Architektura Intel Nehalem

Rozměr: px
Začít zobrazení ze stránky:

Download "Architektura Intel Nehalem"

Transkript

1 Intel Nehalem Úvod Intel již brzy uvede architekturu nové generace, Intel Nehalem. O nové architektuře Intelu jsem si již povídali v minulém článku: Shanghai vs. Nehalem aneb co chystá AMD a Intel? Nehalem přináší řadu zásadních změn na úrovni architektury procesoru i platforem, a protože nás procesorovou nabídkou Intelu bude provázet minimálně příští dva roky, podíváme se dnes na Nehalem podrobněji. Intel plánuje uvedení nové architektury každé 2 roky s pravidelnou obměnou výrobní technologie (tento proces zavádění nových technologií a architektur Intel označuje jako "Tick-Tock" model). Z Nehalemu bude vycházet i 32 nm "Tick" Westmere (a řadu vylepšení zřejmě převezme i budoucí architektura Sandy Bridge, dříve přezdívaná Gesher). Intel Nehalem poměrně zásadním způsobem mění přístup, který byl použitý při návrhu čipu a platforem, jež přijdou na trh s uvedením nových procesorů. Architektura Nehalem byla navrhována s ohledem na škálovatelnost procesoru i platformy, vysoký výkon a energetickou účinnost. Směr vývoje je v posledních letech čím dál zřejmější - zaměření pouze na výkon již nehraje prim a řada firem se více a více zaměřuje na energeticky úsporné procesory (a s tímto záměrem jsou již vyvíjeny celé platformy). Jak ostatně potvrdil i Pat Gelsinger a řada architektů Nehalemu, hlavní silou Nehalemu bude kromě výkonu v multithreaded prostředí právě efektivita procesoru s ohledem na výkon/spotřebu a technologie pro šetření elektrické energie. Celkově má Nehalem představovat vyváženou platformu, procesor s výborným výkonem a přiměřenou spotřebou. Změny na úrovni platformy někteří představitelé Intelu prezentují jako nejzásadnější změny architektury procesorů Intel, alespoň za posledních 10 let. Co tedy Nehalem přináší? Stejné jádro pro všechny segmenty trhu, vysoký výkon a škálovatelnost při zachování spotřeby minulé generace procesorů. Řada dalších vylepšení se týká zejména specifických částí trhu, ale těžit z ní mohou samozřejmě všechny segmenty.

2 Architektura Intel Nehalem Nová architektura Intel Nehalem vychází z architektury Intel Core, ale celý přístup byl již od návrhu čipu zaměřen na efektivně škálovatelnou architekturu a škálovatelný návrh čipu. Cílem Nehalemu bylo možné nasazení procesorů ve všech segmentech trhu, a proto bylo nutné odstranit dosavadní bariéry možného růstu výkonu, umožnit škálování ve vícesocketových systémech a zároveň udržet dosavadní spotřebu (případně ji dokonce snížit pro možné nasazení v mobilních počítačích). Na první pohled takřka neřešitelný problém, který se ale podařilo vyřešit pomocí řady inovací. Intel Nehalem je od základu tvořen ze stavebních bloků, které je možné kombinovat podle segmentu trhu, předpokládaného nasazení, požadovaného výkonu a tak dále. Procesor lze proto poměrně jednoduše rozšířit o další jádro, přidat L3 cache, více QPI (pro efektivnější komunikaci v případě vícesocketových systémů) až po integraci grafického jádra IGP (Integrated Graphics Processor). Řada vylepšení je také na úrovni architektury samotného jádra. Implementována byla řada nových technologií pro šetření energií a pro multithreaded prostředí, nová je hierarchie cache o 3 úrovních, integrován byl řadič paměti a řádně naddimenzovaná byla také QuickPath sběrnice. Postupně se na všechna vylepšení podíváme podrobněji. Změny na úrovni platformy Zřejmě největší slabinou současných procesorů s architekturou Intel Core jsou vícesocketové systémy. Standardní architektury s FSB (Front Side Bus) sběrnicí jsou nejvíce limitované právě s rostoucím počtem jader a socketů. Požadavky na přísun dat rostou s každým přidaným procesorem, a proto efektivita architektur s FSB a poměrně limitovanou propustností paměťového subsystému s rostoucím počtem socketů a jader klesá. Od určitého bodu se nejedná o problém výpočetního výkonu, který fakticky roste s každým přidaným jádrem, ale problém jak zajistit efektivní škálování (komunikaci mezi jádry a jak každému jádru zajistit dostatečný přísun dat). V případě serverových řešení, ve vícesocketových systémech, je tento nedostatek řešen pomocí více nezávislých sběrnic a velkou cache, ale to je z dlouhodobého hlediska samozřejmě velice neefektivní.

3 Zde již dostává slovo nová architektura, Intel Nehalem a QuickPath. Technologie QuickPath, respektive QPI, byla dříve oficiálně nazývaná CSI (Common System Interface) a nahrazuje datovou sběrnici FSB (Front Side Bus). K procesoru je také integrován řadič paměti. Propustnost a škálovatelnost takového systému je samozřejmě neporovnatelně lepší, než pouhé přidání cache nebo několika FSB sběrnic. Typickým řešením tak bude například Nehalem-EP v dvousocketové konfiguraci. Procesory, které používají FSB, používají tuto sběrnici ke komunikaci se severním můstkem a v případě MCM (Multi-Chip Module) může sběrnice spojovat i několik jader. QPI naproti tomu dovoluje vysokorychlostní "point-to-point" komunikaci pro procesory a další části systému, takže ve vícesocketových systémech nebude problém jednotlivá jádra propojit přímo přes samostatnou QPI linku a to samé udělat s čipsetem (stejného řešení se již příští rok dočkáme i v MP systémech, kde budou mít procesory až 4 QPI linky). Výkon QuickPath sběrnice je 4,8 až 6,4 GT/s na linku (možná konfigurace je 5, 10 a 20 bit), s celkovou propustností až 25,6 GB/s. V multiprocesorových systémech tak QPI poskytuje podstatně efektivnější komunikaci procesorů a čipsetu. Ačkoliv byla FSB dlouho dostačujícím řešením, zejména ve víceprocesorových systémech a na serverovém trhu s více sockety, Intel toto řešení již delší dobu potřeboval. Ruku v ruce s novou platformou a QPI jde také integrovaný řadič paměti, který má zajistit systému efektivní a rychlý přísun dat. Integrovaný řadič paměti přináší výrazné snížení latencí a zvýšení efektivity komunikace s operační pamětí. Implementován zde byl rovnou trojkanálový řadič pamětí DDR3, ačkoliv architektura Nehalemu umožnuje použití i dvojkanálového řadiče paměti (serverové řešení pro 4 socketové systémy přinese dokonce čtyřkanálový řadič paměti).

