vysokoteplotního plazmatu na tokamaku GOLEM
|
|
- Vendula Nováková
- před 5 lety
- Počet zobrazení:
Transkript
1 Měření základních parametů vysokoteplotního plazmatu na tokamaku GOLEM J. Krbec 1 1 České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská U3V Fyzika přátelsky / Aplikované přírodní vědy
2 Termojaderná fúze
3 Historie Co je zdrojem energie na slunci? Termonukleární fúze
4 Historie Co je zdrojem energie na slunci? Albert Einstein - ekvivalence hmoty a energie Termonukleární fúze
5 Historie Co je zdrojem energie na slunci? Albert Einstein - ekvivalence hmoty a energie Francis Aston - hmotnostní spektrometrie Termonukleární fúze
6 Historie Co je zdrojem energie na slunci? Albert Einstein - ekvivalence hmoty a energie Francis Aston - hmotnostní spektrometrie Arthur Eddington - pozorování slunce Termonukleární fúze
7 Historie Co je zdrojem energie na slunci? Albert Einstein - ekvivalence hmoty a energie Francis Aston - hmotnostní spektrometrie Arthur Eddington - pozorování slunce Termojaderná fúze
8 Co je fúze? Slučování jader atomů
9 Fúzní reakce Ekvivalence hmoty a energie: E = mc 2 (1) Zákon zachování energie: m = Zm p +(A Z)m n m (2) Příklad: přeměna deuteria na helium hmotnost deuteronu m D = 2,01363u, helia m He = 4,002602u m = 2 m D m He = 4,02726u 4,002602u = 0,0246u zhruba 0.5 % přeměněno na energii
10 Typy reakcí 1 H 1 H 1 H 1 H ν ν 1 D + D T + p He 3 + n 2 H 1 H 1 H 2 H 2 D + T He 4 + n 3 D + He 3 He 4 + p 4 T + T He 4 + 2n γ 3 He 3 He γ 5 p + Li 6 He 4 + He 3 6 p + B 11 3 He 4 1 H 1 H γ ν Gamma Ray Neutrino 4 He Proton Neutron Positron
11 Možnosti využití fúze? Zdroj energie Spotřeba energie vzrůstá Zásoby fosilních paliv se zmenšují Snížení zátěže na životní prostředí Těžba uhĺı, ropy a zemního plynu Emise CO 2, jaderný odpad, jaderné zbraně Velké plochy fotovoltaiky a větrníků
12 Podmínky pro fúzi Jádra se musí přibĺıžit na vzdálenost metru Musí překonat odpudivé síly Coulombův zákon F E = 1 Q 1 Q 2 4πǫ 0 r 2 Vysoká teplota zápalná teplota pro D-T fúzi je Kelvinů
13 Plazma Jak vypadá velmi horká hmota Ionizovaný plyn Dvě složky: ionty a elektrony Čtvrté skupenství hmoty Velmi složité chování Nabité částice vytváří při pohybu magnetické pole, které ovlivňuje pohyb jiných nabitých částic Velmi složité chování
14 Plazma Výskyt ve Vesmíru 99% viditelné hmoty ve vesmíru. Na zemi vzácné
15 Plazma Oheň
16 Plazma Blesky
17 Plazma Aurora
18 Plazma Slunce
19 Plazma Parametry plazmatu: teplota, hustota
20 Plazma pro fúzi Fúzní reakce musí vydat více energie než jaké jsou energnetické ztráty plazmatu Lawsonovo kritérium nτ E > m 3 s Inerciální udržení: hustota m 3, doba udržení s Magnetické udržení: hustota m 3, doba udržení 1 s Parametry zařízení: doba udržení
21 Tři způsoby udržení plazmatu Gravitační udržení
22 Tři způsoby udržení plazmatu Magnetické udržení
23 Tři způsoby udržení plazmatu Inerciální udržení
24 Tři způsoby udržení plazmatu Inerciální udržení
25 Tři způsoby udržení plazmatu Inerciální udržení
26 Tři způsoby udržení plazmatu Inerciální udržení
27 Geometrie udržení plazmatu Sférická
28 Geometrie udržení plazmatu Válcová
29 Geometrie udržení plazmatu Toroidální
30 Geometrie udržení plazmatu Toroidální
31 Toroidální geometrie Tokamaky Kombinace cívek toroidálního pole a magnetického pole proudu tekoucího plazmatem. Stelarátory Pouze speciálně tvarované cívky. Proud plazmatem je nežádoucí.
