Pavel Paták Kombinatorika matematických struktur
|
|
- Magdalena Pešková
- před 6 lety
- Počet zobrazení:
Transkript
1 Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Pavel Paták Kombinatorika matematických struktur Katedra algebry Vedoucí diplomové práce: Prof. RNDr. Jan Krajíček, DrSc. Studijní program: Matematika, matematické struktury 2010
2 Děkuji svým rodičům za podporu v celém průběhu studia a to nejen za podporu finanční. Dále děkuji svému vedoucímu profesoru Krajíčkovi za shovívavost, trpělivost a cenné rady. Děkuji též slečně Zuzaně Safernové za obětavou kontrolu pravopisu a ostatní připomínky. Děkuji i docentu Mlčkovi za to, že mě seznámil s větou o mnoha modelech a upřesnil mi její znění. Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s použitím citovaných pramenů. Souhlasím se zapůjčováním práce a jejím zveřejňováním. V Praze dne 19. července 2010 Pavel Paták 2
3 Contents 1 Motivation 6 2 Preliminaries Used notion Language Structures Complexity classes Theories Proof system Completeness and compactness Quantifier elimination Definability Many models theorem Combinatorics of a structure The language of graphs Definition of combinatorics of a structure Definability of structures Tools Pseudo-finite structures Definition of pseudo-finiteness Structures in L Unary predicates Vector spaces over finite fields Bijective mappings without cycles Discrete linear order
4 5 Combinatorics as a function of the language Combinatorially equivalent languages Trivial languages Universal language Relations among different structures N,Z,Q, Sets R,H,O,S C DeLO (Z, +, 0) Complexity results Trivial structure Trakhtenbrot s theorem Definability of the finiteness Conclusion 72 Bibliography 73 4
5 Název práce: Kombinatorika matematických struktur Autor: Pavel Paták Katedra: Katedra algebry Vedoucí diplomové práce: Prof. RNDr. Jan Krajíček, DrSc. vedoucího: Abstrakt: Kombinatorika matematické struktury prvního řádu je třída všech formulí, které platí ve všech strukturách v ní definovatelných. Tento pojem poprvé zavedl Krajíček v [6]. V předložené práci se zabýváme charakterizací a srovnáním kombinatorik známých matematických struktur (reálná a komplexní čísla, husté lineární uspořádání,...). Dále se věnujeme otázce výpočetní složitosti, tj. otázce, jak těžké je zjistit, zda daná formule leží v kombinatorice dané struktury. Dokážeme, že v případě modelů úplných teorií bez vlastnosti striktního uspořádání (SOP) či v případě pseudokonečných struktur je tento problém korekurzivně spočetně úplný a tudíž algoritmicky neřešitelný. Klíčová slova: definovatelnost, matematické struktury, složitost, vlastnost striktního uspořádání (SOP), pseudokonečné struktury Title: Combinatorics of mathematical structures Author: Pavel Paták Department: Department of Algebra Supervisor: Prof. RNDr. Jan Krajíček, DrSc. Supervisor s address: krajicek@karlin.mff.cuni.cz Abstract: The combinatorics of a first order mathematical structure is the class of all formulas valid in all in it definable structures. This notion was first introduced by Krajíček in [6]. In the present work we try to characterize and compare the combinatorics of several different prominent structures (reals, complex number, dense linear order,...). We also study the question of algorithmical complexity, i.e. the question how hard it is to check whether a given formula lies in the combinatorics of a given structure. We prove that this question is corecursively enumeratively complete and therefore algorithmicaly undecidable in the case of models of complete theories without strict order property (SOP) and in the case of pseudofinite structures. Keywords: definability, mathematical structures, complexity, strict order property (SOP), pseudo-finite structures 5
6 Chapter 1 Motivation There are several interesting statements that do hold in all finite structures. For example, we know that every injective mapping from a finite set into itself must be a bijection, that every linear order on a finite set has the minimal and the maximal element, etc. We call such statements combinatorial principles. Trahtenbrot [7] proved that the set of all combinatorial principles is co-r.e. complete. But the situation is radically less complicated in the case of infinite sets. From Completeness Theorem follows that only logically valid formulas do hold in all infinite sets. If we want to measure how much an L-structure A differs from being finite, we can look at all the formulas that hold in the given structure. But then we get only the set of all formulas valid in A. We get a much more interesting information if we look at the class of all formulas that hold in all structures that can be defined in A. This motivated Krajíček [6] to define the combinatorics of a structure A as the set of all first order formulas in a fixed language valid in all structures definable in A. The combinatorics tell us some interesting properties of A. For example, if the pigeon hole principle is in the combinatorics, the structures allows us to define ordered weak Euler characteristics on it. It shows up that if the minimum principle 1 is not in the combinatorics, the structure is unstable, etc. In this thesis we systematically study the combinatorics of various structures and answer some questions from [6]. 1 I.e. the statement that every order has a minimal element. 6
