Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
|
|
- Renata Vlčková
- před 8 lety
- Počet zobrazení:
Transkript
1 Přednáška Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského sociálního fondu a rozpočtu hlavního města Prahy. Praha & EU: Investujeme do vaší budoucnosti 1
2 Jednoduché stránkování Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné velikosti nazývané stránky (pages) Velikost rámce a stránky je stejná. Celý program je nahrán do volných rámců hlavní paměti. OS si musí pamatovat rámce přidělené jednotlivým procesům (např. pomocí tabulky stránek, ) OS si musí pamatovat volné rámce v hlavní paměti. 2
3 Jednoduché stránkování 3
4 Virtuální paměť V 32 bitovém OS, jeden proces může adresovat až 4GB. Problém Pokud OS umožňuje, aby bylo současně spuštěno až 64k procesů, pak bychom potřebovali dohromady 256 TB paměti. Řešení Virtuální paměť = proces je automaticky (pomocí OS) rozdělen na menší kousky. Ve fyzické paměti jsou pouze kousky aktuálně používané, zbytek procesu je na disku. 4
5 Virtuální paměť se stránkováním Většinou je virtuální paměť kombinována se stránkování. Princip Proces používá adresy, kterým se říká virtuální adresy a které tvoří virtuální adresový prostor. Virtuální adresový prostor je rozdělen na stejně velké souvislé úseky nazývané virtuální stránky (virtual pages) (typicky 4KB). Korespondující úseky ve fyzické paměti jsou nazývány rámce stránek (page frames). V hlavní paměti jsou pouze stránky aktuálně používané. 5
6 Memory Management Unit (MMU) Proces adresuje paměť pomocí virtuálních adres (např. MOV reg, va). Memory Management Unit (MMU) překládá virtuální adresu na fyzickou. Výpadek stránky (Page fault) Pokud není virtuální stránka ve fyzické paměti, MMU způsobí, aby CPU požádalo OS o nahrání příslušné stránky do fyzické paměti. OS nejdříve definuje, který rámec fyzické paměti je třeba uvolnit, a pak do něj nahraje obsah požadované virtuální stránky z disku. 6
7 Tabulka stránek MMU: číslo_fyzického_rámce = f (číslo_virtuální_stránky) Zobrazení f() může být implementováno pomocí tabulky stránek. 7
8 Tabulka stránek Tabulka stránek může být extrémně velká. 32-bitový virtuální adresový prostor bude mít při velikosti stránek 4-KB jeden milion stránek. Tabulka stránek pak bude mít jeden milion položek. Každý proces potřebuje svojí vlastní tabulku stránek (protože má svůj vlastní virtuální adresový prostor). Překlad adres by měl být velmi rychlý. Překlad virtuální adresy na fyzickou musí být prováděn při každém přístupu do paměti. 8
9 Víceúrovňová tabulka stránek Proces obvykle používá pouze podmnožinu adres svého virtuálního procesu. Stačilo by mít v paměti pouze ty položky z tabulky stránek, které bude OS potřebovat při překladu. Příklad: Mějme 32-bitový virtuální adresový prostor s 4KB stránkami. Předpokládejme, že proces bude skutečně používat pouze 12MB: dolní 4MB paměti pro kód programu, následující 4MB pro data, horní 4MB pro zásobník. Ačkoli proces má virtuální adresový prostor veliký 4GB (tzn. 1M položek v tabulce stránek), stačí mít pouze čtyři tabulky stránek, každou mající 1K položek: top-level page table + program code page table + data page table + stack page table. 9
10 Víceúrovňová tabulka stránek 10
11 Víceúrovňová tabulka stránek Present/absent bity 1021 položek v top-level page table jsou nastaveny na 0, protože virtuální stránky s nimi spojeny nebyly zatím používány. Při pokusu přístupu k těmto stránkám dojde k výpadku stránky a potřebné informace budou nahrány do paměti. Obecně lze tabulku stránek rozdělit do libovolného počtu úrovní. V praxi se z důvodu rychlosti překladu adres používají pouze dvou, tří a čtyř-úrovňové tabulky. Většina OS používá demand paging. Když je proces spuštěn, nahrají se do RAM pouze první stránky kódu a první stránky dat. Ostatní stránky budou nahrány do RAM až v okamžiku, kdy budou potřeba. Výhody: malá velikost tabulek v paměti. Nevýhody: pomalejší překlad. 11