4 IMC v Nehalemu podporuje až 3 kanály a kromě standardních pamětí také RDIMM a UDIMM (ve srovnání s 1600MHz Harpertownem v dvousocketové konfiguraci poskytuje Nehalem efektivně 4x vyšší propustnost). V případě víceprocesorových systémů je výhodou škálování paměťového subsystému s každým přidaným procesorem, kdy každý přidaný procesor s vlastní pamětí efektivně navyšuje propustnost a výkon systému. NUMA aneb Non-Uniform Memory Access a k čemu má vlastně sloužit? NUMA architektura byla navržena k překonání limitů škálovatelnosti SMP (kde je veškerá paměť dostupná na jednom místě, přes jedinou sběrnici). Jak již bylo uvedeno, tento "problém" se dotýká zejména vícejádrových a vícesocketových systémů, kde se až desítky jader musí dělit o stejnou sběrnici. Výhody v případě NUMA jsou zřejmé, protože NUMA snižuje počet procesorů používajících stejnou sběrnici a komunikace na úrovni procesor-paměť, i v případě paměti dalšího procesoru, je zde zprostředkována přes QPI.

5 V případě Nehalemu má každý procesor vlastní paměť obsluhovanou integrovaným řadičem paměti a s NUMA je možné efektivně přistupovat do paměti dalších procesorů (latence jsou samozřejmě vyšší než při přístupu do vlastní paměti), ale dále roste celková propustnost systému. Díky QPI, přes kterou procesory komunikují a přenášejí mezi sebou data (vyžádané z cache dalšího procesoru nebo nelokální paměti) a díky integrovanému řadiči paměti, se efektivně snižují latence pro přístup do lokální paměti až o 40 procent. V případě přístupu do paměti dalšího procesoru, v dvousocketové konfiguraci, jsou latence stále nižší než u Harpertownu. Změny na úrovni architektury Nehalemu nevyhnutelně přináší několik nových platforem (pro desktopy, mobilní počítače i pro servery). Stejně jako u AMD před lety (při přechodu na architekturu K8 a uvedení HyperTransportu a integrovaného řadiče paměti), bylo pro tyto platfromy nutné přinést nové sockety. Oproti současné platformě a socketu LGA771 (a případně LGA775 u desktopu) výrazně narostl počet vývodů procesoru (zejména díky integrovanému řadiči paměti). Nejvyšší platforma pro desktopy bude používat socket LGA1366 (pro nejdříve uvedené high-end procesory s jádrem Bloomfield), socket LGA1160 pro střední a nižší třídu procesorů. A příští rok přijde i čistě serverové řešení se socketem LGA1567. Pohled na architekturu Intel Nehalem Architektura Intel Nehalem staví z velké části na architektuře Intel Core, ale obsahuje řadu vylepšení na úrovni jádra i platformy. Připomeňme si základní rysy Penrynu: 4 instrukční dekodéry, vykonávání instrukcí mimo pořadí, 128bit SSE, SSE4.1 instrukce, techniky zdokonalující práci s pamětí a velice rychlou cache. To se s příchodem Nehalemu mění a současná hierarchie cache byla značně upravena, ačkoliv stále vychází se Smart Cache Penrynu. Bloomfield se skládá z několika bloků: integrovaný řadič paměti IMC, 4x jádro, QPI a v dolní části jsou také velké bloky L3 cache (ačkoliv výrazně menší než u Penrynu). QPI i řadič paměti jsou umístěny mimo jádro, a lze je tak snadno dále rozšířit. Pojďme se teď blíže podívat na změny v jádře. Začneme Front-endem, který slouží k získávání a dekódování instrukcí. Nehalem stejně jako architektura Core zpracovává microops, což můžeme přirovnat k nejzákladnějším povelům, na které je každá x86 instrukce rozložena. Nehalem má stejně jako Core architektura 4 instrukční dekodéry (3 jednoduché a jeden komplexní).

6 Fúzování Makroinstrukcí bylo uvedeno již s rodinou procesorů Intel Core 2 a stejně tak Loop Stream Detector. Nehalem podědil fúzování makroinstrukcí po Core 2 a dále jej rozšiřuje. Při zfúzování makroinstrukcí dochází k dekódování na microop, jako by se jednalo o jedinou instrukci - to přináší vyšší výkon a vyšší energetickou účinnost. Mimo jiné již také přibylo fúzování i v 64bit režimu (Core 2 umí pouze 32bit). K dalším vylepšením Nehalemu patří detektor cyklů, LSD (Loop Stream Detektor). LSD umožňuje odhalit cyklus v probíhajícím kódu a zabránit tak opakovanému dekódování instrukcí a predikci větvení. LSD tak zvyšuje výkon v průběhu cyklu a na jeho základě také případně vypíná nepotřebnou logiku (podobný systém již také obsahují procesory Intel Core 2). Nehalem se také zaměřuje na lepší predikci větvení a předvídání skoku. Obecně vysoká přesnost předvídání přináší vyšší výkon a nižší spotřebu (omezí se množství chybně vykonaných microops). Dalším vylepšením je L2 Branch Predictor. Jak již vyplývá ze změn ve platformách, Nehalem bude mít nejlepší postavení na serverovém trhu (zde má mít L2 Branch Predictor největší dopad na výkon). Současné architektury nemají dostatečnou kapacitu zásobníku (typicky databázové aplikace). Pro dodatečnou predikci je použito