7 The first three chapters are introductory. Their larger size is due to the fact that the last chapters need many different theorems and notions from elementary logic and model theory. As the proofs of all the theorems are scattered through several books and papers, we decided to prove some of them. We hope that the reader will spend less time looking through numerous references. Second chapter introduces the used notion and basic theorems which we will use later. In the third chapter we list some interesting combinatorial statements and give a rigorous definition of the combinatorics of a structure. We also look at some tools that will help us to characterize combinatorics of various structures. The last four chapters present the new results we discovered. For the sake of completeness we also list some older results, but we always announce when doing so. The fourth chapter is about pseudo-finite structures. Although these structures are infinite, their combinatorics is exactly the same as the combinatorics of finite structures. We present several examples of pseudo-finitene structures. In the fifth chapter we study how much the combinatorics depends on the set of all L-formulas contained in it. We show that the combinatorics is fully determined by the set of all formulas in the language of graphs, i.e. in the language with one binary predicate. We also prove some interesting results about combinatorics in the empty language and languages with unary predicates. The sixth chapter talks about the relations among combinatorics of several different prominent structures. We study the combinatorics of reals, integers, complex numbers, etc. The last chapter is about the complexity results. We try to describe how hard it is to decide whether a given formula lies in the combinatorics of a given structure. We show that in many cases it is hard many such problems are co-r.e. (resp. r.e.) complete. 7
8 Chapter 2 Preliminaries In this chapter we introduce the basic concepts of mathematical logic and model theory. All the theorems and definitions are well known and can be found in any book on mathematical logic, i.e. [9] or [15]. The only exception is Many Models Theorem in Section 2.10, which is usually taught at advanced courses on model theory. 2.1 Used notion The notions used here are quite standard. The letters k, l, m, n, i, j are always used to denote natural numbers 1, 2,..., if not stated otherwise. The set of natural numbers with zero is denoted by ω. The set of all integers with addition, minus and zero is denoted by Z. The class of ordinal numbers is denoted by On. Cn stands for cardinals. The symbol ω 1 is used to denote the least uncountable cardinal. S stands for the cardinality of set S. The sign := is used to define new objects. If s and t are strings, s t means the concatenation of them with comma, i.e. the string s, t. The string f n (x) stands for f f f f(x). }{{} n The string f 0 (x) means x and if f is injective, with inverse mapping g, f n (x) stands for g n (x). If X is a set, R a relation on X and S X, then R[S] := {y: R(x, y) for some x S}, especially if f is a function, f[s] := {f(x): x S}. If f : A B is a function and C is a set, then f C stands for the restriction of f onto C, i.e. the mapping g: C B defined by g(x) = f(x). If A B n are sets, π i means the projection on the i-th coordinate. 8
9 2.2 Language Let us state precisely what the first order language means. In the case that the reader is familiar with this notion, he can skip these definitions and continue directly to Subsection A language consists of symbols and rules how to concatenate these symbols in a reasonable way. We will use calligraphic letter L with different indices to denote languages. Let us first define the logical symbols, that are the symbols common for all first order languages. Definition 2.1 (Logical symbols). Logical connectives,,,, Quantifiers, Variables v 1, v 2,... (each first order language has countable many variables, the set of them is denoted by Vars) Auxiliary symbols ), ( (right parenthesis, comma, left parenthesis) Equality sign = We will also use symbols x, y, z, u, v, x 1, x 2,..., y 1, y 2, etc. for variables. First order languages differ in a part called signature: Definition 2.2 (Signature). A pair ((R, F, C), n) is called a signature if R, F, C are disjoint sets of non-logical symbols, n: (R F) {1, 2, 3,...} is a mapping (it tells us the arity of relational and functional symbols). A symbol is said to be k-ary if its arity is equal to k. Set R is the set of relational symbols, F is the set of functional symbols, C is the set of constants. The cardinality of a language L is defined as R + F + C + ω and is therefore always infinite. Two signatures σ = ((R, F, C), n) and σ = ((R, F, C ), n ) are called disjoint if (R F C) (R F C ) =. 9