12 Položka v tabulce stránek Její struktura je závislá na architektuře CPU, ale obvykle obsahuje: Page frame number Present/absent bit 1 stránka je v RAM, 0 stránka není v RAM přístup na stránku způsobí page fault. Protection bits: 3 bits - reading, writing, executing. Modified bit Když je obsah stránky modifikován, HW automaticky nastaví bit na 1. Když OS uvolňuje rámec stránky: musí obsah stránky uložit na disk pokud je Modified bit roven 1. jinak může nahrát do rámce rovnou novou stránku. 12
13 Položka v tabulce stránek Referenced bit Kdykoliv je ke stránce přistupováno (pro čtení nebo zápis), je tento bit nastaven na 1. Hodnota tohoto bitu je používána algoritmy pro náhradu stránek. Caching disabled bit Je důležitý pro stránky, které jsou mapovány na registry periferních zařízení. Pokud čekáme na V/V (např. v cyklu), musíme použít hodnoty z fyzických HW registrů, nikoliv (starý) obsah v paměti. 13
14 Translation Lookaside Buffer (TLB) Většina programů provádí velký počet přístupů k malému počtu stránek. Translation Lookaside Buffer (TLB) Je organizovaný jako asociativní paměť. Obsahuje posledně používané položky tabulek stránek. TLB je obvykle uvnitř MMU a obsahuje desítky položek. 14
15 Translation Lookaside Buffer (TLB) Při překladu virtuální adresy(va), MMU nejdříve hledá informaci o VA v TLB. Hledávání v TLB probíhá paralelně. Pokud informace o VA existuje v TLB, MMU použije tuto informaci pro překlad VA a nemusí hledat v tabulce stránek. Pokud informace v TLB není, MMU vyvolá TLB fault. OS pak musí načíst informaci z tabulky stránek. TLB fault lze minimalizovat použitím větších stránek. 15
16 Invertovaná tabulka stránek V klasické tabulce stránek číslo virtuální stránky slouží jako index do tabulky. V 32 bitových počítačích, každý proces má 32 bitovou virtuální adresu. Při velikosti stránky 4KB, tabulka stránek každého procesu má 1M položek. Se 4B na každou položku, tabulka stránek zabírá 4MB. V 64 bitových počítačích se 64 bitovou virtuální adresou je situace ještě více zřejmější. Při 4KB stránkách, tabulka stránek má 252 položek. 16
17 Invertovaná tabulka stránek Ačkoliv virtuální adresový prostor je obrovský, fyzický prostor RAM je stále malý. Tabulka stránek muže být organizována kolem fyzické paměti. V invertované tabulce stránek, i-th položka obsahuje informaci o virtuální stránce, která je nahrána v rámci i. 17
18 Invertovaná tabulka stránek Invertovanou tabulku stránek lze použít společně s TLB. Při nalezení v TLB, se invertovaná tabulka nepoužije. Jinak musíme hledat v invertované tabulce stránek. Sekvenční hledání v tabulce může být urychleno pomocí rozptylovací funkce. 18
19 Příklad: 32 bit OS a 4GB fyzické paměti 19
20 Příklad: MMU x86 20
21 Příklad: MMU x86 PAE 21
22 Příklad: MMU AMD64 22
23 Virtuální paměť x Segmentace Virtuální paměť Proces má jednorozměrný virtuální adresový prostor. Pro některé problémy, dva nebo více oddělených adresových prostorů (segmentů) je vhodnější. Segmentace Virtuální adresový prostor procesu je rozdělen na několik segmentů. Segment je lineární posloupnost adres, od 0 do nějaké maximální adresy. Různé segmenty mohou mít různé délky, délka segmentu se může měnit během výpočtu. Různé segmenty mohou mít rozdílnou ochranu a mohou být sdílené. 23
24 Jednoduchá segmentace Příklad: Překladač si udržuje několik tabulek a datových struktur, jejichž velikost se během překladu dynamicky mění. 24
25 Jednoduchá segmentace Logická adresa se skládá ze dvou částí číslo segmentu offsetu Segmentace je obvykle viditelná pro programátora. 25
26 Segmentace se stránkováním Stránkování Eliminuje externí fragmentaci a poskytuje efektivní využití hlavní paměti. Segmentace Je transparentní pro programátora. Je viditelná pro programátora. Je vhodná pro dynamicky rostoucí datové struktury, modularitu, a podporuje sdílení a ochranu. Segmentace se stránkováním Virtuální adresový prostor je rozdělen na několik segmentů. Každý segment se skládá ze stejně velkých stránek, které jsou stejně velké jak rámce v hlavní paměti. 26
27 Segmentace se stránkováním Z hlediska programátora Virtuální adresa se skládá z čísla segmentu a offsetu uvnitř segmentu. Z hlediska systému Offset segmentu se skládá z čísla stránky a offsetu uvnitř stránky. 27
28 Segmentace se stránkováním 28