32 Tokamak
33 Stelarátor Geometrie stelarátoru
34 Stelarátor Cívky generující magnetické pole
35 Stelarátor Tvar komory
36 Palivo pro tokamak Deuterium Obsaženo ve vodě 1: l vody (0.3 gramu deuteria) = 300 l benzínu Tritium Radioaktivní (poločas rozpadu 12,3 let) Výroba z lithia neutronovým záchytem přímo v reaktoru Plodivá obálka z lithium Trojný součin ntτ E > m 3 s kev
37 Trojný součin
38 Fúzní elektrárna Proč už ji dávno nestavíme?
39 Fúzní elektrárna Proč už ji dávno nestavíme? Nedořešené otázky pro velké zařízení Diagnostika Supravodivé cívky Materiál první stěny Nestability plazmatu Řízení plazmatu
40 Tokamak ITER Internation Thermonuclear Experimental Reactor
41 Další krok - DEMO rok 2040
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19
Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10
VíceTermonukleární fúze Autoři: Matěj Oliva, Valeriyj Šlovikov, Matouš Verner Datum: Místo: Temešvár Jarní škola mladých autorů
Termonukleární fúze Autoři: Matěj Oliva, Valeriyj Šlovikov, Matouš Verner Datum: 2015-03-26 Místo: Temešvár Jarní škola mladých autorů E-mail: Matej.Oliva@gybot.cz, valera15@seznam.cz, verner.m.cz@gmail.com
VíceSvět a poptávka po energii
Svět a poptávka po energii Lidé potřebují více energie a potřebují čistší energii Celosvětová spotřeba energie poroste, a to hlavně ze dvou příčin: Přibývá lidí, a některé chudé země bohatnou. Příklady
VícePRINCIP TERMOJADERNÉ FÚZE
PRINCIP TERMOJADERNÉ FÚZE Jaderná fúze je jaderná reakce, při které se spojením jader atomů lehkých prvků vytvoří nové, těžší jádro jiného prvku. NEUTRON DEUTERIUM ENERGIE HELIUM TRITIUM Deuterium (těžký
VíceJaderná fúze. Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J 2000 Q ročně (malá hustota) Σ 1850 1950 - Σ 1950 2050 -
Jaderná fúze Problém energie Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J Slunce zem Světová spotřeba energie 2000 Q ročně (malá hustota) Zásoby uhlí ~100 Q, zásoby ropy do 1850 0.004 Q/rok
VíceJaderná vazebná energie
Termojaderná fúze Jaderná vazebná energie Celkovou energii potřebnou k roztrhání jádra až na jednotlivé protony a neutrony můžeme vypočítat ze vztahu. Q = mc, kde hmotnostní úbytek m = Zm p + Nmn m j.
Více29. Atomové jádro a jaderné reakce
9. tomové jádro a jaderné reakce tomové jádro je složeno z nukleonů, což jsou protony (p + ) a neutrony (n o ). Průměry atomových jader jsou řádově -5 m. Poznámka: Poloměr atomového jádra je dán vztahem:
VíceMožné přístupy k realizaci termojaderné syntézy
České vysoké učení technické v Praze Fakulta elektrotechnická Katedra fyziky Možné přístupy k realizaci termojaderné syntézy, rezack@fel.cvut.cz Katedra fyziky FEL ČVUT v Praze 6. října 2016 Exkurze Gymnázium
VícePetr Muzikář <muzikar.petr@volny.cz>
Přehled jaderné fyziky Petr Muzikář 1 Ú vod Někteří z vas, milí čtenáři, se ještě s jadernou fyzikou ve škole nesetkali, protože bývá vykladána až někdy v posledních ročnících.