10 Two signatures σ = ((R, F, C), n) and σ = ((R, F, C ), n ) are said to be isomorphic if there exist three bijections r: R R, f : F F and c: C C such that for any relational symbol R (resp. functional symbol F) in σ the following holds true: n (r(r)) = n(r) (resp. n (f(f)) = n(f)). Two languages are said to be isomorphic if their signatures are isomorphic. We will often identify the language with its signature. There is no danger of confusion in this double usage since the language is determined uniquely by its signature. If no misunderstanding arises, we also use just the sets R, F, C for describing a signature. Terms are the smallest strings that have some meaning. Definition 2.3 (Terms). Let L be a language. The set of all L-terms Term L is the smallest set of strings satisfying: 1. Any constant symbol is a term, 2. any variable is a term, 3. if t 1, t 2,..., t n are terms and F is an n-ary functional symbol, then F(t 1, t 2,...,t n ) is a term. We usually denote terms by small letters s, t, t 1, t 2, etc. Intuitively terms correspond to functions that can be built up in our language. We will now define the atomic formulas, which are the most elementary statements in a given language: Definition 2.4 (Atomic formulas). Let L be a language. The set of all atomic L-formulas is the smallest set AForm L of strings satisfying: If t and s are L-terms, t = s is an atomic formula, if R is a n-ary relational symbol of L and t 1, t 2, t 3,..., t n are L-terms, R(t 1, t 2,...,t n ) is an atomic L-formula. We can compose atomic formulas in a certain way to get compound formulas. 10
11 Definition 2.5 (Formulas). 1 Let L be a language. The set of all formulas in the language L is the smallest set Form L of strings satisfying the following conditions: Every atomic formula is a formula, if ϕ and ψ are formulas, (ϕ ψ) is a formula, if ϕ is a formula, ϕ is a formula, if ϕ is a formula and x is a variable, ( x)ϕ is a formula. We will usually denote formulas by small Greek letters θ,ϕ, χ, ψ. Now look at the notion of subformulas: Definition 2.6 (Subformulas). The subformula of an atomic formula ϕ is only ϕ itself, the subformulas of ( ϕ) are ( ϕ) itself and all subformulas of ϕ, the subformulas of (ϕ ψ) are (ϕ ψ) itself, all subformulas of ϕ and all subformulas of ψ, the subformulas of ( x)ϕ are ( x)ϕ itself and all subformulas of ϕ. We shall now define the notion of free and bound occurrences of a variable. Intuitively an occurrence is bound if it is in the scope of a quantifier. Let s state it precisely. As usually this will be done via induction: Definition 2.7 (Bound and free occurrences). Any occurrence of a variable in an atomic formula is free, a free (resp. bound) occurrence of a variable x in ϕ is also a free (resp. bound) occurrence of x in (ϕ ψ), a free (resp. bound) occurrence of a variable x in ψ is also a free (resp. bound) occurrence of x in (ϕ ψ), 1 For technical reasons we use only small set of connectives, the induction based on the construction of formulas is then simpler. Other logical connectives are later introduced as abbreviations. 11
12 a free (resp. bound) occurrence of a variable x in ϕ is also a free (resp. bound) occurrence of x in ϕ, if x and y are different variables then a free (resp. bound) occurrence of y in ϕ is also a free (resp. bound) occurrence of y in ( x)ϕ, a free or bound occurrence of a variable x in ϕ is called a bound occurrence of x in ( x)ϕ. A variable is said to be free in ϕ if it has at least one free occurrence in ϕ, a variable is said to be bound in ϕ if it has at least one bound occurrence in ϕ. A formula is called quantifier free (or open) if it contains no bound occurrence of any variable. The variable can have both free and bound occurrences in a formula, as is easily seen on the example (x = y ( x)x = x). We will avoid such formulas (they are logically equivalent to formulas in which no variable has bound and free occurrence simultaneously). A formula with no free occurrence of any variable is called a sentence. Let x be a variable and t a term. The formula ϕ(x/t) is obtained from ϕ by replacing all free occurrences of x by t. We will write ϕ(x) to denote that ϕ contains no other free variables than x. It is convenient to introduce some abbreviations, so that we can express the desired properties in L more effectively. Convention 2.8 (Common abbreviations). Let L be a language. Then, (ϕ ψ) means ( ϕ ψ), (ϕ ψ) means ( (ϕ ψ)), (ϕ ψ) means ((ϕ ψ) (ψ ϕ)), ( x)ϕ stands for ( x) ϕ, ( (!x)ϕ means ( x)ϕ ( x)( y) ( (ϕ ϕ(x/y)) x = y )), a b is an abbreviation for a = b, if R is a binary relation, we write arb instead of R(a, b), 12