7 vícestupňové schéma a rozšířen TLB buffer u L1 datové cache na 64 záznamů, TLB L1 instrukční cache na 128 záznamů a L2 TLB buffer na 512 záznamů. Execution Engine jako výkonná část jádra staví na základu procesorů Intel Core 2 procesorů a přidává další vylepšení. Problém dnešních architektur je, že i přes "chytrý" návrh poměrně často nedělají nic. Cílem Nehalemu je udržet výpočetní jednotky v činnosti, a proto jsou zde rozšířeny Load a Store Buffery a Reservation Station (ta dodává informace pro výpočetní část, ukládá a čte data a tak dále). Navýšen je dále paralelismus a zvětšen počet microops, které procesor zvládne. Dothan zvládl 64, Merom 96 a u Nehalemu došlo k dalšímu navýšení, na 128 microops. Změny navýšení "bufferů" pro instrukce samozřejmě souvisí s tím, že Nehalem opět přináší Multi-Threading, který značně zvyšuje požadavky na přísun dat a více vytěžuje výpočetní jednotky. Dále se podíváme na změny v hierarchii cache, která ačkoliv vychází se Smart Cache Penrynu, v podání Nehalemu dostála řady změn. Zachována zůstala velikost 32 kb L1 instrukční a 32 kb L2 datové cache. Rychlost L1 cache byla oproti jádru Penryn snížena z 3T na 4T. Poměrně zásadní změna se ovšem týká L2, kde byla kapacita snížena na pouhých 256 kb na jádro (takže je 24x menší, pokud nepočítáme Multi-Threading jako "jádro", než má původní L2 cache u Penrynu - toto výrazné snížení kapacity bude mít zřejmě v některých případech značně nepříznivý dopad na výkon). U L2 cache byla alespoň zvýšena její rychlost z 14T u Penrynu, na 10T v případě Nehalemu. Nově je v Nehalemu velká L3 cache sdílená pro všechna jádra. Velikost L3 cache je závislá na počtu jader - pro čtyřjádrovou variantu Nehalemu má kapacitu 8 MB. V budoucnosti, a v závislosti na počtu jader, může dojít k navýšení její kapacity. L3 cache je v Nehalemu inkluzivní, takže data v L1/L2 jsou obsažena také v cache 3. úrovně. L3 cache je poměrně pomalá s dobou přístupu okolo 40T. Cache a její úspěšnost, cache-hit (případně cache-miss) samozřejmě výrazně ovlivňuje výkon. Pokud data nejsou nalezena v L2 ani L3 cache, je třeba prohledat lokální paměť, kde je ovšem řádově větší přístupová doba. Výkon v tomto případě výrazně klesá. Intel preferuje ve svém návrhu inkluzivní cache, takže obsah L1 je obsažen v L2 cache (a L2 je obsažen v L3). Pro srovnání AMD preferuje přístup exkluzivní cache, takže data nejsou v L1 a L2 uložena duplicitně (L3 není ani čistě exkluzivní ani inkluzivní). Následuje příklad práce CPU s exkluzivní a inkluzivní cache. Představme si modelovou situaci, kdy potřebná data požadovaná v jádru 0 nejsou v L1 ani L2 cache, a požadavek na L3 také vygeneruje cache miss. Zatímco v případě exkluzivní cache se bude zjišťovat stav v cache u jader 1 až 3, v případě inkluzivní cache lze rovnou generovat požadavek do RAM. V případě, že nastane cache hit, není již třeba ověřit jádra 1 až 3. U Nehalemu mohou být data v cache u některého z dalších jader, což je řešeno pomocí bitového indikátoru. Pokud L1 nebo L2 nějakého jádra může obsahovat příslušná data, bit je nastaven na indikátoru na "1". Každý bit zde indikuje jednotlivé jádro procesoru a pokud zde není žádný bit nastaven, není třeba jádro ověřovat. V případě nastavení více než jednoho bitu (data při

8 tomto stavu není nikde možné měnit) lze data přečíst přímo z L3, což omezuje zbytečné prohledávání cache dalších jader. Každá hierarchie cache má samozřejmě svoje výhody, a ačkoliv AMD preferuje exkluzivní cache a Intel naopak inkluzivní, je zřejmé, že velkou roli zde hraje architektura samotného jádra, kapacita a rychlost jednotlivých úrovní cache a také celkový návrh procesoru - kolik má cache zabírat plochy a tak dále. Další z novinek Nehalemu je technologie Simultaneous Multi-Threading (SMT). Intel Nehalem a další technologie Další technologií, která výrazně zahýbe s výkonem u multithreaded aplikací, je SMT (Simultaneous Multi-Threading). Již Pentia 4 používají jednodušší variantu Hyper- Threadingu, a efektivně tak využívají nevyužité prostředky. U Hyper-Threadingu se za poměrně nevýrazného zvětšení jádra o přibližně 5 procent podařilo v některých případech navýšit výkon až o procent. V duchu zvyšování efektivity procesoru byl tak návrat této technologie poměrně logickým krokem. SMT opět slibuje zvýšení efektivity procesoru a možného nárůstu výkonu o procent (podle předběžných testů tato technologie umí skutečně pěkně zahýbat s výkonem). Každé jádro Nehalemu je schopné zpracovávat až dvě vlákna (čtyřjádro tedy zvládne osm threadů). To má přinést větší energetickou účinnost a výkon, zejména v případě multimédií, u databází nebo při silném multitaskingu (běhu více náročnějších aplikací současně). Efektivnější virtualizace Jak již úvodu zaznělo, velká část vylepšení v Nehalemu zlepšuje výkon a efektivitu zejména pro serverové prostředí a pracovní stanice (a umožňuje efektivní škálování výkonu). Stejně tak je tomu v případě virtualizace. Není žádným tajemstvím, že na jednom hardware je možné provozovat řadu virtuálních serverů, což je efektivní z hlediska nákladů na provoz, spotřebu hardware a klimatizace, a tak dále. Nehalem přináší také nové instrukce, označované SSE4.2, které dále zvyšují výkon (pro zvýšení výkonu pomocí nových instrukcí je ale samozřejmě třeba podpora na úrovni aplikací). Řízení spotřeby Jak je již uvedeno v úvodu, jeden z hlavních pilířů návrhu architektury Intel Nehalem je efektivní využití elektrické energie a "křemíku". K úspoře elektrické energie se používá řada technik, jako například technologie ESS (Enhanced SpeedStep) nebo CnQ (jako Cool'n'Quiet u AMD), kde dochází ke snižování taktu a použitého napájecího napětí. Na úrovni jádra je ale již dávno používána řada dalších technik, jako je Clock Gating (vypínání neaktivních oblastí procesoru). Novinkou u Nehalemu je Power Gating. Myšlenka je zde taková, že část procesoru, která aktuálně nic nedělá, by také neměla spotřebovávat elektrickou energii. Power Gate umožnuje