VíceFúzní horská dráha Experiment: Zkuste s kamarádem fúzovat jádra (zmagnetizovaná kuličková
Točna Točnu roztočte a položte na ní míček. Pozorujte, jak bude míček opisovat malé kroužky. Nyní lehce plochu nakloňte a dívejte se, kterým směrem se bude míček pohybovat. Jakým směrem jste si myslili,
VíceMěření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM.
Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Ondřej Grover 3. minikonference projektu Cesta k vědě, 11.1.2011 Osnova prezentace 1 Motivace Jaderná fúze Jak udržet plazma Měření
VíceJADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník
JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N
VíceSložení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ
Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,
VíceÚvod do moderní fyziky. lekce 5 energie z jádra
Úvod do moderní fyziky lekce 5 energie z jádra elektrony vs. nukleony elektron vázán v atomu coulombovskou silou energie k odtržení pouze několik ev nukleon vázán v jádře silnou jadernou silou energie
VíceÚvod do fyziky plazmatu
Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním
VíceRozměr a složení atomových jader
Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10
VíceSystémy pro jadernou energetiku
Systémy pro jadernou energetiku Systems for Nuclear Power Industry Jaderná energie představuje nejefektivnější a nejsilnější známý energetický zdroj. Přitom jde o nízkoemisní zdroj, který umožňuje účinně
VíceJADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.
JADERNÁ ENERGIE Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.. Jaderná syntéza (termonukleární reakce): Je děj, při němž složením dvou lehkých jader
VíceSpoutání slunce. kolem nás výzvy a otázky
Spoutání slunce věda 50 kolem nás výzvy a otázky Tokamak COMPASS Tokamak COMPASS (z anglického Compact Assembly) je hlavním experimentálním zařízením Ústavu fyziky Plazmatu AV ČR. Původně byl zkonstruován
VíceRelativistická dynamika
Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte
VíceJaderná fúze budoucnost energetiky
Jaderná fúze budoucnost energetiky Slavomír Entler ABSTRAKT: Jaderná fúze může být vnímána jako svatý grál, jehož nalezení spasí lidstvo před energetickým hladem. V podstatě je to pravda, protože jaderná
Více1) 2) 3) 4) 5) 6) 7) 8) 9) 10) JET 11) ITER
Term ojaderná fúze V rámci projektu Fyzikou a chemií k technice vytvořil prezentaci za GKS Marek Kovář (kovar.ma@seznam.cz). Modifikace a šíření dokumentu podléhá licenci GNU (www.gnu.org). 1) Nový zdroj
Více4.4.9 Energie z jader
4.4.9 Energie z jader Předpoklady: 040408 Graf závislosti vazebné energie na počtu nukleonů v jádře (čím větší je vazebná energie, tím pevněji jsou nukleony chyceny v jádře, tím menší mají energii a tím
VíceAtomová a jaderná fyzika
Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův
VíceÚvod do fyziky plazmatu
Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:
VíceScénář text Scénář záběry Místo, kontakt, poznámka. Animace 1: pavouk, mravenec a včela.
Scénář text Scénář záběry Místo, kontakt, poznámka Na otázku, proč bychom měli studovat fyziku, již odpověděl Bacon, který byl velmi zajímavou postavou 17. století. Byl první, který se pokusil o logickou
VícePrincipy termojaderného reaktoru ITER
Principy termojaderného reaktoru ITER FYZIKA Jan Mlynář, FJFI ČVUT, Praha Abstract. ITER, a major international infrastructure dedicated to fusion research, will be built in France in order to validate
VíceJak se vyvíjejí hvězdy?
