soc.Lond.B 353: , 1998)
57 Vstupy a výstupy - (nejen) rostlinná specifika centrální oscilátor ( cell cycle engine ) vstupy velikost signály poškození... výstupy gen. exprese replikace mitosa, cytokinese...
58 Obecně cyklus regulován též v závislosti na poškození ( checkpoints )
59 Ontogenetická kontrola BC - rostlina vládne buňkám AtCYCB1::GUS V ranném embryu téměř mizí G1 fáze.
60
61 Kontrola cyklu sacharosou a fytohormony
62
63 Kontrola cyklu sacharosou a fytohormony
64
65 - odpověď na auxin (A. th. kořeny)
66 Sacharosa
67 Na úrovni buňky jasné priority Základem je cell cycle engine Regulace vstupů a výstupů jsou přívěsky Víme, že rostliny rakovinu nemívají ALE...?
68 Mutace a změny exprese centrálních regulátorů cyklu OX - Mit. cyclinu zvyšuje růst kořenů a celé rost.
69 WT mut masivní overexprese KRP (inhibitor CDK): malé rostliny, méně buněk Zhou et al. 2002
70 Intercellular and subcellular localization of Arath;KRP1 pgl2:gfp pgl2:krp1:gfp Verkest, A., et al. Plant Physiol. 2005;139: Copyright 2005 American Society of Plant Biologists (protein je v jádře a leze do sousedních buněk!)
71 Umírněná overexprese KRP: malá rostlina, velké buňky! wt pstm:krp ptmm:krp Copyright 2005 American Society of Plant Biologists Verkest, A., et al. Plant Physiol. 2005;139:
72 Velké buňky jsou polyploidní! (Verkest et al. 2005)
73 KRP kontrolují endoreduplikaci
74 Mutanti v odpovědi na hormony brassinosteroid. deficience superroot (auxin ++) vp1 (no ABA response
75 Rostlina vládne buňkám, ne naopak!
76 Vstupy a výstupy... zpět k cytoskeletu centrální oscilátor ( cell cycle engine ) vstupy velikost signály poškození... výstupy gen. exprese replikace mitosa, cytokinese...
77 Replikace genomu -klíčová úloha replikačních počátků! Funkce závisí na kontextu: žitné chromosomy v triticale užívají 4x víc počátků než v žitě
78
79 Konce - telomery telomeráza
80 Zpět ke strukturním událostem cyklu 1. Segregace chromozomů a karyokinese 2. Cytokinese aneb cytoskeletální efektory CDK (hlavně MT)
81
82 Mikrotubulární cytoskelet v cyklu somatické buňky cortical array preprophase band spindle
83 fragmoplast
84 Univerzální mechanika eukaryotního BC vs. rostlinná specifika
85 Mitotické vřeténko a segregace chromosomů
86 Kondensace a rozchod chromosomů
87
88
89 Co pohání pohyb chromosomů? kinesiny (ATK1 a jiné?)
90
91 Lokalizace chromozomů v jádře není náhodná!
92 Prophase I Leptotene Zygotene Pachytene Diplotene Mitosa vs. meiosa
93
94 Meiosu II lze chápat jako odloženou část anafáze Mutace mes1 (meiotic segregation? běží jako mitosa) u S. pombe - porucha meiose II
95 mes1+ (asi) kóduje kompetitivní inhibitor APC! (Peters 2005)
96 Cytokinese růst růst septin ring - jak rozdělit buňku...
97 Je rozdíl mezi rostlinami a živočichy opravdu tak zásadní?
98 fúze váčků
99 Vývoj fragmoplastu a CP (electronmicroscopic tomography, Staehelin lab)
100 Homotypická fúze váčků: SNARE et al., Exocyst? (Segui-Simarro et al. 2004) (exocyst) KNOLLE : syntaxin (v-snare) přísluš. t-snare asi redundantní (SNAP33, SNAP29, SNAP30) KEULE : Sec1-related, interakce s KNOLLE KNOLLE a syntaxin SYP31: interakce s CDC48 wt keule
101 Cytokinetické kinesiny + end-directed: rodina TKRP125 posun mt? rodina PAKRP ( phragmoplast associated ) - end-directed: rodina ATK1/KatA KCBP (Ca2+-calmodulin reg.) HINKEL (HIK) a NACK1 NACK1 nutný pro lokalizaci NPK1 (nucleus- and phragmoplast-localized protein kinase 1) MAPKKK (Arabidopsis má 3 homology) lokalizace závisí na fázi cyklu! TKRP125 (tabák)
102 Kde by mohla působit kontrola BC? MAPK kaskáda... srv. NACKs!!! CDK
Buněčný cyklus. (B. Němec, 1900?)