9 efektivně ze systému zcela odpojit neaktivní jádro, a dále tak snížit spotřebu. Intel tento režim označuje C6, a ten je zcela transparentní pro platformu a operační systém. Pro efektivnější správu spotřeby a pro snadné využití technologie "Turbo Mode" byl do Nehalemu přidán mikrokontrolér, Intelem označovaný PCU (Power Control Unit). Nehalem obsahuje řadu senzorů pro zjištění teploty jádra, napětí a proudu a také spotřeby - to poskytuje data pro efektivnější řízení spotřeby, případně použití zmiňovaného turbo módu. Protože by ale bylo složité PCU dělat jen na úrovni hardware v procesoru, vyřešil to speciální mikrokontrolér. Nehalem je díky PCU, což můžeme volně přeložit jako "řídící jednotka spotřeby", schopen velice sofistikovaně řídit dle potřeby napájecí napětí a frekvenci jednotlivých jader. To má poskytovat optimální výkon a udržet spotřebu při zemi. PCU je řízen pomocí firmware (takže lze jeho chování dále ovlivnit) a obsahuje přibližně milión tranzistorů (což z něj dělá složitější čip, než byl původně Intel 486). Další změnou je také lepší odstupňování snižování napětí a frekvence procesoru pro snížení teploty jádra. Zatímco procesory s architekturou Core sníží napětí a frekvenci na nejnižší možnou úroveň, Bloomfield je schopen tuto změnu jemně krokovat, a nedochází proto k tak výrazným propadům výkonu. Intel Nehalem a "Turbo Mode" Kromě efektivnějšího řízení spotřeby a možného vypínání jader, se k tématu váže i další technologie, kterou Nehalem bude disponovat - tak zvaný "Turbo mode". Pamětníci jistě vzpomenou na časy "turbo" tlačítka, které před dávnými časy dělalo velice pomalý počítač jen pomalým. Dnes je tato technologie v režii procesoru a oficiálně se nazývá Intel Dynamic Speed Technology - bude umožnovat dle potřeby přetaktovat procesor, respektive zatížené jádro, nad nominální frekvenci. Základní frekvence, ze které je odvozen výsledný takt procesoru (a který u Core architektury představovala FSB), je u Nehalemu 133 MHz. Z této frekvence vychází možné frekvence Core i7 v souvislosti s turbo mode při zatížení, v rámci limitů TDP, a proto může jádro zvýšit

10 svůj takt nad nominální frekvenci. Přetaktování je možné o 1-2 stupně, po 133 MHz krocích, to znamená o 133 až 266 MHz nad základní frekvenci. Podle úvodních taktů Nehalemu 2,66, 2,93 a 3,2 GHz se jedná pouze o drobné navýšení frekvence, a proto od turbo módu nelze čekat zázraky. Každopádně i v případě drobného navýšení frekvence v kombinaci s efektivním řízením spotřeby a možným vypnutím nevyužívaného jádra se jedná o krok kupředu a zlepšení "zadarmo". Kromě výše zmíněných technologií Nehalem používá 45nm výrobní technologii s High-k a technologií kovových hradel, stejně jako předešlá architektura Intel Core, respektive jádro Penryn. Novinkou je použítí 9. vrstvy měděných mezispojů pro co největší snížení odporu. Technologie Power Gate slouží pro efektivní oddělení a možné vypnutí jádra a snížení spotřeby. Jak dalece se tyto úpravy projeví v praxi, zatím můžeme pouze spekulovat. Ronan Singhal, vedoucí architekt Nehalemu, již také potvrdil osmijádrovou variantu tohoto procesoru. Nehalem s osmi jádry bude uveden v druhé polovině příštího roku pro serverový segment trhu a pracovní stanice. Kromě osmi jader přinese masivní L3 cache o velikosti až 16 / 24 MB, ale také podstatně nižší takty než Bloomfield. TDP se i přesto zřejmě vyšplhá na poměrně monstrózních 150 wattů. Příští rok se také dočkáme Nehalemu vyrobeného 32nm výrobní technologii s jádrem Westmere. Dle Tic-Toc strategie se bude jednat o architekturu Nehalem s řadou menších vylepšení, včetně zlepšení podpory a výkonu virtualizace. Stejně jako v případě jádra Penryn dojde ke snížení spotřeby a zmenšení čipu - jak již opakovaně zaznělo, jádro Nehalem má poměrně velké rozměry, takže "die-shrink" bude ideální krok pro dopilování architektury. Další generace procesorů Sandy Bridge přinese opět novou architekturu, ale to už je poměrně daleko a dostáváme se od zlomové architektury Intel Nehalem. Zdroj:

Architektura Intel Nehalem

Architektura Intel Nehalem VŠB-TUO FEI Architektura Intel Nehalem Pokročilé architektury PC Zdeněk Ryška (rys093) 5.11.2009 Procesor Intel Core i7 kódovým jménem nazývaný Nehalem je první nativní čtyřjádrový procesor firmy Intel.

Více

Volitelný počet jader

Volitelný počet jader Co přinese nového Co platí pro všechny Volitelný počet jader Charakteristika Nanometr nm10-9 mikrometr µm 10-6 Milimetr mm 10-3 FSB procesor s více jádry komunikuje prostřednictvím jednoho vlákna QPI

Více

Intel Microarchitecture Nehalem

Intel Microarchitecture Nehalem Intel Microarchitecture Nehalem Nehalem je kódové označení pro mikroarchiterkturu procesorů, kterou vyvinul Intel jako nástupce technologie Core. První procesor s architekturou Nehalem byl oficiálně představen

Více

Roman Výtisk, VYT027

Roman Výtisk, VYT027 Roman Výtisk, VYT027 Ohlédnutí za architekturou AMD K8 Představení architektury procesoru AMD K10 Přínos Struktura cache IMC, HyperTransport sběrnice Použitá literatura Ohlášení x86-64 architektury 5.