Jak se vyvíjejí hvězdy? tlak a teplota normální plyny degenerované plyny osud Slunce fáze červeného obra oblast horizontálního ramena oblast asymptotického ramena obrů planetární mlhovina bílý trpaslík
VíceChemické složení vesmíru
Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Chemické složení vesmíru Jak sledujeme chemické složení ve vesmíru? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně,
VíceSlunce zdroj energie pro Zemi
Slunce zdroj energie pro Zemi Josef Trna, Vladimír Štefl Zavřete oči a otočte tvář ke Slunci. Co na tváři cítíte? Cítíme zvýšení teploty pokožky. Dochází totiž k přenosu tepla tepelným zářením ze Slunce
VíceRadioaktivita,radioaktivní rozpad
Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních
VíceÚVOD DO JADERNÉ FYZIKY ATOMOVÉ JÁDRO
ÚVOD DO JADERNÉ FYZIKY EXPERIMENTÁLNÍ ZÁKLAD rozptyl (pružný i nepružný) různých částic na atomových jádrech (neutrony, protony, elektrony, pozitrony, fotony, α-částice, ) radioaktivní rozpady některých
VíceUniverzita Karlova v Praze Matematicko-fyzikální fakulta. Stanislav Valenta. Jaderná fúze a její využití v energetice
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Stanislav Valenta Jaderná fúze a její využití v energetice Ústav částicové a jaderné fyziky Vedoucí bakalářské práce: Mgr. Milan
VíceStředoškolská technika Termonukleární reaktory
Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Termonukleární reaktory Štěpán Klas Gymnázium Zikmunda Wintra Rakovník Náměstí Jana Žižky 186, 269 01 Rakovník 1
VíceVlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika
Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí
Víceeh_ Pane Wágner ( )
Pane Wágner ( wagner@ujf.cas.cz ) Prosím : Ještě by mě zajímalo, zda se při interakcích atomů s částicemi účastní obalové elektrony interakce?,-- tedy jak se elektrony z obalu "postaví" do systému interakční
VíceATOMOVÁ FYZIKA JADERNÁ FYZIKA
ATOMOVÁ FYZIKA JADERNÁ FYZIKA 12. JADERNÁ FYZIKA, STAVBA A VLASTNOSTI ATOMOVÉHO JÁDRA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. JADERNÁ FYZIKA zabývá strukturou a přeměnami atomového jádra.
VíceAplikace jaderné fyziky (několik příkladů)
Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané
VíceÚVOD DO JADERNÉ FYZIKY ATOMOVÉ JÁDRO
ÚVOD DO JADERNÉ FYZIKY EXPERIMENTÁLNÍ ZÁKLAD rozptyl (pružný i nepružný) různých částic na atomových jádrech (neutrony, protony, elektrony, pozitrony, fotony, α-částice, ) radioaktivní rozpady některých
VíceVY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen
VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník
Více4.4.6 Jádro atomu. Předpoklady: Pomůcky:
4.4.6 Jádro atomu Předpoklady: 040404 Pomůcky: Jádro je stotisíckrát menší než vlastní atom (víme z Rutherfordova experimentu), soustřeďuje téměř celou hmotnost atomu). Skládá se z: protonů: kladné částice,
VíceFYZIKA ATOMOVÉHO JÁDRA
FYZIKA ATOMOVÉHO JÁDRA Je to nejstarší obor fyziky Stručně jaderná nebo nukleární fyzika Zabývá se strukturou jader, jadernými ději a jejich využití v praxi JÁDRO ATOMU Tvoří centrální část atomu o poloměru
VíceChemie pro KS Anorganická a analytická část
Chemie pro KS Anorganická a analytická část Ing. Matyáš Orsák, Ph.D. ORSAK@AF.CZU.CZ Program přednášek. přednáška a) atom, jádro, obal, elektron, radioaktivita b) názvosloví anorg. sloučenin včetně koordinačních
Více8.1 Elektronový obal atomu
8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu
VíceBudoucnost energetiky: jaderná fúze
Strategie AV21 Špičkový výzkum ve veřejném zájmu Slavomír Entler, Ondřej Ficker, Josef Havlíček, Jan Horáček, Martin Hron, Jan Mlynář, Radomír Pánek, Milan Řípa, Jan StÖckel, Jozef Varju, Vladimír Weinzettl
VícePlazmové metody. Co je to plazma? Jak se uplatňuj. ují plazmové metody v technice?