29 Segmentace se stránkováním Segment base ukazuje na začátek tabulky stránek pro daný segment. Other control bits v tabulce segmentů slouží pro definici přístupových práv a sdílení mezi procesy. 29
30 Segmentace se stránkováním Segmentace se stránkováním se může používat společně s TLB. Při překladu virtuální adresy: MMU se nejdříve podívá zda není informace v TLB. Pokud ano, použije pro překlad číslo rámce z TLB. Jinak MMU hledá v tabulce segmentů, 30
Operační systémy. Jednoduché stránkování. Virtuální paměť. Příklad: jednoduché stránkování. Virtuální paměť se stránkování. Memory Management Unit
Jednoduché stránkování Operační systémy Přednáška 8: Správa paměti II Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné velikosti
Operační systémy. Přednáška 8: Správa paměti II
Operační systémy Přednáška 8: Správa paměti II 1 Jednoduché stránkování Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné
Systém adresace paměti
Systém adresace paměti Základní pojmy Adresa fyzická - adresa, která je přenesena na adresní sběrnici a fyzicky adresuje hlavní paměť logická - adresa, kterou má k dispozici proces k adresaci přiděleného
Paměťový podsystém počítače
Paměťový podsystém počítače typy pamětových systémů počítače virtuální paměť stránkování segmentace rychlá vyrovnávací paměť 30.1.2013 O. Novák: CIE6 1 Organizace paměťového systému počítače Paměťová hierarchie...
Pamět ová hierarchie, virtuální pamět. doc. Ing. Róbert Lórencz, CSc.
Architektura počítačových systémů Pamět ová hierarchie, virtuální pamět doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů
Přednáška. Správa paměti I. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Správa paměti I. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
ÚVOD DO OPERAČNÍCH SYSTÉMŮ. Správa paměti. Přímý přístup k fyzické paměti, abstrakce: adresový prostor, virtualizace, segmentace
ÚVOD DO OPERAČNÍCH SYSTÉMŮ Správa paměti Přímý přístup k fyzické paměti, abstrakce: adresový prostor, virtualizace, segmentace České vysoké učení technické Fakulta elektrotechnická Y38ÚOS Úvod do operačních
Operační systémy. Přednáška 7: Správa paměti I
Operační systémy Přednáška 7: Správa paměti I 1 Správa paměti (SP) Memory Management Unit (MMU) hardware umístěný na CPU čipu např. překládá logické adresy na fyzické adresy, Memory Manager software, který
2010/2011 ZS P i r i nc č py po ít č čů a PAMĚŤOVÝ ĚŤ SUBSYSTÉM z pohledu OS OS
Pi Principy i počítačů čů PAMĚŤOVÝ SUBSYSTÉM z pohledu OS Správa paměti OS je správcem prostředků, tedy i paměti přidělování procesům zajištění ochrany systému i procesů zajištění požadavků aniž by došlo
Operační systémy. Správa paměti (SP) Požadavky na SP. Spojování a zavedení programu. Spojování programu (linking) Zavádění programu (loading)
Správa paměti (SP) Operační systémy Přednáška 7: Správa paměti I Memory Management Unit (MMU) hardware umístěný na CPU čipu např. překládá logické adresy na fyzické adresy, Memory Manager software, který
Struktura a architektura počítačů (BI-SAP) 11
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 11 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Přidělování paměti II Mgr. Josef Horálek
Přidělování paměti II Mgr. Josef Horálek Techniky přidělování paměti = Přidělování jediné souvislé oblasti paměti = Přidělování paměti po sekcích = Dynamické přemisťování sekcí = Stránkování = Stránkování
09. Memory management. ZOS 2006, L.Pešička
09. Memory management ZOS 2006, L.Pešička Správa paměti paměťová pyramida absolutní adresa relativní adresa počet bytů od absolutní adresy fyzický prostor adres fyzicky k dispozici výpočetnímu systému
Metody připojování periferií BI-MPP Přednáška 2
Metody připojování periferií BI-MPP Přednáška 2 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011
Přednáška. Vstup/Výstup. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Vstup/Výstup. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
4 Správa paměti. 4.1 Základní správa paměti
Katedra informatiky, FEI VŠB-TUO, Petr Olivka. Tento text je neautorizovaný a nerecenzovaný překlad doporučené literatury: Andrew S. Tanenbaum, Operating Systems: DesignandImplementation,ajeurčenjenprostudijníúčely.