Více

Ro R dina procesor pr ů Int In e t l Nehalem Šmída Mojmír, SMI108 PAP PA 2009

Ro R dina procesor pr ů Int In e t l Nehalem Šmída Mojmír, SMI108 PAP PA 2009 Rodina procesorů Intel Nehalem Šmída Mojmír, SMI108 PAP 2009 Obsah: Úvod Nejpodstatnější prvky Nehalemu (i7 900) Nehalem ve střední třídě (i7 800, i5 700) Výkon Závěr Úvod Nhl Nehalem staví na úspěšné

Více

Rodina Intel Nehalem:

Rodina Intel Nehalem: Rodina Intel Nehalem: Vychází z procesoru Intel Core. Je vyráběn na 45nm technologii dnes se již přechází na technologii 32nm. Co tedy Nehalem přináší? Stejné jádro pro všechny segmenty trhu, vysoký výkon

Více

Referát (pokročilé architektury počítačů)

Referát (pokročilé architektury počítačů) Referát (pokročilé architektury počítačů) Představení architektury procesoru AMD K10 Roman Výtisk, VYT027 1 AMD K8 Nejprve bych zmínil, co této architektuře předcházelo a co tato architektura přinesla

Více

Vícejádrový procesor. Dvě nebo více nezávislých jader Pro plné využití. podporovat multihreading

Vícejádrový procesor. Dvě nebo více nezávislých jader Pro plné využití. podporovat multihreading Vývoj Jan Smuda, Petr Zajíc Procesor ALU (aritmeticko logická jednotka) Registry Řadič Jednotky pro práci s plovoucí čárkou Cache Vývoj procesorů Predikce skoku Plánování instrukcí Naráží na fyzická omezení

Více

Architektura Intel Atom

Architektura Intel Atom Architektura Intel Atom Štěpán Sojka 5. prosince 2008 1 Úvod Hlavní rysem Atomu je podpora platformy x86, která umožňuje spouštět a běžně používat řadu let vyvíjené aplikace, na které jsou uživatelé zvyklí

Více

Procesor Intel Pentium (1) Procesor Intel Pentium (3) Procesor Intel Pentium Pro (1) Procesor Intel Pentium (2)

Procesor Intel Pentium (1) Procesor Intel Pentium (3) Procesor Intel Pentium Pro (1) Procesor Intel Pentium (2) Procesor Intel Pentium (1) 32-bitová vnitřní architektura s 64-bitovou datovou sběrnicí Superskalární procesor: obsahuje více než jednu (dvě) frontu pro zřetězené zpracování instrukcí (značeny u, v) poskytuje

Více

Vlastnosti mikroprocesorů Josef Horálek

Vlastnosti mikroprocesorů Josef Horálek Vlastnosti mikroprocesorů Josef Horálek Vlastnosti mikroprocesorů = Vlastnosti jsou dány architekturou mikroprocesoru, kde se používají, jak již bylo řečeno, různé technologie. = Vlastnosti kterými se

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky Pokročilé architektury počítačů Architektura procesorů AMD Phenom 2009-2010 Lukáš Kamp, KAM077 2 1 Úvod AMD Phenom

Více

architektura mostů severní / jižní most (angl. north / south bridge) 1. Čipové sady s architekturou severního / jižního mostu

architektura mostů severní / jižní most (angl. north / south bridge) 1. Čipové sady s architekturou severního / jižního mostu Čipová sada Čipová sada (chipset) je hlavní logický integrovaný obvod základní desky. Jeho úkolem je řídit komunikaci mezi procesorem a ostatními zařízeními a obvody. V obvodech čipové sady jsou integrovány

Více

2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu

2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí:

Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí: Intel 80486 (1) Vyroben v roce 1989 Prodáván pod oficiálním názvem 80486DX Plně 32bitový procesor Na svém čipu má integrován: - zmodernizovaný procesor 80386 - numerický koprocesor 80387 - L1 (interní)

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy

Více

PROCESOR. Typy procesorů

PROCESOR. Typy procesorů PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních částí počítače včetně

Více

Procesory. Autor: Kulhánek Zdeněk

Procesory. Autor: Kulhánek Zdeněk Procesory Autor: Kulhánek Zdeněk Škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo náměstí 1, příspěvková organizace Kód: VY_32_INOVACE_ICT_825 1.11.2012 1 (CPU Central

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů Pokročilé architektury počítačů referát Intel Core 2 Quad Martin Samek SAM094 Abstrakt Text se bude zabývat procesorem Core 2 Quad firmy Intel. Text bude rozdělen do dvou hlavních částí, kde první část

Více

Informační a komunikační technologie

Informační a komunikační technologie Informační a komunikační technologie 5. www.isspolygr.cz Vytvořil: Ing. David Adamovský Strana: 1 Škola Integrovaná střední škola polygrafická Ročník Název projektu 1. ročník SOŠ Interaktivní metody zdokonalující

Více

Procesor. Hardware - komponenty počítačů Procesory

Procesor. Hardware - komponenty počítačů Procesory Procesor Jedna z nejdůležitějších součástek počítače = mozek počítače, bez něhož není počítač schopen vykonávat žádné operace. Procesor v počítači plní funkci centrální jednotky (CPU - Central Processing

Více

Výkonnost mikroprocesoru ovlivňují nejvíce dvě hlediska - architektura mikroprocesoru a tzv. taktovací frekvence procesoru.

Výkonnost mikroprocesoru ovlivňují nejvíce dvě hlediska - architektura mikroprocesoru a tzv. taktovací frekvence procesoru. Úvod Mikroprocesor Mikroprocesor je srdcem počítače. Provádí veškeré výpočty a operace. Je to složitý integrovaný obvod, uložený do vhodného pouzdra. Dnešní mikroprocesory vyžadují pro spolehlivou činnost

Více

Intel Centrino 2 - Úvod a procesory

Intel Centrino 2 - Úvod a procesory Intel Centrino 2 - Úvod a procesory Mobilní řešení Intel Centrino letos oslaví páté narozeniny. V roce 2003, kdy s ním Intel přišel na trh to způsobilo menší revoluci, protože jedna společnost nabízela

Více

Charakteristika dalších verzí procesorů v PC

Charakteristika dalších verzí procesorů v PC Charakteristika dalších verzí procesorů v PC 1 Cíl přednášky Poukázat na principy tvorby architektur nových verzí personálních počítačů. Prezentovat aktuální pojmy. 2 Úvod Zvyšování výkonu cestou paralelizace

Více

ARCHITEKTURA AMD PUMA

ARCHITEKTURA AMD PUMA VŠB-TU Ostrava Fakulta elektrotechniky a informatiky Katedra informačných technológií ARCHITEKTURA AMD PUMA Martin Raichl, RAI033 21. listopadu 2009 Ján Podracký, POD123 Obsah Architektura AMD PUMA nová

Více

Intel Pentium D (1) Intel Pentium D (4) Intel Pentium Extreme Edition (1) Intel Pentium D (5)

Intel Pentium D (1) Intel Pentium D (4) Intel Pentium Extreme Edition (1) Intel Pentium D (5) Intel Pentium D () Založen na mikroarchitektuře NetBurst Vyráběn s frekvencemi, GHz, GHz Systémová sběrnice pracuje s taktem MHz (vyjma procesoru s frekvencí, GHz, u něhož je frekvence systémové sběrnice