13 if F is a binary function, we write afb instead of F(a, b), if R is a unary relation, we write Ra instead of R(a), if F is a unary function, we write Fa instead of F(a). Convention 2.9 (Dropping parenthesis). To avoid confusion we will add parenthesis if needed. (For example if is a binary function, a b c can be interpreted as (a b) c or a (b c) which are two different terms.) If no misunderstanding arises, we leave out unnecessary parenthesis. We shall follow the commonly accepted usage in dropping parenthesis. Thus functional symbols are considered more binding than equality sign or relational symbols, which in turn are more binding than quantification. Third comes the sign, and are fourth, and are fifth. In the case that the priority is the same, we consider the rightmost written operation as the most binding, e.g. ϕ ψ χ means ϕ (ψ χ). Sometimes we may also make use of the following handy expressions: Convention n ϕ i means ϕ 1 ϕ 2... ϕ n, i=1 for technical reasons k ϕ i, where k < n stands for v 1 = v 1 or any i=n other logically valid formula, x is an abbreviation for x 1, x 2, x 3,..., x n, where n (the length of x) can be given, unspecified or even zero, ϕ( x) means that all free variables of ϕ are among x 1, x 2,...,x n, x = ȳ stands for x 1 = y 1 x 2 = y 2 x 3 = y 3 x n = y n, ( x)ϕ stands for ( x 1 )( x 2 )( x 3 )...( x n )ϕ, similarly ( x)ϕ stands for ( x 1 )( x 2 )( x 3 )...( x n )ϕ, (! x)ϕ( x) means (!x 1 )(!x 2 )...(!x n )ϕ( x), ( n x ) ( ϕ(x) means ( x 1, x 2,...,x n ) n ϕ(x i ) 13 i=1 n j=i+1 (x i x j ) ),
14 ( n x ) ϕ(x) means ( (n+1) x ) ϕ(x), ( =n x ) ϕ(x) means ( n x ) ϕ(x) ( n x ) ϕ(x), ( = x ) ϕ(x) is the set of formulas {( n x ) ϕ(x): n ω }. 2 Let us define some interesting languages: Example 2.11 (Languages). L G the language of graphs, it contains one binary relational symbol E, L Ab the language of abelian groups, it contains one binary functional symbol +, one unary functional and constant 0, L R the language of rings, it is the language L Ab with a constant 1 and a binary functional symbol added, L Set the language of set theory 3 with one binary relational symbol, L O the language of order with one binary relational symbol <, L OR the language of ordered rings which is the language of rings together with one binary relational symbol <, L the empty language containing neither relational, functional nor constant symbols. Now comes an example of an L R -formula in a full and an abbreviated forms: Example Full version ( x)( y)( (x, y) = 0 (( x = 0) y = 0)) Abbreviated version x y(x y = 0 x = 0 y = 0) 2 For the sake of simplicity, if we write ( = x)ϕ(x) as an element of a set S, we actually mean that S contains all the formulas from the set ( = x)ϕ(x). 3 also called epsilon-language 14
15 2.3 Structures A language is a useful tool for describing structures mathematicians work with. We will now define the notion of a first order mathematical structure. Definition 2.13 (L-structure). Let L be a first order language of signature σ. An L-structure A is a quadruple ( A, {R A } R R, {F A } F F, {C A } C C ), where A is a nonempty set, each R A is an n(r)-ary relation on A (i.e. subset of A n(r) ), each F A is an n(f)-ary operation on A (i.e. mapping of A n(f) into A), each C A is an element of A. The set A is called the universe of A or the underlying set of A. We will often write a A or ā A to denote that a A or ā A n. We call R A, F A and C A the realizations of symbols R, F and C. If the context is clear, we use the original symbols from signature to describe the realization of them, i.e. we write (R, +,, 0, 1) instead of the full form (R, + R, R, 0 R, 1 R ). A structure with A = 1 is called trivial, otherwise it is non-trivial. Here we list some basic (and for the whole of mathematics quite important) examples: Example 2.14 (Structures). 1. (Q, <): the dense linear order without endpoints 2. (V, E): directed graphs 3. (N, +, 0, 1): the set of non-negative integers with addition, and two constants 0 and 1 4. (Z, +, 0, 1, ): integers ( is a binary operation) 5. (Q, +, 0, 1, ): rational numbers 6. (R, +, 0, 1,, <): real numbers 15