Plazmové metody Co je to plazma? Jak se uplatňuj ují plazmové metody v technice? Co je to plazma? Plazma je látkové skupenství hmoty, ČTVRTÉ skupenství a vykazuje určité specifické vlastnosti. (správně
VícePane Wágner ... p 17 n 20 e e = p 18 n 19 e e - ( n 1 ). e = (p 1 e - ). e -..??? p 1 n 2 e -1 = p 2 n 1 (jádro). e -. e -.???
Pane Wágner Prosím : Ještě by mě zajímalo, zda se při interakcích atomů s částicemi účastní obalové elektrony interakce?,-- tedy jak se elektrony z obalu "postaví" do systému interakční rovnováhy? Má-li
VíceOtázka : před vstupem do reakce se to udělá jak, aby se atom s desítkami elektronů v obalu jich zbavil, tedy abychom my mu elektrony vzali.?
Vážený Josefe, níže vpisuji odpovědi. Vážený příteli Jaroslave Nyní bych rád diskutoval jaderné reakce. V praxi lidí ( že by i v přírodě? ) se při takovém pokusu musí vzít atom nějakého prvku. Pak se ten
VícePerspektivní využití termojaderné syntézy pro zásobování elektrickou energií
Česke vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektroenergetiky Program: Elektrotechnika, energetika a management Obor: Aplikovaná elektrotechnika Perspektivní využití termojaderné
VícePrvek, nuklid, izotop, izobar, izoton
Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů
VíceO původu prvků ve vesmíru
O původu prvků ve vesmíru prof. Mgr. Jiří Krtička, Ph.D. Ústav teoretické fyziky a astrofyziky Masarykova univerzita, Brno Odkud pochází látka kolem nás? Odkud pochází látka kolem nás? Z čeho je svět kolem
VíceInovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
VíceFyzika IV. Atomová a jaderná fyzika. kontakt: Petr Alexa, Institut fyziky A 952, mobil:
Fyzika IV Atomová a jaderná fyzika kontakt: Petr Alexa, Institut fyziky A 952, petr.alexa@vsb.cz mobil: 607 683 702 Zápočet: 40 bodů, zkouška: písemná 20 bodů, ústní 40 bodů Literatura: HALLIDAY, D., RESNICK,
VíceŽivotní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka
VíceGymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom
Více2. SLUNCE. Čas ke studiu: 2 hodiny. Cíl Po prostudování tohoto odstavce budete umět. Výklad
2. SLUNCE Čas ke studiu: 2 hodiny Cíl Po prostudování tohoto odstavce budete umět specifikovat základní informace o Slunci, jeho stavbu vznik a vývoj popsat funkci systému jaderné fůze a porovnat jej s
VíceSLUNEČNÍ ZÁŘENÍ JAKO ZDROJ ENERGIE
Libor Lenţa Hvězdárna Valašské Meziříčí, p. o. Regionální energetické centrum, o. p. s. Valašské Meziříčí Workshop Slnko v našich sluţbách 5. - 7. 4. 2013 Oščadnica SLUNEČNÍ ZÁŘENÍ JAKO ZDROJ ENERGIE POZNÁMKY
VíceJaderná bezpečnost fúzních elektráren a jejich vliv na životní prostředí
262 Jaderná bezpečnost fúzních elektráren a jejich vliv na životní prostředí Slavomír ENTLER (entler@ipp.cas.cz), Ústav fyziky plazmatu Akademie věd ČR, Praha Václav DOSTÁL, Strojní fakulta ČVUT, Praha
VíceZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE BAKALÁŘSKÁ PRÁCE Jaderná fúze bezpečnost a environmentální dopad Lukáš Richter 2013 Zadní strana zadání je uvedena
Vícedvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012
Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)