Více

OPS Paralelní systémy, seznam pojmů, klasifikace

OPS Paralelní systémy, seznam pojmů, klasifikace Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus

Více

Základní deska (mainboard)

Základní deska (mainboard) Základní deska (mainboard) Základní deska je nejdůležitější části sestavy počítače. Zajišťuje přenos dat mezi všemi díly a jejich vzájemnou komunikaci. Pomocí konektorů umožňuje pevné přichycení (grafická

Více

ARCHITEKTURA PROCESORŮ

ARCHITEKTURA PROCESORŮ ARCHITEKTURA PROCESORŮ Základními jednotkami, které tvoří vnitřní strukturu procesorů, jsou: řadič, který má za úkol číst operandy (data, čísla) a instrukce z operační paměti, dekódovat je a na základě

Více

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více

Intel Pentium D (1) Intel Pentium D (4) Intel Pentium Extreme Edition (1) Intel Pentium D (5)

Intel Pentium D (1) Intel Pentium D (4) Intel Pentium Extreme Edition (1) Intel Pentium D (5) Intel Pentium D () Založen na mikroarchitektuře NetBurst Vyráběn s frekvencemi, GHz, GHz Systémová sběrnice pracuje s taktem MHz (vyjma procesoru s frekvencí, GHz, u něhož je frekvence systémové sběrnice

Více

Paralelní architektury se sdílenou pamětí typu NUMA. NUMA architektury

Paralelní architektury se sdílenou pamětí typu NUMA. NUMA architektury Paralelní architektury se sdílenou pamětí typu NUMA NUMA architektury Multiprocesorové systémy s distribuovanou pamětí I. úzkým hrdlem multiprocesorů se sdílenou pamětí je datová komunikace s rostoucím

Více

ARCHITEKTURA PROCESORŮ

ARCHITEKTURA PROCESORŮ ARCHITEKTURA PROCESORŮ Základními jednotkami, které tvoří vnitřní strukturu procesorů, jsou: řadič, který má za úkol číst operandy (data, čísla) a instrukce z operační paměti, dekódovat je a na základě

Více

Identifikátor materiálu: ICT-1-08

Identifikátor materiálu: ICT-1-08 Identifikátor materiálu: ICT-1-08 Předmět Informační a komunikační technologie Téma materiálu Motherboard, CPU a RAM Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí základní desku počítače.

Více

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/ Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu

Více

AGP - Accelerated Graphics Port

AGP - Accelerated Graphics Port AGP - Accelerated Graphics Port Grafiku 3D a video bylo možné v jisté vývojové etapě techniky pracovních stanic provozovat pouze na kvalitních pracovních stanicích (cena 20 000 USD a více) - AGP představuje

Více

Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky. referát do předmětu: Pokročilé architektury počítačů.

Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky. referát do předmětu: Pokročilé architektury počítačů. Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky referát do předmětu: Pokročilé architektury počítačů na téma: Intel Atom Jan Bajer; baj102 Úvod Během posledních let

Více

Jak se procesory vyrábí

Jak se procesory vyrábí Mikroprocesor (neboli CPU - Central Processing Unit) je jedním ze základních prvků každého počítače. Provádí výpočty zadané programem. Základním měřítkem výkonu procesoru je jeho frekvence a počet zpracovaných

Více

Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2

Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2 Základy informatiky 2. Přednáška HW Lenka Carr Motyčková February 22, 2011 Základy informatiky 1 February 22, 2011 Základy informatiky 2 February 22, 2011 Základy informatiky 3 February 22, 2011 Základy

Více

Základní deska (mainboard)

Základní deska (mainboard) Základní deska (mainboard) Základní deska je nejdůležitější části sestavy počítače. Zajišťuje přenos dat mezi všemi díly a jejich vzájemnou komunikaci. Pomocí konektorů umožňuje pevné přichycení (grafická

Více

5. Procesory Intel: Vývojová řada, základní rysy a vnitřní architektura.

5. Procesory Intel: Vývojová řada, základní rysy a vnitřní architektura. 5. Procesory Intel: Vývojová řada, základní rysy a vnitřní architektura. Obsah 5. Procesory Intel: Vývojová řada, základní rysy a vnitřní architektura.... 1 5.1. 4004 až 80486... 2 5.2. Pentium a Pentium

Více

Historie a vývoj Intel Atom

Historie a vývoj Intel Atom Historie a vývoj Intel Atom Pokročilé architektury počítačů Vypracoval: Bc. Jan Pinďák pin075 Úvod Za posledních 20 let výkon procesorů neuvěřitelně vzrostl. To co by počátkem 90. let 20. století nemožné,

Více

SOU Valašské Klobouky. VY_32_INOVACE_01_8 IKT Procesory, Intel, AMD, Architektura x86-64, AMR. Mgr. Radomír Soural

SOU Valašské Klobouky. VY_32_INOVACE_01_8 IKT Procesory, Intel, AMD, Architektura x86-64, AMR. Mgr. Radomír Soural SOU Valašské Klobouky VY_32_INOVACE_01_8 IKT Procesory, Intel, AMD, Architektura x86-64, AMR Mgr. Radomír Soural Zkvalitnění výuky prostřednictvím ICT Název a číslo projektu CZ.1.07/1.5.00/34.0459 Název

Více

Paměti Josef Horálek

Paměti Josef Horálek Paměti Josef Horálek Paměť = Paměť je pro počítač životní nutností = mikroprocesor z ní čte programy, kterými je řízen a také do ní ukládá výsledky své práce = Paměti v zásadě můžeme rozdělit na: = Primární

Více

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje:

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/ Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu

Více

Operační systémy. Jednoduché stránkování. Virtuální paměť. Příklad: jednoduché stránkování. Virtuální paměť se stránkování. Memory Management Unit

Operační systémy. Jednoduché stránkování. Virtuální paměť. Příklad: jednoduché stránkování. Virtuální paměť se stránkování. Memory Management Unit Jednoduché stránkování Operační systémy Přednáška 8: Správa paměti II Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné velikosti

Více

ARCHITEKTURA AMD PUMA

ARCHITEKTURA AMD PUMA VŠB-TU Ostrava Fakulta elektrotechniky a informatiky Katedra informačných technológií ARCHITEKTURA AMD PUMA Martin Raichl, RAI033 21. listopadu 2009 Ján Podracký, POD123 Obsah Architektura AMD PUMA nová

Více

Architektura procesoru Athlon 64 X2

Architektura procesoru Athlon 64 X2 Architektura procesoru Athlon 64 X2 Athlon 64 X2 je prvním dvoujádrovým procesorem od firmy AMD, určeným pro domácí využití. Tento procesor byl papírově oznámen 21.dubna 2005. V tento den byly oficiálně