16 7. (C, +, 0, 1, ): complex numbers 8. (H, +, 0, 1, ): quaternions 9. (V, 0, +,, f): vector space over a field F (with one unary operation f for each f F) 10. (S): any structure in empty language (only = is allowed) (S being non-empty) Other examples of mathematical structures are groups, rings, etc. One of the basic notion in mathematics is isomorphism, which describes when two structures are the same up to renaming of their elements. Convention Let us recall that ā stands for a 1, a 2,..., a n. If h is a mapping, h(ā) stands for h(a 1 ), h(a 2 ),...,h(a n ). Definition 2.16 (Embedding and isomorphism). Let A = ( A, {R A } R R, {F A } F F, {C A } C C ) and B = ( B, {R B } R R, {F B } F F, {C B } C C ) be two L-structures. A mapping h: A B is called an embedding, if h ( F A (ā) ) = F B( h(ā) ) for all functional symbols F and all ā A, (ā) R A ( h(ā) ) R B. Isomorphism is a bijective embedding. We say that two structures A and B are isomorphic, if there exists an isomorphism between them. We write A = B in this case. Definition 2.17 (Substructure). Let L be a language. An L-structure B is said to be a substructure of A (B A), if the underlying sets satisfy B A and the identity mapping Id: B A is an embedding, which means (S B ) = S A B n for any n-ary relational symbol S, C B = C A for any constant symbol C and F B = F A B n for any n-ary functional symbol F. Given a formula we want to decide if it is true in a mathematical structure. Tarski s Truth definition formalizes this concept: Definition 2.18 (Interpretation of terms). Let A be an L-structure. By a valuation of variables we mean any assignment v : Vars A. Let us write t[v] for the interpretation of t under v. The valuation of variables can be extended to the interpretation of all terms v : Term A by the following definition: 16
17 t[v] = c A if term t is equal to constant symbol c, t[v] = v(x) if term t equals variable x, F(t 1, t 2,...,t n )[v] = F A( t 1 [v], t 2 [v],...,t n [v] ) for F an n-ary functional symbol and F A its realization. Definition 2.19 (Definition of truth). A = ϕ[v] means ϕ is true in A under the valuation v, A ϕ[v] means ϕ is not true in A under the valuation v. If t and s are terms, A = (t = s)[v] t[v] = s[v], if R is an n-ary relation and t 1, t 2,...t n are terms: A = R(t 1, t 2,..., t n )[v] ( t 1 [v], t 2 [v],...,t n [v] ) R A, A = ( ϕ)[v] A ϕ[v], A = (ϕ ψ)[v] (A ϕ[v] or A = ψ[v]) A = ( x)ϕ[v] A = ϕ[v ] for each valuation v which agrees with v on all variables different from x. We say that a formula ϕ is true (or valid) in A (A = ϕ) if it is true for all valuations on A. We say that an L-formula ϕ is valid ( = ϕ) if it is true in all L-structures. We say that ϕ is satisfiable in A if there exists a valuation v on A such that A = ϕ[v], we say that ϕ is satisfiable if there exists a mathematical structure A and a valuation v on it satisfying A = ϕ[v]. Let us remark that under this definition the equality is absolute, i.e. it is always interpreted as equality on the underlying set. Now look at examples of some true and false sentences in different structures. 1. (Q, <) = x y z(x < y y < z x < z) 2. (C, +,,, 0, 1) = x y(y y = x) 3. (R, +,,, 0, 1, <) x y(y y = x) The following example plays an important role in logic. 17
18 Example The sentence ϕ n := ( n x ) (x = x) can be formulated in any first order language. Moreover, the formula ( =n x ) (x = x) is valid in A if and only if the underlying set of A has exactly n elements. Furthermore if we have a language L with finite signature and a finite L-structure A, we can easily find a formula ϕ, such that an L-structure B is isomorphic to A if and only if B satisfies ϕ. We can namely take the conjunction of formulas: The structure has exactly the same number of elements as A., The relation R, function F or constant C is interpreted in the same way as in A. for each relation, function and constant symbols of L. For example, let us consider the additive group Z 2 in L Ab. This structure is up to isomorphism fully determined by ϕ := ( x 1 )( x 2 )(x 1 x 2 ( x 3 )(x 3 = x 1 x 3 = x 2 ) (x 1 = 0 x 1 = x 1 x 2 = x 2 x 1 + x 1 = x 1 x 1 + x 2 = x 2 x 2 + x 1 = x 2 x 2 + x 2 = x 1 ). For other structures the defining formula can be longer. Definition 2.21 (Formulas with parameters). Let ϕ( x, ȳ) be an L-formula with ȳ = (y 1, y 2,...,y n ). Let A be an L-structure and ā = (a 1, a 2,...,a n ) A n. (A is the underlying set of A.) We say that A = ϕ( x, ā) if and only if A = ϕ( x, ȳ)[v] for each valuation satisfying v(ȳ) = ā. The elements a 1, a 2,...,a n are called parameters of ϕ( x, ā). If A is an L-structure with universe A and X A is a set of parameters, Form X L means the set of all L-formulas with parameters from X. The symbol FormP L is used to denote the class of all L-formulas with parameters. Definition 2.22 (Elementarily equivalence). Two L-structures A and B are elementarily equivalent (A B), if for every L-sentence ϕ the following equivalence holds true: A = ϕ B = ϕ. A substructure B A of an L-structure is called elementary, if for every L-formula ϕ( x) and parameters b B the following equivalence holds true: A = ϕ( b) B = ϕ( b). Let us remark that according to Example 2.20 no finite structure is elementarily equivalent to an infinite one and two finite L-structures are elementarily equivalent if and only if they are isomorphic. 18