Buněčný cyklus (B. Němec, 1900?) Definice BC Buněčný cyklus je posloupnost událostí, kterými z jedné buňky vzniká větší počet buněk, zpravidla dvě. typická biologická definice BC je (také) minimální ontogeneze
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
BUŇEČNÝ CYKLUS A JEHO KONTROLA
BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené
Buněčný cyklus a molekulární mechanismy onkogeneze
Buněčný cyklus a molekulární mechanismy onkogeneze Imunofluorescence DAPI Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny s homologními oblastmi; jejich
růstu a buněčného dělění
Buněčný cyklus - principy regulace buněčného Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění Mitóza Průběh mitózy v buněčné kultuře fibroblastů Buněčný cyklus Kinázy závislé na cyklinech
Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU
BUNĚČNÝ CYKLUS Buněčné dělení Cykliny a na cyklinech závislé proteinkinázy (Cyclin- Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího systému buněčného cyklu 8 cyklinů
8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů
Buněč ěčné dělení BUNĚČ ĚČNÝ CYKLUS ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU cykliny a na cyklinech závislé proteinkinázy (Cyclin-Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího
Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění
Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění Mitóza Dr. B. Duronio, The University of North Carolina at Chapel Hill Buněčný cyklus Kinázy závislé na cyklinech kontrolují buněčný
http://www.accessexcellence.org/ab/gg/chromosome.html
3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické
Buněčný cyklus. When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants.
Buněčný cyklus When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants. (Rudolf Wirchow, 1858) Buněčný cyklus cyklus buněčných procesů začínajících
arise from animals and plant from
Buněčný cyklus When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants. (Rudolf Wirchow, 1858) Jediným způsobem jak může vzniknou nová buňka
44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů
Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál
Buněčný cyklus, spojení se signálními cestami a molekulární mechanismy onkogeneze
Buněčný cyklus, spojení se signálními cestami a molekulární mechanismy onkogeneze MUDr. Jiří Vachtenheim, CSc. Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny
zvyšování počtu jednotlivých mikroorganismů roste počet živých buněk exponencio- nálně otevřeném systému
Definice růstu Růstem myslíme jednak zvyšování počtu jednotlivých mikroorganismů, případně zbytnění jednotlivých organel, a tím i zvětšování jednotlivého mikrobu. Je-li mikroorganismus v uzavřeném prostoru,
Inovace studia molekulární. a buněčné biologie
Inovace studia molekulární I n v e s t i c e d o r o z v o j e v z d ě l á v á n í a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
BUNĚČNÝ CYKLUS II: BLÍŽÍME SE ROZLUŠTĚNÍ GENETICKÉHO KÓDU?
BUNĚČNÝ CYKLUS II: BLÍŽÍME SE ROZLUŠTĚNÍ GENETICKÉHO KÓDU? Fatima Cvrčková Katedra fyziologie rostlin PřF UK, Viničná 5, 128 44 Praha 2 E-mail: fatima@prfdec.natur.cuni.cz I. Úvod Tento text navazuje na
Buněčný cyklus a buněčná smrt
Biologie I 6. přednáška Buněčný cyklus a buněčná smrt Campbell biology 10ed (Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB, Pearson Education, 2014, ISBN 978-0-321-77565-8) Buněčný
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2015-2016 1 Název Funkční analýza jaderných proteinů fosforylovaných pomocí mitogenaktivovaných proteinkináz. Školitel
DUM č. 1 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 1 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Charakteristika buněčného cyklu eukaryot
Souhrn 4. přednášky. Genetické metody
Souhrn 4. přednášky Genetické metody Plasmidy (kvasinkové elementy) Integrace (plasmidy, PCR, kazety) Teplotně-sensitivní mutanty (esenciálních genů) Tetrádová analýza Syntetická letalita, epistase, suprese
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?