Více2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění
Na www.studijni-svet.cz zaslal(a): Kikusska94 2. ATOM HISTORIE NÁZORŮ NA STAVBU ATOMU - Leukippos (490 420 př. n. l.) - Demokritos (460 340 př. n. l.) - látka je tvořená atomy, které se dále nedělí (atomos
VíceZáklady elektrotechniky - úvod
Elektrotechnika se zabývá výrobou, rozvodem a spotřebou elektrické energie včetně zařízení k těmto účelům používaným, dále sdělovacími a informačními technologiemi. Elektrotechnika je úzce spjata s matematikou
VíceInovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Struktura hmoty - atomu Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se
VícePokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie František Žáček; Jan Stöckel Současný stav a perspektivy řízeného termojaderného slučování v tokamacích Pokroky matematiky, fyziky a astronomie, Vol. 38 (1993),
VíceJaderná fyzika. Zápisy do sešitu
Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu
VíceAtom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 16.3.2009,vyhotovila Mgr. Alena Jirčáková Atom atom (z řeckého átomos nedělitelný)
VíceZákladní experiment fyziky plazmatu
Základní experiment fyziky plazmatu D. Vašíček 1, R. Skoupý 2, J. Šupík 3, M. Kubič 4 1 Gymnázium Velké Meziříčí, david.vasicek@centrum.cz 2 Gymnázium Ostrava-Hrabůvka příspěvková organizace, jansupik@gmail.com
VíceAtomové jádro, elektronový obal
Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným
VíceŘÍZENÁ TERMOJADERNÁ SYNTÉZA
ŘÍZENÁ TERMOJADERNÁ SYNTÉZA pro každého SKUPINA ČEZ ŘÍZENÁ TERMOJADERNÁ SYNTÉZA pro každého Milan Řípa Vladimír Weinzettl Jan Mlynář František Žáček Ústav fyziky plazmatu Akademie věd České republiky
VíceVY_32_INOVACE_FY.17 JADERNÁ ENERGIE
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje
Více2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín
2 Primární zdroje energie Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky 1. Zdroje energie rozdělení 2. Fosilní paliva 3. Solární
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ BAKALÁŘSKÁ PRÁCE Studium počáteční fáze výboje v tokamacích Autor: Jakub Veverka Vedoucí: RNDr. Jan Stöckel, CSc. Praha 2014
VíceZa hranice současné fyziky
Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie
VíceZákladní kurz jaderné fúze. Vzdělávací program Den s jádrem 2014
Základní kurz jaderné fúze Vzdělávací program Den s jádrem 2014 Vzdělávací program Den s jádrem 2014 OBSAH ÚVOD... 7 1 HISTORIE... 8 2 PLAZMA... 10 2.1 DRUHY PLAZMATU... 11 2.2 PROCESY V PLAZMATU... 11
VíceMožnosti metod odstraňování tritia pro pevné odpady ve spojitosti s fúzí
Možnosti metod odstraňování tritia pro pevné odpady ve spojitosti s fúzí Ing. Bc. Lucie Karásková Nenadálová, Ph.D., Ing. Jaroslav Stoklasa, Ph.D., Centrum výzkumu Řež, s. r. o.; e-mail: Lucie.Nenadalova@cvrez.cz;
VíceStudená fúze. Chyby a chyby ve fyzice
Studená fúze. Chyby a chyby ve fyzice Jaroslav Smejkal ČVUT v Praze Ústav technické a experimentální fyziky ÚTEF ČVUT Jaroslav Smejkal Termojaderná fúze Fúze je proces, který živí Slunce a další hvězdy.