19 Definition 2.23 (Elementary embedding). An L-structure B is elementarily embeddable into an L-structure A, if it is isomorphic to some elementary substructure of A. 2.4 Complexity classes In the following text we will often study whether a set of natural numbers is given effectively. To distinguish between effectively and non-effectively given theories we will use the notation of recursive sets. This section is rather informal, formal definitions can be found in [15]. Definition 2.24 (Recursive sets). 1. An n-ary relation R is said to be recursive if there exists an algorithm which for given ȳ decides whether R(ȳ). 2. A relation S is said to be recursively enumerable (r.e.) if there exists a recursive relation R( x, ȳ) such that S( x) ( ȳ)r( x, ȳ). 3. A relation S is said to be co-r.e. if there exists a recursive relation R, such that S( x) ( ȳ)r( x, ȳ). 4. A set S is said to be recursive or r.e., co-r.e., if the membership relation x S is recursive or r.e., co-r.e., respectively. More sharp criterion of effectivity is the criterion of polynomially solvable(p) problems. For the sake of the following definition x means the number of bites in the standard 4 binary encoding of x. Definition 2.25 (NP problems). Polynomial algorithm is an algorithm, that solves the given problem in time polynomial in the length of input. 1. A relation R is in P if there exists a polynomial algorithm that given ȳ decides whether R(ȳ). Such relations are called polynomial. 4 I.e. reproducable on any computer. 19
20 2. A relation S is in NP if there exists a polynomial relation R( x, ȳ) and c 1 such that S( x) ( ȳ) ( R( x, ȳ) ȳ x c). 3. A relation S is in co-np if there exists a polynomial relation R( x, ȳ) and c 1, such that S( x) ( ȳ) ( R( x, ȳ) ȳ x c). We give here an example of an NP problem. Example Consider the set G of all simple graphs with finite set of vertices V ω, which have property that there exists a coloring of their vertices with four colors, such that no vertices connected by an edge have the same color. The set G of four-colorable graphs is in NP. Namely, if we have a coloring of G, we can verify in time polynomial in the size of G that no two connected vertices have the same color. Definition 2.27 (Reducibility). Let R( x), S(ȳ) be two relations on natural numbers. We say that R is polynomially-time reducible to S, if there exists a polynomially-time computable function f such that R( x) S ( f( x) ). Definition 2.28 (Complete problems). Let T be a set of relations on natural numbers. 1. We say that a relation Q is T -hard, if any relation R from T is polynomially-time reducible to Q. 2. We say that a relation Q is T -complete, if Q is in T and is T -hard. 2.5 Theories Theories describe classes of interesting mathematical structures: 20
21 Definition 2.29 (Theory). An L-theory T is any set of L-sentences. The sentences in T are called non-logical axioms of T. An L-structure A is called a model of T (or a T-model) if A = ϕ for each ϕ in T. We write A = T in this case. A theory T is said to be satisfiable if there exists a model of T. We will consider only theories that have at least one model, i.e. are satisfiable. An interesting question is what sentences are consequences of a given theory. Definition 2.30 (Consequences). We say that ϕ is a consequence of a theory T if A = ϕ for each model A of T. We denote this situation by T = ϕ. A satisfiable L-theory is said to be complete if for all L-sentences ϕ either T = ϕ or T = ϕ. Two L-theories T 1 and T 2 are said to be equivalent if for each formula ϕ T 1 = ϕ T 2 = ϕ. Definition 2.31 (Equivalence of formulas). Let T be a theory. Two formulas ϕ and ψ are equivalent in T (ϕ T ψ) if T = ϕ ψ. If the context is clear, we just write that ϕ and ψ are equivalent. Two formulas are logically equivalent (ϕ ψ) if = ϕ ψ. Definition 2.32 (Theory of a structure). The L-theory of an L-structure A is the set of all L-sentences valid in A, we denote this theory by Th L (A). The theory of any structure is complete, because either ϕ or ϕ is valid in A according to the definition of truth. Definition 2.33 (Spectrum of categoricity). Let T be a theory. The spectrum of categoricity I(T, κ) is defined as the number 5 of mutually non-isomorphic T-models of cardinality κ. A theory T is said to be κ-categorical if there exists (up to isomorphism) only one T-model of cardinality κ. 5 I(T, κ) is often an infinite cardinal number. 21