Apoptóza Onkogeny. Srbová Martina
Apoptóza Onkogeny Srbová Martina Buněčný cyklus Regulace buněčného cyklu 1. Cyklin-dependentní kináza (Cdk) cyclin Regulace buněčného cyklu 2. Retinoblastomový protein (prb) E2F Regulace buněčného cyklu
Růst a vývoj rostlin - praktikum MB130C78
Růst a vývoj rostlin - praktikum MB130C78 Blok 3 Role aktinového cytoskeletu v morfogenezi rostlinných buněk - analýza fenotypu Úlohy: 1. Kvantifikace počtu zkroucených a správně tvarovaných trichomů u
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Základy buněčné biologie
Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/28.0032
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Charakteristika chromozomové výbavy 2n = 46,XY Karyotyp - Karyogram - Idiogram
Buněčný cyklus a buněčná smrt
Biologie I Buněčný cyklus a buněčná smrt Funkce buněčného dělení Struktura chromosomu Buněčný cyklus Mitoza Kontrola buněčného cyklu Programovaná buněčná smrt Buněčný cyklus = buňky zdvojí obsah a rozdělí
Endocytóza o regulovaný transport látek v buňce
. Endocytóza o regulovaný transport látek v buňce Exocytóza BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace
Rozmnožování buněk Vertikální přenos GI. KBI / GENE Mgr. Zbyněk Houdek
Rozmnožování buněk Vertikální přenos GI KBI / GENE Mgr. Zbyněk Houdek Buněčný cyklus Buňky vznikají z bb. a jedinou možnou cestou, jak vytvořit více bb. je jejich dělením. Vertikální přenos GI: B. (mateřská)
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
CYTOLOGIE 3. týden. Jádro a jeho komponenty Buněčný cyklus, mitosa, meiosa. Ústav histologie a embryologie
CYTOLOGIE 3. týden Jádro a jeho komponenty Buněčný cyklus, mitosa, meiosa Ústav histologie a embryologie MUDr. Radomíra Vagnerová, CSc. Předmět: Obecná histologie a obecná embryologie 02241 Přednášky 2.
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
Buněčný cyklus u rostlin a role signálních molekul v jeho regulaci
Přírodovědecká fakulta Univerzity Karlovy v Praze Katedra fyziologie rostlin Buněčný cyklus u rostlin a role signálních molekul v jeho regulaci Klára Čiháková Bakalářská práce Praha 2006 Obsah Seznam použitých
MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE
Cvičení 6: BUNĚČNÝ CYKLUS, MITÓZA Jméno: Skupina: MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Trvalý preparát: kořínek cibule obarvený v acetorceinu V buňkách kořínku cibule jsou viditelné různé mitotické figury.
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
7) Dormance a klíčení semen
2015 7) Dormance a klíčení semen 1 a) Dozrávání embrya a dormance b) Klíčení semen 2 a) Dozrávání embrya a dormance Geny kontrolující pozdní fázi vývoje embrya - dozrávání ABI3 (abscisic acid insensitive
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním
BUNĚČNÝ CYKLUS III. (Nové odpovědi na staré otázky)
BUNĚČNÝ CYKLUS III. (Nové odpovědi na staré otázky) Fatima Cvrčková Katedra fyziologie rostlin PřF UK, Viničná 5, 128 44 Praha 2 E-mail fatima@prfdec.natur.cuni.cz Úvod Uplynuly 3 roky od chvíle, kdy jsem
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: V/2 - inovace směřující k rozvoji odborných kompetencí Název materiálu: Buněčný cyklus
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
Buněčný cyklus. G0 M G1 G2 Aleš Hampl S. Replikace DNA. Buněčný cyklus skládající se z fází G1, S, G2 a M
Buněčný cyklus G0 M G1 G2 Aleš Hampl S Replikace DNA Rozdělení jádra Cytokineze Odehrávají se postupně během každého buněčného cyklu = Buněčný cyklus skládající se z fází G1, S, G2 a M Nahlédnutí do nepříliš
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2017-2018 1 Název Fenotypová analýza vybraných dvojitých mutantů MAPK v podmínkách abiotického stresu. Školitel Mgr.