Více

Úvod do architektur personálních počítačů

Úvod do architektur personálních počítačů Úvod do architektur personálních počítačů 1 Cíl přednášky Popsat principy proudového zpracování informace. Popsat principy zřetězeného zpracování instrukcí. Zabývat se způsoby uplatnění tohoto principu

Více

Procesor EU peníze středním školám Didaktický učební materiál

Procesor EU peníze středním školám Didaktický učební materiál Procesor EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT1.05 Předmět: Informatika a výpočetní technika Tematická oblast: Úvod do studia informatiky, konfigurace

Více

Cache paměť - mezipaměť

Cache paměť - mezipaměť Cache paměť - mezipaměť 10.přednáška Urychlení přenosu mezi procesorem a hlavní pamětí Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá

Více

Přehled paralelních architektur. Dělení paralelních architektur Flynnova taxonomie Komunikační modely paralelních architektur

Přehled paralelních architektur. Dělení paralelních architektur Flynnova taxonomie Komunikační modely paralelních architektur Přehled paralelních architektur Přehled paralelních architektur Dělení paralelních architektur Flynnova taxonomie Komunikační modely paralelních architektur Přehled I. paralelní počítače se konstruují

Více

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_13_HARDWARE_S1 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

AMD K11 a její vztah k předcházejícím procesorům. Referát do PAP. Jan Uhlář

AMD K11 a její vztah k předcházejícím procesorům. Referát do PAP. Jan Uhlář AMD K11 a její vztah k předcházejícím procesorům Referát do PAP Jan Uhlář Ohlédnutí za architekturou AMD K8 Oficiální ohlášení x86-64 architektury, přímo firmou AMD, se událo 5. října 1999 na Mikroprocesorovém

Více

Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012

Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Přednáška Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Petr

Více

Linux a 64 bitů. SUSE Labs. Michal Ludvig Vojtěch Pavlík

Linux a 64 bitů. SUSE Labs. Michal Ludvig Vojtěch Pavlík 1 Linux a 64 bitů Michal Ludvig Vojtěch Pavlík SUSE Labs 02.04.04 Linux a 64 bitů, Michal Ludvig+Vojtěch Pavlík, SUSE Labs, 02.04.04, Strana 1 64 čeho? 2 bitovost procesoru

Více

Server je v informatice obecné označení pro počítač, který poskytuje nějaké služby nebo počítačový program, který tyto služby realizuje.

Server je v informatice obecné označení pro počítač, který poskytuje nějaké služby nebo počítačový program, který tyto služby realizuje. Server je v informatice obecné označení pro počítač, který poskytuje nějaké služby nebo počítačový program, který tyto služby realizuje. Servery jsou buď umístěny volně nebo ve speciální místnosti, kterou

Více

Charakteristika dalších verzí procesorů Pentium

Charakteristika dalších verzí procesorů Pentium Charakteristika dalších verzí procesorů Pentium 1 Cíl přednášky Poukázat na principy architektur nových verzí typů Pentií. Prezentovat aktuální pojmy. 2 Úvod Paralelní systémy lze třídit z hlediska počtu

Více

Mezipaměti počítače. L2 cache. L3 cache

Mezipaměti počítače. L2 cache. L3 cache Mezipaměti počítače Cache paměť - mezipaměť Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá vyrovnávací (cache) paměť SRAM. Rychlost

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: 3 CZ.1.07/1.5.00/34.0410 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:

Více

Výstavba PC. Vývoj trhu osobních počítačů

Výstavba PC. Vývoj trhu osobních počítačů Výstavba PC Vývoj trhu osobních počítačů Osobní počítač? Sálový počítač (Mainframe) IBM System/370 model 168 (1972) Minipočítač DEC PDP-11/70 (1975) Od 60. let počítač byl buď velký sálový nebo mini, stroj,

Více

Paměťový podsystém počítače

Paměťový podsystém počítače Paměťový podsystém počítače typy pamětových systémů počítače virtuální paměť stránkování segmentace rychlá vyrovnávací paměť 30.1.2013 O. Novák: CIE6 1 Organizace paměťového systému počítače Paměťová hierarchie...

Více

Semestrální práce z předmětu Speciální číslicové systémy X31SCS

Semestrální práce z předmětu Speciální číslicové systémy X31SCS Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší

Více

Platforma Intel Centrino 2

Platforma Intel Centrino 2 Platforma Intel Centrino 2 Kryštof Laryš, lar026 Mobilní řešení Intel Centrino už je na světě 6 let. V roce 2003, kdy s ním Intel přišel na trh, to způsobilo menší revoluci, protože jedna společnost nabízela

Více

Představení a vývoj architektur vektorových procesorů

Představení a vývoj architektur vektorových procesorů Představení a vývoj architektur vektorových procesorů Drong Lukáš Dro098 1 Obsah Úvod 3 Historie, současnost 3 Architektura 4 - pipelining 4 - Operace scatter a gather 4 - vektorové registry 4 - Řetězení

Více

Xbox 360 Cpu = IBM Xenon

Xbox 360 Cpu = IBM Xenon Xbox 360 Cpu = IBM Xenon VŠB TUO Ostrava 7.11.2008 Zdeněk Dubnický Architektura procesoru IBM Xenon a její přínosy -architektura -CPU -FSB -testování a ladění IBM Xenon Vývoj tohoto procesoru začal v roce

Více

Paměti EEPROM (1) Paměti EEPROM (2) Paměti Flash (1) Paměti EEPROM (3) Paměti Flash (2) Paměti Flash (3)

Paměti EEPROM (1) Paměti EEPROM (2) Paměti Flash (1) Paměti EEPROM (3) Paměti Flash (2) Paměti Flash (3) Paměti EEPROM (1) EEPROM Electrically EPROM Mají podobné chování jako paměti EPROM, tj. jedná se o statické, energeticky nezávislé paměti, které je možné naprogramovat a později z nich informace vymazat

Více

ORGANIZAČNÍ A VÝPOČETNÍ TECHNIKA

ORGANIZAČNÍ A VÝPOČETNÍ TECHNIKA Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace ORGANIZAČNÍ A VÝPOČETNÍ TECHNIKA PROCESORY Ing. Bouchala Petr 2010 Vytištěno pro vnitřní potřebu školy PROCESORY 1.Úvod základní pojmy