22 Observation All models of a complete theory are elementarily equivalent. Proof. It follows from the definition. If we work with a countable language L, we have some encoding of all its symbols into natural numbers, which can be extended into an encoding of all finite strings created by these symbols. So we may assume that all strings (especially formulas) from L are natural numbers. We use this in the following definition. Definition Let L be a countable language. An L-theory T is called recursive if T is recursive as a subset of natural numbers. At the end of this section we give an example of a first order theory. Example 2.36 (DeLO). The theory DeLO (dense linear order without endpoints) is the theory in L O having these non-logical axioms: 1. ( x)( y)( z) ( x < y y < z x < z ) [transitivity] 2. ( x)( y) ( x < y ( y < x) ) [antisymmetry] ( 3. ( x)( z) x < z ( ( y)(x < y y < z) )) [density] 4. ( x)( y)(y < x) [non-existence of the minimal element] 5. ( x)( y)(x < y) [non-existence of the maximal element] All models of DeLO are clearly infinite. As we show later DeLO is a complete theory with I(T, κ) = 2 κ for all uncountable cardinals κ and I(T, ω) = 1. It is equivalent to Th LO (Q, <). DeLO has only finitely many axioms and it is therefore recursive. 2.6 Proof system Whether a formula is a consequence of a given theory can depend on a proper class of structures. It is surprising that checking whether the formula is a consequence of T is equivalent to finding some finite object, namely a proof of the formula. Let us define precisely what a proof is 6. First we need to define one technicality: 6 We will use Hilbert s calculus, but there are many others. 22
23 Definition 2.37 (Substitution). Let ϕ be a formula and x be a variable. We say that a term t is free to be substituted into ϕ for x, if all occurrences of all variables of term t stay free in the formula ϕ(x/t). We usually write ϕ(x/t) if and only if t is free to be substituted into ϕ for x. Definition 2.38 (Formal proof). A formal proof of a formula ϕ in a theory T is a finite sequence of formulas, in which ϕ is the last one and each formula is either an axiom or is obtained from previous formulas by a rule of inferences. We have just two rules of inferences: Modus ponens From ϕ and (ϕ ψ) derive ψ. Generalization If x is a variable, from the formula ϕ derive ( x)ϕ. But there are many axioms: Non-logical axioms These are just all the formulas in T. Logical axioms Let ϕ, ψ and χ be any formulas. Then: 1. ( ϕ (ψ ϕ) ) is an axiom, 2. ( (ϕ (ψ χ) ) ( (ϕ ψ) (ϕ χ) ) ) is an axiom, 3. ( ( ϕ ψ) (ψ ϕ) ) is an axiom, 4. if term t can be substituted into ϕ for x, then ( ( x)ϕ ϕ(x/t) ) is an axiom, 5. if the variable x is not free in the formula ϕ, then (( x)(ϕ ψ) ( ϕ ( x)ψ )) is an axiom. Axioms of equality 7 7. If x is a variable, x = x is an axiom, 7 We use Convention 2.9 about dropping parenthesis. 23
24 8. if x 1, x 2, y 1, y 2 are variables, is an axiom, x 1 = y 1 x 2 = y 2 x 1 = x 2 y 1 = y 2 9. if R is an n-ary relational symbol of L x 1 = y 1... x n = y n R(x 1,...,x n ) R(y 1,...,y n ) is an axiom, 10. if F is an n-ary functional symbol of L x 1 = y 1... x n = y n F(x 1,...,x n ) = F(y 1,..., y n ) is an axiom. We say that ϕ is provable in T if there exists a formal proof of ϕ in T. We will write T ϕ if ϕ is provable in T and T ϕ otherwise. If T = we say that ϕ is logically valid and write ϕ instead of ϕ. An L-theory is called consistent if there exists an L-sentence such that either T ϕ or T ϕ. 2.7 Completeness and compactness We will now state the three most important results in mathematical logic: Theorem 2.39 (Soundness). Let T be an L-theory and ϕ an L-sentence, then T ϕ T = ϕ. Proof. It is enough to check that all the axioms are true in any structure A with T = A, which is easily done. We can then proceed by induction on the length of the proof and use the fact that modus ponens and generalization allows us to derive only valid formulas (if we start with valid formulas). Theorem 2.40 (Completeness). Let T be an L-theory and ϕ an L-sentence, then T = ϕ T ϕ. Moreover 8 if L = κ, we can find a model of T with cardinality less or equal κ. 8 Let us remark that according to Definition 2.2, L is always infinite. 24
25 Proof. We will omit the proof, which is rather long and technical. It can be found in [15]. This is the key theorem of mathematical logic. It tells us that if we want to check whether the sentence is true in a theory T, it is sufficient to look at finite objects, namely the proofs in T. Corollary The set of all formulas ϕ valid in a recursive theory T is recursively enumerable (r.e.). Proof. If there exists an algorithm that decides whether a formula 9 is an axiom of T, then given a finite string y, there exists an algorithm that checks whether y is a proof of ϕ in T. Corollary A theory T is satisfiable if and only if it is consistent. Proof. It T is not satisfiable, every sentence ϕ is true in all models of T, thus every sentence ϕ is provable in T according to Completeness Theorem. Hence ϕ and ϕ are provable in T for any sentence ϕ. The other implication is clear. Theorem 2.43 (Compactness). Let T be an L-theory. 