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
1 Biochemické animace na internetu
1 Biochemické animace na internetu V dnešní době patří internet mezi nejužívanější zdroje informací. Velmi často lze pomocí internetu legálně stáhnout řadu již vytvořených výukových materiálů sloužících
Z Buchanan et al. 2000
Průběh buněčného cyklu Z Buchanan et al. 2000 Změny v uspořádání mikrotubulů v průběhu buněčného cyklu A interfáze, kortikální mikrotubuly uspořádané v cytoplasmě pod plasmalemou B konec G2 fáze, mikrotubuly
BUNĚČNÝ CYKLUS. OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky. Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí
(1 BUNĚČNÝ CYKLUS BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace kontrolní body molekulární brzdy Jednobuněčné
Laboratoř růstových regulátorů Miroslav Strnad
Laboratoř růstových regulátorů Miroslav Strnad Fyziologie rostlinné buňky, cytoskelet, buněč ěčné dělení a onkogeneze [kap 1] Olomouc Univerzita Palackého & Ústav experimentální botaniky AV CR ER
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
Laboratoř růstových regulátorů Miroslav Strnad. ové kultury. Olomouc. Univerzita Palackého & Ústav experimentální botaniky AV CR
Laboratoř růstových regulátorů Miroslav Strnad Tkáňov ové kultury Olomouc Univerzita Palackého & Ústav experimentální botaniky AV CR DEFINICE - růst a vývoj rostlinných buněk, pletiv a orgánů lze účinně
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 KBB/ZGEN Základy genetiky Dana Šafářová KBB/ZGEN Základy genetiky Rozsah: 2+1
VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
Inhibitory ATR kinasy v terapii nádorů
Inhibitory ATR kinasy v terapii nádorů J.Vávrová, M Řezáčová Katedra radiobiologie FVZ Hradec Králové UO Brno Ústav lékařské chemie LF Hradec Králové UK Praha Cíl léčby: zničení nádorových buněk zachování
3. Nukleocytoplasmatický kompartment rostlinných buněk
3. Nukleocytoplasmatický kompartment rostlinných buněk Co je nukleocytoplasmatický kompartment a jak vypadá u typické rostlinné buňky Jádro buněčné Nositel naprosté většiny genetické informace buňky Jak
DUM č. 2 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 2 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: meióza-redukční dělení jádra, význam, princip,
25.2.2014. Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.
Genomika Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat ji v termínech životních pochodů. 1 Strukturní genomika stanovení sledu nukleotidů genomu organismu,
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Karyokineze. Amitóza. Mitóza. Meióza. Dělení jádra. Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky.
Karyokineze Dělení jádra Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky Druhy karyokineze Amitóza Mitóza Meióza Amitóza Přímé dělení jádra Genetická informace je rozdělena
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
Příběh pátý: Auxinová signalisace
Příběh pátý: Auxinová signalisace Co je auxin? Derivát tryptofanu Příbuzný serotoninu a melatoninu Všechny deriváty přítomny jak u živočichů, tak u rostlin IAA Serotonin Serotonin: antagonista auxinu Přítomen
v oboru KLINICKÁ GENETIKA PRO ODBORNÉ PRACOVNÍKY V LABORATORNÍCH METODÁCH
RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÁ GENETIKA PRO ODBORNÉ PRACOVNÍKY V LABORATORNÍCH METODÁCH 1. Cíl specializačního vzdělávání Cílem specializačního vzdělávání
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
DNA se ani nezajímá, ani neví. DNA prostě je. A my tancujeme podle její muziky. Richard Dawkins: Řeka z ráje.
Genomika DNA se ani nezajímá, ani neví. DNA prostě je. A my tancujeme podle její muziky. Richard Dawkins: Řeka z ráje. Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat
Genetická kontrola prenatáln. lního vývoje
Genetická kontrola prenatáln lního vývoje Stádia prenatáln lního vývoje Preembryonální stádium do 6. dne po oplození zygota až blastocysta polární organizace cytoplasmatických struktur zygoty Embryonální
REPRODUKCE A ONTOGENEZE Od spermie s vajíčkem až po zralého jedince. Co bylo dřív? Slepice nebo vejce?
REPRODUKCE A ONTOGENEZE Od spermie s vajíčkem až po zralého jedince Co bylo dřív? Slepice nebo vejce? Rozmnožování Rozmnožování (reprodukce) může být nepohlavní (vegetativní, asexuální) pohlavní (sexuální;
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk Aleš Hampl Tkáně Orgány Živé buňky, které plní různé funkce (podpora struktury, přijímání živin, lokomoce,
Výuka genetiky na Přírodovědecké fakultě UK v Praze
Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený
Buněčné jádro a viry
Buněčné jádro a viry Struktura virionu Obal kapsida strukturni proteiny povrchove glykoproteiny interakce s receptorem na povrchu buňky uvnitř nukleocore (ribo )nukleova kyselina, virove proteiny Lokalizace
Rozdíly mezi prokaryotní a eukaryotní buňkou. methanobacterium, halococcus,...