Memory Management vjj 1
Memory Management 10.01.2018 vjj 1 10.01.2018 vjj 2 sledování stavu paměti free used správa paměti strategie přidělování paměti techniky přidělování paměti realizace uvolňování paměti 10.01.2018 vjj 3
Principy operačních systémů. Lekce 3: Virtualizace paměti
Principy operačních systémů Lekce 3: Virtualizace paměti Virtuální paměť Adresní prostor paměti je uspořádán logicky jinak, nebo je dokonce větší než je fyzická operační paměť RAM Rozšíření vnitřní paměti
Pokročilé architektury počítačů
Pokročilé architektury počítačů Architektura paměťového a periferního podsystému České vysoké učení technické, Fakulta elektrotechnická A4M36PAP Pokročílé architektury počítačů Ver.1.00 2010 1 Motivace
Memory Management vjj 1
Memory Management 30.11.2016 vjj 1 30.11.2016 vjj 2 sledování stavu paměti free used správa paměti strategie přidělování paměti techniky přidělování paměti realizace uvolňování paměti 30.11.2016 vjj 3
Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. Petr Krajča (UP) KMI/YOS: Přednáška IV. 18. listopad, / 41
Operační systémy Pamět Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci Petr Krajča (UP) KMI/YOS: Přednáška IV. 18. listopad, 2016 1 / 41 Operační pamet zásadní část počítače uložení kódu
Petr Krajča. 25. listopad, 2011
Operační systémy Pamět Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci 25. listopad, 2011 Petr Krajča (UP) KMI/YOS: Přednáška IV. 25. listopad, 2011 1 / 35 Operační pamet zásadní část počítače
Při překrývání se využívá toho, že ne všechny moduly programu jsou vyžadovány současně. Jakmile skončí využívání jednoho
Operační systémy Tomáš Hudec 9 Správa paměti, metody alokace paměti, virtualizace paměti Obsah: 9.1 Techniky přidělování paměti, 9.1.1 Pevné dělení paměti, 9.1.1.1 Stejně velké oblasti, 9.1.1.2 Různě velké
Paměťová hierarchie. INP 2008 FIT VUT v Brně
Paměťová hierarchie INP 2008 FIT VUT v Brně 000 Výkonová mezera mezi CPU a pamětí Moorův zákon CPU CPU 60% za rok (2X/.5roku) výkonnost 00 0 980 98 DRAM 982 983 984 985 986 987 988 989 990 99 992 993 994
Přednáška. Systémy souborů. FAT, NTFS, UFS, ZFS. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Systémy souborů. FAT, NTFS, UFS, ZFS. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem
Přednáška. Správa paměti III. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Správa paměti III. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je možné, že někde bude chyba.
Odpovědi jsem hledala v prezentacích a na http://www.nuc.elf.stuba.sk/lit/ldp/index.htm Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je
Architektury VLIW M. Skrbek a I. Šimeček
Architektury VLIW M. Skrbek a I. Šimeček xsimecek@fit.cvut.cz Katedra počítačových systémů FIT České vysoké učení technické v Praze Ivan Šimeček, 2011 MI-PAP, LS2010/11, Predn.3 Příprava studijního programu
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Správa paměti v zos 1 2 3 4 5 6 7 Data se ukládají do: REAL STORAGE = "rychlá" pamět např. RAM AUXILIARY
Paměti a jejich organizace
Kapitola 5 Paměti a jejich organizace 5.1 Vnitřní a vnější paměti, vlastnosti jednotlivých typů Vnější paměti Jsou umístěny mimo základní jednotku. Lze je zařadit mezi periferní zařízení. Zápis a čtení
Principy počítačů a operačních systémů
Principy počítačů a operačních systémů Operační systémy Správa paměti Zimní semestr 2011/2012 Správa paměti OS jako správce paměti specializovaný subsystém OS spravuje hlavní paměť systému přidělování
OS Správa paměti. Tomáš Hudec. Tomas.Hudec@upce.cz. http://asuei01.upceucebny.cz/usr/hudec/vyuka/os/
OS Správa paměti Tomáš Hudec Tomas.Hudec@upce.cz http://asuei01.upceucebny.cz/usr/hudec/vyuka/os/ Operační paměť jeden z nejdůležitějších prostředků spravovaných operačním systémem procesy pro svůj běh
Operační systémy. Přednáška 9: Správa paměti III
Operační systémy Přednáška 9: Správa paměti III Strategie nahrání (Fetch policy) Určuje, kdy má být virtuální stránka nahrána do hlavní paměti. Stránkování na žádost (demand paging) Virtuální stránky jsou