Více

MSP 430F1611. Jiří Kašpar. Charakteristika

MSP 430F1611. Jiří Kašpar. Charakteristika MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže

Více

Paměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje

Paměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na čipu procesoru jsou používány

Více

PROCESOR. Rozdělení procesorů

PROCESOR. Rozdělení procesorů PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z operační paměti (resp. CACHE paměti) instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních

Více

Představení procesorů od firmy Tilera a jejich architektura

Představení procesorů od firmy Tilera a jejich architektura VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA ELEKTROTECHNIKY A INFORMATIKY REFERÁT Z PŘEDMĚTU POKROČILÉ ARCHITEKTURY POČÍTAČŮ Představení procesorů od firmy Tilera a jejich architektura Školní

Více

Paměťové prvky. ITP Technika personálních počítačů. Zdeněk Kotásek Marcela Šimková Pavel Bartoš

Paměťové prvky. ITP Technika personálních počítačů. Zdeněk Kotásek Marcela Šimková Pavel Bartoš Paměťové prvky ITP Technika personálních počítačů Zdeněk Kotásek Marcela Šimková Pavel Bartoš Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Osnova Typy

Více

Informační a komunikační technologie

Informační a komunikační technologie Informační a komunikační technologie 4. www.isspolygr.cz Vytvořil: Ing. David Adamovský Strana: 1 Škola Integrovaná střední škola polygrafická Ročník Název projektu 1. ročník SOŠ Interaktivní metody zdokonalující

Více

CHARAKTERISTIKA MODERNÍCH PENTIÍ. Flynnova klasifikace paralelních systémů

CHARAKTERISTIKA MODERNÍCH PENTIÍ. Flynnova klasifikace paralelních systémů Úvod: CHARAKTERISTIKA MODERNÍCH PENTIÍ Flynnova klasifikace paralelních systémů Paralelní systémy lze třídit z hlediska počtu toků instrukcí a počtu toků dat: SI systém s jedním tokem instrukcí (Single

Více

HW počítače co se nalézá uvnitř počítačové skříně

HW počítače co se nalézá uvnitř počítačové skříně ZVT HW počítače co se nalézá uvnitř počítačové skříně HW vybavení PC Hardware Vnitřní (uvnitř počítačové skříně) Vnější ( ) Základní HW základní jednotka + zobrazovací zařízení + klávesnice + (myš) Vnější

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Pokročilé architektury počítačů Architektura Intel Larrabee 5.12.2009 Josef Stoklasa STO228 Obsah: 1. Úvod do tajů

Více

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/ Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu

Více

Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010

Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010 Přednášky o výpočetní technice Hardware teoreticky Adam Dominec 2010 Rozvržení Historie Procesor Paměť Základní deska přednášky o výpočetní technice Počítací stroje Mechanické počítačky se rozvíjely už

Více

Cíl přednášky: Obsah přednášky:

Cíl přednášky: Obsah přednášky: Architektury počítačů na bázi sběrnice PCI Cíl přednášky: Vysvětlit principy architektur PC na bázi sběrnice PCI. Obsah přednášky: Základní architektury PC na bázi PCI. Funkce northbridge a southbridge.

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

Architektura počítačů

Architektura počítačů Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Petr

Více

Přednáška 1. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012

Přednáška 1. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Přednáška 1 Úvod do HW a OS. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského

Více

Silný výkon dvoujádrové architektury pro podnikání dnes i zítra

Silný výkon dvoujádrové architektury pro podnikání dnes i zítra Silný výkon dvoujádrové architektury Silný výkon dvoujádrové architektury pro podnikání dnes i zítra Nejnovější sestava notebooků Toshiba pro podnikovou sféru s procesorem Intel Core 2 Duo opět přináší

Více

Číslo projektu: CZ.1.07/1.5.00/34.0290. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Zdeněk Dostál Ročník: 1. Hardware.

Číslo projektu: CZ.1.07/1.5.00/34.0290. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Zdeněk Dostál Ročník: 1. Hardware. Zlepšení podmínek pro vzdělávání na středních školách Operačního programu Vzdělávání pro konkurenceschopnost Název a adresa školy: Integrovaná střední škola Cheb, Obrněné brigády 6, 350 11 Cheb Číslo projektu:

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

Architektura počítače

Architektura počítače Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích

Více

Technické prostředky počítačové techniky

Technické prostředky počítačové techniky Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení

Více

Platforma Juniper QFabric

Platforma Juniper QFabric Platforma Juniper QFabric Matěj Čenčík (CEN027) Abstrakt: Tématem článku je princip a architektura JuniperQFabric platformy. Klíčová slova: Juniper, QFabric, Platforma, Converged services, non-blocking

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů Pokročilé architektury počítačů Architektura paměťového a periferního podsystému České vysoké učení technické, Fakulta elektrotechnická A4M36PAP Pokročílé architektury počítačů Ver.1.00 2010 1 Motivace

Více

Přidělování paměti II Mgr. Josef Horálek

Přidělování paměti II Mgr. Josef Horálek Přidělování paměti II Mgr. Josef Horálek Techniky přidělování paměti = Přidělování jediné souvislé oblasti paměti = Přidělování paměti po sekcích = Dynamické přemisťování sekcí = Stránkování = Stránkování

Více

Platforma Intel Centrino 2

Platforma Intel Centrino 2 Platforma Intel Centrino 2 Kryštof Laryš, lar026 Historie Platforma Intel Centrino už je na světě od roku 2003, kdy s ním Intel přišel na trh. Intel Centrino je marketingové označení firmy Intel pro kombinaci

Více

PROCESORY. Typy procesorů

PROCESORY. Typy procesorů PROCESORY Procesor (CPU Central Processing Unit) je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost

Více

Operační systémy. Přednáška 1: Úvod

Operační systémy. Přednáška 1: Úvod Operační systémy Přednáška 1: Úvod 1 Organizace předmětu Přednášky každé úterý 18:00-19:30 v K1 Přednášející Jan Trdlička email: trdlicka@fel.cvut.z kancelář: K324 Cvičení pondělí, úterý, středa Informace

Více

Architektura procesoru ARM

Architektura procesoru ARM Architektura procesoru ARM Bc. Jan Grygerek GRY095 Obsah ARM...3 Historie...3 Charakteristika procesoru ARM...4 Architektura procesoru ARM...5 Specifikace procesoru...6 Instrukční soubor procesoru...6

Více

Struktura a architektura počítačů (BI-SAP) 11

Struktura a architektura počítačů (BI-SAP) 11 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 11 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více