Dělení buňky Biologie člení živé organizmy do dvou hlavních kategorií: prokaryotní a eukaryotní organizmy. Na základě srovnání 16S rrna se zjistilo, že na naší planetě jsou 3 hlavní nadříše buněčných forem:
Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky)
Chemie nukleotidů a nukleových kyselin Centrální dogma molekulární biologie (existují vyjímky) NH 2 N N báze O N N -O P O - O H 2 C H H O H H cukr OH OH nukleosid nukleotid Nukleosidy vznikají buď syntézou
Mitóza, meióza a buněčný cyklus. Milan Dundr
Mitóza, meióza a buněčný cyklus Milan Dundr Rozmnožování eukaryotických buněk Mitóza (mitosis) Mitóza dělení (nepřímé) tělních (somatických) buněk 1 jádro s2n (diploidním počtem) chromozómů (dvouchromatidových)
Morfogeneze rostlinné buňky. Rostlinná cytologie morfogeneze rostlinné buňky, Katedra experimentální biologie rostlin PřF UK
Morfogeneze rostlinné buňky Morfogeneze = vývoj tvaru, změna tvarových vlastností http://www.biologyreference.com/co-dn/differentiation-in-plants.html Embryogenní (meristematická) buňka Dospělá buňka,
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2018-2019 1 Název Fenotypová analýza vybraných dvojitých mutantů MAPK v podmínkách abiotického stresu Školitel Mgr.
Mitóza a buněčný cyklus
Mitóza a buněčný cyklus Něco o chromosomech - Chromosom = 1 molekula DNA + navázané proteiny -V diploidní buňce jsou od každého chromosomu 2 kopie (= homologní chromosomy) - Homologní chromosomy nesou
Biologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
Regulace růstu a vývoje
Regulace růstu a vývoje REGULACE RŮSTU A VÝVOJE ROSTLINNÉHO ORGANISMU a) Regulace na vnitrobuněčné úrovni závislost na rychlosti a kvalitě metabolických drah, resp. enzymů a genů = regulace aktivity enzymů
Stavba dřeva. Základy cytologie. přednáška
Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
Biologie 12, 2017/2018, Ivo Papoušek, Ivan Literák BUNĚČNÝ CYKLUS A JEHO REGULACE
Biologie 12, 2017/2018, Ivo Papoušek, Ivan Literák BUNĚČNÝ CYKLUS A JEHO REGULACE BUNĚČNÝ CYKLUS PROGRAMOVANÁ BUNĚČNÁ SMRT KONTINUITA ŽIVOTA: R. R. Virchow: Virchow: buňka buňka z buňky, z buňky, živočich
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Detlef Weigel ( )
VORF-8 2015 Detlef Weigel (15. 12. 1961) 1 Max Planck Institute for Developmental Biology Department of Molecular Biology Spemannstrasse 37-39 D-72076 Tübingen Germany http://www.weigelworld.org/ Max Planck
Viši kurs biologije ćelija (OA-IB2-2) Plan nastave zimski semestar 2018/19.
Viši kurs biologije ćelija (OA-IB2-2) Plan nastave zimski semestar 2018/19. Datum Tema 09.10.2018. Ćelijski ciklus 16.10.2018. Deobe ćelija 23.10.2018. Stem ćelije 30.10.2018. Bojenje ćelija propidijum
Intermediární metabolismus. Vladimíra Kvasnicová
Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,
BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY
BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY 1 VÝZNAM BUNĚČNÉ MOTILITY A MOLEKULÁRNÍCH MOTORŮ V MEDICÍNĚ Příklad: Molekulární motor: dynein Onemocnění: Kartagenerův syndrom 2 BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY
BUNĚČNÝ CYKLUS SOMATICKÝCH BUNĚK A JEHO REGULACE
BUNĚČNÝ CYKLUS SOMATICKÝCH BUNĚK A JEHO REGULACE Somatické buňky (jakékoliv buňky organismu kromě pohlavních buněk) během své existence procházejí sérií buněčných cyklů. Výjimkou jsou např. neurony, jsou
INTRACELULÁRNÍ SIGNALIZACE II
INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Slovníček genetických pojmů
Slovníček genetických pojmů A Adenin 6-aminopurin; purinová báze, přítomná v DNA i RNA AIDS Acquired immunodeficiency syndrome syndrom získané imunodeficience, způsobený virem HIV (Human immunodeficiency
Vztah genotyp fenotyp
Evoluce fenotypu II Vztah genotyp fenotyp plán? počítačový program? knihovna? genotypová astrologie (Jablonka a Lamb) Modely RNA - různé vážení: A-U, G-C, G-U interakcí, penalizace za neodpovídající si
Senescence v rozvoji a léčbě nádorů. Řezáčová Martina
Senescence v rozvoji a léčbě nádorů Řezáčová Martina Replikační senescence Alexis Carrel vs. Leonard Hayflick and Paul Moorhead Diferencované bb mohou prodělat pouze omezený počet dělení - Hayflickův limit