VícePetr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky
PLAZMA ČTVRTÉ SKUPENSTVÍ HMOTY Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky Abstrakt: Příspěvek pojednává o vlastnostech laboratorního i vesmírného plazmatu,
VíceUžití mikrovlnné techniky v termojaderné fúzi. A. Křivská 1,2. Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika
Užití mikrovlnné techniky v termojaderné fúzi A. Křivská 1,2 1 Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika 2 České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra telekomunikační
VíceOptimalizace extrakce iontového svazku fúzního neutronového zdroje
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Katedra fyziky BAKALÁŘSKÁ PRÁCE Optimalizace extrakce iontového svazku fúzního neutronového zdroje Karel Boháček 2011 Vedoucí
VíceŘÍZENÁ TERMOJADERNÁ FÚZE PRO KAŽDÉHO MILAN ŘÍPA JAN MLYNÁŘ VLADIMÍR WEINZETTL FRANTIŠEK ŽÁČEK
ŘÍZENÁ TERMOJADERNÁ FÚZE PRO KAŽDÉHO MILAN ŘÍPA JAN MLYNÁŘ VLADIMÍR WEINZETTL FRANTIŠEK ŽÁČEK PUBLIKACE BYLA VYDÁNA PŘI PŘÍLEŽITOSTI 50. VÝROČÍ ZALOŽENÍ ÚSTAVU FYZIKY PLAZMATU AKADEMIE VĚD ČESKÉ REPUBLIKY,
VíceElektroenergetika 1. Jaderné elektrárny
Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost
VíceČeské vysoké učení technické v Praze. Ústav technické a experimentální fyziky. Život hvězd. Karel Smolek
České vysoké učení technické v Praze Ústav technické a experimentální fyziky Život hvězd Karel Smolek Slunce Vzniklo před 4.6 miliardami let Bude svítit ještě 7 miliard let Leží asi 28 000 sv.l. od středu
VíceENERGIE a její přeměny
Ing. Radim Janalík, CSc. VŠB TU Ostrava katedra energetiky Využití energetických zdrojů ENERGIE a její přeměny ENERGIE : co to vlastně je? Fyzikové ze 17.století definovali energii jako schopnost konat
VíceSystémy pro jadernou energetiku
Státní energetická koncepce České republiky stanovuje jako jeden z hlavních cílů výzkumu a vývoje v oblasti energetiky zvýšení zapojení tuzemských výzkumných kapacit do mezinárodních aktivit a projektů,
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo
JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost
VíceZÁŘENÍ V ASTROFYZICE
ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční
VíceB. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji,
HVĚZDY 1. Většina hvězd se při pozorování v průběhu noci pohybuje od A. Západu k východu, B. Východu k západu, C. Severu k jihu, D. Jihu k severu. 2. Ve většině hvězd se energie uvolňuje A. Prudkou rotací
VíceCesta do nitra Slunce
Cesta do nitra Slunce Jeden den s fyzikou MFF UK, 7. 2. 2013 Michal Švanda Astronomický ústav MFF UK Chytří lidé řekli Už na první pohled se zdá, že vnitřek Slunce a hvězd je méně dostupný vědeckému zkoumání
VíceSBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce
VíceFyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony
VíceJADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý
Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se
VícePrvek, nuklid, izotop, izobar, izoton
Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů
VíceENERGIE PRO 21. STOlETI
Doc Ing Bedrich Hermanský, CSc, doc Ing Ivan Štoll, CSc ENERGIE PRO 21 STOlETI, il \ ~ ~ '" :'~ PRAHA 1992,V \" "ii Vydavatelství ČVUT Praha 6 ZikoVd4 I I OBSAH str Úvod 3 Definice a rozmer použitých symbolu
VíceChemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní
VíceŘÍZENÁ TERMOJADERNÁ FÚZE PRO KAŽDÉHO 4U
MILAN ŘÍPA EDITOR ŘÍZENÁ TERMOJADERNÁ FÚZE PRO KAŽDÉHO 4U MATERIÁLY PRO NOVÉ TISÍCILETÍ REGISTRAČNÍ ČÍSLO: CZ.1.07/2.3.00/35.009 ŘÍZENÁ TERMOJADERNÁ FÚZE PRO KAŽDÉHO 4U MILAN ŘÍPA JAN MLYNÁŘ VLADIMÍR WEINZETTL
VíceFotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.
FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem
VíceR10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika
Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární
VícePoloautomatizovaná VA charakteristika doutnavého výboje na tokamaku GOLEM
Poloautomatizovaná VA charakteristika doutnavého výboje na tokamaku GOLEM O. Tinka, Š. Malec, M. Bárta Fakulta jaderná a fyzikálně inženýrská, Břehová 7, 115 19 Praha 1 malecste@fjfi.cvut.cz Abstrakt Uvažovali
Více