Přidělování zdrojů (prostředků)
Přidělování zdrojů (prostředků) Proces potřebuje zdroje (prostředky) hardware (I/O zařízení, paměť) software (data, programy) Klasifikace zdrojů (z hlediska multitaskingového režimu) Násobně použitelné
Architektury počítačů
Architektury počítačů Virtuální paměť České vysoké učení technické, Fakulta elektrotechnická B35APO Architektura počítačů Ver.3.5 - odpřednášená 1 * B35APO Architektura počítačů 2 Přímo mapovaná cache
Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard
Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený
Management procesu I Mgr. Josef Horálek
Management procesu I Mgr. Josef Horálek Procesy = Starší počítače umožňovaly spouštět pouze jeden program. Tento program plně využíval OS i všechny systémové zdroje. Současné počítače umožňují běh více
Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje:
Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený
Pamět ová hierarchie, návrh skryté paměti 2. doc. Ing. Róbert Lórencz, CSc.
Architektura počítačových systémů Pamět ová hierarchie, návrh skryté paměti 2 doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů
požadovan adované velikosti a vlastností Interpretace adresy POT POT
požadovan adované velikosti a vlastností K.D. - přednášky 1 Interpretace adresy Ve kterémkoliv místě lze adresu rozdělit na číslo bloku a offset uvnitř bloku. Velikost bloku je dána délkou příslušné části
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Správa paměti v z/os 1 2 3 4 5 6 7 8 Data se ukládají do: REAL STORAGE = "rychlá" pamět např. RAM AUXILIARY
Architektura počítačů
Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem
Paměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje
Paměti Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na čipu procesoru jsou používány
Principy operačních systémů. Lekce 2: Správa paměti
Principy operačních systémů Lekce 2: Správa paměti Funkce správce paměti Správce (operační) paměti je součástí kernelu. Jeho implementace může být různá, ale základní funkce jsou obdobné ve všech OS: Udržovat
Přerušovací systém s prioritním řetězem
Přerušovací systém s prioritním řetězem Doplňující text pro přednášky z POT Úvod Přerušovací systém mikropočítače může být koncipován několika způsoby. Jednou z možností je přerušovací systém s prioritním
IUJCE 07/08 Přednáška č. 6
Správa paměti Motivace a úvod v C (skoro vždy) ručně statické proměnné o datový typ, počet znám v době překladu o zabírají paměť po celou dobu běhu programu problém velikosti definovaných proměnných jak
Adresace paměti. 11.přednáška
Adresace paměti 11.přednáška Adresace paměti základní pojmy Adresa fyzická - adresa, která je přenesena na adresní sběrnici a fyzicky adresuje hlavní paměť logická - adresa, kterou má k dispozici proces
Architektura a koncepce OS OS a HW (archos_hw) Architektura a koncepce OS Jádro OS (archos_kernel) Architektura a koncepce OS Typy OS (archos_typy)
Architektura a koncepce OS OS a HW (archos_hw) Aby fungoval OS s preemptivním multitaskingem, musí HW obsahovat: 1. (+2) přerušovací systém (interrupt system) 2. (+2) časovač Při používání DMA: 1. (+1)
Architektury počítačů
Architektury počítačů Paměť část druhá 1. virtuální paměť, celkový pohled 2. sekundární paměť České vysoké učení technické, Fakulta elektrotechnická A0B36APO Architektura počítačů Ver.1.00 1 Na minulé
Téma 6 Správa paměti a její virtualizace
Téma 6 Obsah. Požadavky a problémy správy paměti. Překlad LA FA. Stránkování a stránkovací tabulky. Segmentace. Segmentace se stránkováním 6. Princip virtuální paměti 7. Stránkování na žádost 8. Nahrazování
Operační systémy 2. Přednáška číslo 2. Přidělování paměti
Operační systémy 2 Přednáška číslo 2 Přidělování paměti Základní pojmy Paměť = operační paměť paměť, kterou přímo využívají procesory při zpracování instrukcí a dat Funkce modulu přidělování paměti: Sledování
HelenOS ARM port. Pavel Jančík Michal Kebrt Petr Štěpán
HelenOS ARM port Pavel Jančík Michal Kebrt Petr Štěpán HelenOS experimentální operační systém (MFF) multiplatformní microkernel amd64, ia32, ia32xen, ia64, mips32, ppc32, ppc64, sparc64 plánování správa
Základní uspořádání pamětí MCU
Základní uspořádání pamětí MCU Harwardská architektura. Oddělený adresní prostor kódové a datové. Používané u malých MCU a signálových procesorů. Von Neumannova architektura (Princetonská). Kódová i jsou
Téma 8 Virtuální paměť Obsah
Téma 8 Virtuální paměť Obsah. Principy virtuální paměti. Stránkování na žádost. Politika náhrad stránek a algoritmy výběru oběti. Algoritmus LRU a jeho aproximace. Přidělování prostoru procesům, problém
PRINCIPY OPERAČNÍCH SYSTÉMŮ
Metodický list č. 1 Název tématického celku: Přehled operačních systémů a jejich funkcí Základním cílem tohoto tematického celku je seznámení se s předmětem (vědním oborem) Operační systémy (OS) a se základními
Virtualizace. Lukáš Krahulec, KRA556
Virtualizace Lukáš Krahulec, KRA556 Co je vitualizace Způsob jak přistupovat ke zdrojům systému jako k univerzálnímu výkonu a nezajímat se o železo Způsob jak využít silný HW a rozložit ho mezi uživatele,
1. Databázové systémy (MP leden 2010)
1. Databázové systémy (MP leden 2010) Fyzickáimplementace zadáníaněkterářešení 1 1.Zkolikaajakýchčástíseskládáčasprovstupněvýstupníoperaci? Ze tří částí: Seektime ječas,nežsehlavadiskudostanenadsprávnou
Operační systémy a sítě
Operační systémy a sítě Petr Štěpán, K13133 KN-E-129 stepan@fel.cvut.cz Téma 7. Stránkování Virtuální paměť A4B33OSS 2015/2016 Hardwarová podpora segmentace s limit base Tabulka segmentů CPU s d base d
Operační systémy 1. Přednáška číslo 10 26. 4. 2010. Struktura odkládacích zařízení
Operační systémy 1 Přednáška číslo 10 26. 4. 2010 Struktura odkládacích zařízení Základní pojmy Paměťové médium periferní zařízení nejvyšší důležitosti samotný OS je obvykle uložen na paměťovém zařízení.
PAMĚŤOVÝ SUBSYSTÉM. Principy počítačů I. Literatura. Parametry paměti. Parametry paměti. Dělení pamětí podle funkce. Kritéria dělení pamětí
Principy počítačů I PAMĚŤOVÝ SUBSYSTÉM Literatura http://www.tomshardware.com http://www.play-hookey.com/digital/ 6 kb ought to be enough for anybody. Bill Gates, 98 Parametry paměti kapacita objem informace,
Počítač jako prostředek řízení. Struktura a organizace počítače
Řídicí počítače - pro řízení technologických procesů. Specielní přídavná zařízení - I/O, přerušovací systém, reálný čas, Č/A a A/Č převodníky a j. s obsluhou - operátorské periferie bez obsluhy - operátorský
Operační systémy 2. Struktura odkládacích zařízení Přednáška číslo 10
Operační systémy 2 Struktura odkládacích zařízení Přednáška číslo 10 Základní pojmy Paměťové médium periferní zařízení nejvyšší důležitosti samotný OS je obvykle uložen na paměťovém zařízení. Proto je
Katedra informatiky a výpočetní techniky. 10. prosince Ing. Tomáš Zahradnický doc. Ing. Róbert Lórencz, CSc.
Katedra informatiky a výpočetní techniky České vysoké učení technické, fakulta elektrotechnická Ing. Tomáš Zahradnický doc. Ing. Róbert Lórencz, CSc. 10. prosince 2007 Pamět ové banky S výhodou používáme
Přednáška 1. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška 1 Úvod do HW a OS. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
Logická organizace paměti Josef Horálek
Logická organizace paměti Josef Horálek Logická organizace paměti = Paměť využívají = uživatelské aplikace = operační systém = bios HW zařízení = uloženy adresy I/O zařízení atd. = Logická organizace paměti
Struktura a architektura počítačů (BI-SAP) 10
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Ing. Igor Kopetschke TUL, NTI
ALGORITMY A DATOVÉ STRUKTURY 1. Organizace dat v paměti, datové typy Ing. Igor Kopetschke TUL, NTI http://www.nti.tul.cz Jednotlivé body Ukládání a a organizace dat Vnitřní paměť Vnější paměť Přístup k
Základní pojmy informačních technologií
Základní pojmy informačních technologií Informační technologie (IT): technologie sloužící k práci s daty a informacemi počítače, programy, počítač. sítě Hardware (HW): jednoduše to, na co si můžeme sáhnout.
TECHNICKÁ SPECIFIKACE
TECHNICKÁ SPECIFIKACE Zabezpečení dat a komunikační infrastruktury opakované vyhlášení části B - Tabulka pro rozšíření nad rámec minimálních technických požadavků Typ Popis rozšířeného požadavku Splněno
Úvod. Instrukce musí obsahovat: typ operace adresu operandu (operandů) typ operandů modifikátory adresy modifikátory operace POT POT
Úvod Instrukce musí obsahovat: typ operace adresu operandu (operandů) typ operandů modifikátory adresy modifikátory operace K.D. - přednášky 2 Pevná a proměnná délka instrukce (1) Pevná délka instrukce
Správa paměti. doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 /
Správa paměti doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Obsah přednášky Motivace Úrovně správy paměti. Manuální
B4B35OSY: Operační systémy
B4B35OSY: Operační systémy Lekce 6. Správa paměti Petr Štěpán stepan@fel.cvut.cz 7. listopadu, 2018 1 / 50 Outline 1 Správa paměti 2 Virtualizace paměti 2 / 50 Obsah 1 Správa paměti 2 Virtualizace paměti
Systém souborů (file system, FS)
UNIX systém souborů (file system) 1 Systém souborů (file system, FS)! slouží k uchování dat na vnějším paměťovém médiu a zajišťuje přístup ke struktuře dat! pro uživatele možnost ukládat data a opět je
Mezipaměti počítače. L2 cache. L3 cache
Mezipaměti počítače Cache paměť - mezipaměť Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá vyrovnávací (cache) paměť SRAM. Rychlost
Operační systémy a databáze. Petr Štěpán, K13133 KN-E-129 Téma 5. Správa paměti
Operační systémy a databáze Petr Štěpán, K13133 KN-E-129 stepan@fel.cvut.cz Téma 5. Správa paměti Základní fakta FAP fyzická adresa je adresa vnitřní paměti počítače Rozsah FAP je dán architekturou počítače
Procesy. Procesy Přepínání kontextu (proc_ctxsw) Postup:
Procesy Procesy Přepínání kontextu (proc_ctxsw) 1. spočítáme si kolikrát ve sledovaném čase (50 ms) byl součet časové kvantum (11ms) + context-switch (2ms) -> (11 + 2) + (11 + 2) + (11 + 2) -> 3x 2. context-switch
Procesy a vlákna (Processes and Threads)
ÚVOD DO OPERAČNÍCH SYSTÉMŮ Ver.1.00 Procesy a vlákna (Processes and Threads) Správa procesů a vláken České vysoké učení technické Fakulta elektrotechnická 2012 Použitá literatura [1] Stallings, W.: Operating
Vnitřní a vnější paměti Část: vnitřní paměti
Vnitřní a vnější paměti Část: vnitřní paměti Cíl kapitoly Tato kapitola navazuje na kapitolu stejného jména, která se zabývá základními rysy zejména vnějších pamětí. Cílem této kapitoly je porozumět a
Fakulta informačních technologií Božetěchova 2, BRNO 26. dubna 2011
Správa paměti Tomáš Vojnar vojnar@fit.vutbr.cz Vysoké učení technické v Brně Fakulta informačních technologií Božetěchova 2, 612 66 BRNO 26. dubna 2011 Operační systémy Správa paměti Aby program mohl být
DIPLOMOVÁ PRÁCE. Jiří Tlach Moderní operační systém bez MMU
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Jiří Tlach Moderní operační systém bez MMU Katedra softwarového inženýrství Vedoucí diplomové práce: Mgr. Martin Děcký Studijní
Akademický rok: 2004/05 Datum: Příjmení: Křestní jméno: Osobní číslo: Obor:
Západočeská univerzita v Plzni Písemná zkouška z předmětu: Zkoušející: Katedra informatiky a výpočetní techniky Počítačová technika KIV/POT Dr. Ing. Karel Dudáček Akademický rok: 2004/05 Datum: Příjmení:
p8mm/p8mm.d 21. listopadu
pmm/pmm.d 21. listopadu 2002 1 KIV/ZOS 2002/2003 Přednáška Správa hlavní paměti ==================== * ideální přání programátora - mít nekonečně velkou a rychlou pamět a levnou, která je zároveň perzistentní,
Přidělování paměti I Mgr. Josef Horálek
Přidělování paměti I Mgr. Josef Horálek = Paměť = operační paměť je paměť, kterou přímo využívají procesory při zpracováni instrukci a dat; Paměť Funkce modulu přidělování paměti = Sledování stavu každého
Adresování paměti. Adresní prostor. Adresní módy (v instrukcích) T.Mainzer
Adresování paměti T.Mainzer Adresní prostor Logický adresní prostor - Adresní prostor se kterým může pracovat/může adresovat daný procesor. Pracuje li procesor s 16-bitovou adresou má log.adresní prostor
Princip funkce počítače
Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování
Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů).
Strojový kód k d a asembler procesoru MIPS Použit ití simulátoru SPIM K.D. - cvičení ÚPA 1 MIPS - prostředí 32 ks 32bitových registrů ( adresa registru = 5 bitů). Registr $0 je zero čte se jako 0x0, zápis
Základní pojmy. Program: Algoritmus zapsaný v programovacím jazyce, který řeší nějaký konkrétní úkol. Jedná se o posloupnost instrukcí.
Základní pojmy IT, číselné soustavy, logické funkce Základní pojmy Počítač: Stroj na zpracování informací Informace: 1. data, která se strojově zpracovávají 2. vše co nám nebo něčemu podává (popř. předává)
PROCESOR. Typy procesorů
PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních částí počítače včetně
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy
Pokročilé architektury počítačů
Pokročilé architektury počítačů Cvičení 4 Stručný úvod do problematiky virtualizace VirtualBox Martin Milata Multiplatformní virtualizační nástroj určený pro enterprice i domácí nasazení (GNU varianta).
Osobní počítač. Zpracoval: ict Aktualizace: 10. 11. 2011
Osobní počítač Zpracoval: ict Aktualizace: 10. 11. 2011 Charakteristika PC Osobní počítač (personal computer - PC) je nástroj člověka pro zpracovávání informací Vyznačuje se schopností samostatně pracovat
MSP 430F1611. Jiří Kašpar. Charakteristika
MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže
Zobrazovací jednotky a monitory
Zobrazovací jednotky a monitory Zobrazovací jednotka - karta, která se zasunuje do jednoho z konektorů na sběrnici uvnitř počítače. Dva režimy činnosti: Textový režim - zobrazuje znaky uvedené v tabulce
Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí:
Intel 80486 (1) Vyroben v roce 1989 Prodáván pod oficiálním názvem 80486DX Plně 32bitový procesor Na svém čipu má integrován: - zmodernizovaný procesor 80386 - numerický koprocesor 80387 - L1 (interní)
Pokročilé architektury počítačů
Pokročilé architektury počítačů Přednáška 5 Virtualizace Martin Milata Obsah Typy virtualizace (připomenutí) Tři třídy virtualizace VM s vlastním OS Softwarová úplná virtualizace Paravirtualizace Úplná
Operační systémy 1. Přednáška číslo 11 3. 5. 2010. Souborové systémy
Operační systémy 1 Přednáška číslo 11 3. 5. 2010 Souborové systémy Dělení dle bezpečnosti Souborové systémy s okamžitým zápisem pouze jeden druh operace a další musí čekat. Data se nemohou ztratit, ale
Bootkity v teorii a praxi. Martin Dráb martin.drab@email.cz Http://www.jadro-windows.cz
Bootkity v teorii a praxi Martin Dráb martin.drab@email.cz Http://www.jadro-windows.cz Definice Pod pojmem bootkit budeme rozumět software, který začíná být aktivní během procesu startu počítače ještě
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
Vzorový příklad pro práci v prostředí MPLAB Zadání: Vytvořte program, který v intervalu 200ms točí doleva obsah registru reg, a který při stisku tlačítka RB0 nastaví bit 0 v registru reg na hodnotu 1.
Správa paměti. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta, 2016
Správa paměti Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta, 2016 Objektové modelování, B36OMO 10/2016, Lekce 2 https://cw.fel.cvut.cz/wiki/courses/xxb36omo/start