1. If T = ϕ, then there exists finite T T such that T = ϕ. 2. A theory T has a model if and only if each its finite subset has a model. Proof. The proof that T = ϕ is a finite object, therefore it uses finitely many axioms of T, so we can set T = {axioms used in the proof of ϕ}. If T has no model, it satisfies T = x x, according to the previous part some finite subset T of T satisfies T = x x. Using Completeness Theorem we get T x x, hence T has no model, which is a contradiction. The other implication is clear. One of the interesting consequences of Compactness Theorem is the following proposition: Theorem 2.44 (Löwenheim-Skolem). If a theory T has an infinite model A, then there exist models of T with cardinality λ for each λ L. 9 More precisely its encoding 25
26 Proof. Let us consider the extended language L together with λ L new constant symbols {c α } α<λ. Let T = T {c α c β : α < β < λ}. Then T is a theory in the language L = L {c α } α<λ, which has the cardinality λ. Every finite subset of T has a model A with the constants interpreted arbitrarily (but differently). According to Compactness Theorem, T has a model with cardinality less or equal to L {c α } α<λ = λ. But the cardinality cannot be less than λ because each constant c α must be interpreted differently. Theorem 2.45 ( Loś-Vaught test). Let T be an L-theory which has only infinite models. If I(T, κ) = 1 for some κ L then T is complete. Proof. Let us assume that there exists a sentence ϕ with neither ϕ nor ϕ consequences of T. It means that we can find models A = ϕ and B = ϕ. These models are infinite according to the assumption. Let S be the set of all sentences true in A and U denote the set of all sentences true in B. T S and T U are L-theories with infinite models, from Löwenheim-Skolem Theorem there exist a model of T S and a model of T U of cardinality κ. But these models are also models of T and there exists only one such model up to isomorphism. It follows that for this model both ϕ and ϕ are true, which is a contradiction. We will most often use the previous corollary in the following form: Corollary 2.46 (Test of completeness). Let T be an L-theory. 1. If the signature of L is finite, I(T, n) = 1 for some n < ω and T has no models of cardinalities κ n, then T is complete. 2. If there exists κ L, such that I(T, κ) = 1 and for all n < ω I(T, n) = 0, T is complete. 3. If there exists n ω, such that I(T, n) > 1, then T is not complete. 4. If there exist n ω and κ Cn, such that κ n and I(T, n) > 0, I(T, κ) > 0, then T is not complete. Proof. It follows easily from the previous corollary and Example
27 2.8 Quantifier elimination Definition 2.47 (Elimination of quantifiers). An L-theory T allows the elimination of quantifiers if for each formula ϕ( x) there exists a quantifier-free L-formula ψ( x) such that ϕ( x) and ψ( x) are equivalent in T. Definition A formula ψ is said to be a Boolean combination of formulas ϕ 1,ϕ 2,...,ϕ n if it is obtained from ϕ 1, ϕ 2,..., ϕ n only by connectives,,,, (i.e. no quantification). Definition A literal is an atomic formula or its negation. A formula ψ is said to be in disjunctive normal form, if it is a disjunction of conjunctions of literals. Proposition 2.50 (DNF). Let ψ be a boolean combination of atomic formulas ϕ 1,...ϕ n. Then ψ is logically equivalent to some formula in disjunctive normal form. Proof. The result can be obtained by induction, here we present a semantical proof. The two-element boolean algebra B is a structure containing only two elements 0 and 1. The operation are defined as follows x y := min(x, y), x y := max(x, y), x = 1 x, x y := ( x) y. Furthermore we set S = maxs for any finite set S. If t(x) is a boolean term, we define t 1 (x) := t(x) and t 0 (x) := t(x). For x = x 1,...,x n and an arbitrary function σ : {1, 2,..., n} {0, 1}, we define x σ to be x σ(1) 1 x σ(2) 2... x σ(n) n. Let t(x) be a boolean term, we can easily verify the following equality t(x) = { x σ : ( σ: {1, 2,..., n} {1, 2} ), B = t( x)[σ] }. From the definition of truth, it follows that this identity is sufficient to prove Proposition 2.50 in the general context of quantifier free formulas, we can namely interpret the value 1 as that the corresponding atomic formula is true and the value 0 as that the corresponding atomic formula is false. Definition A formula is said to be in the prenex form if it has the form Q 1 x 1 Q 2 x 2...Q n x n ϕ, where each Q i is a quantifier (i.e. or ) and ϕ is a quantifier-free formula. Proposition For every formula ψ there exists a logically equivalent formula ϕ which is in prenex form. 27
28 Proof. Let Q be a quantifier (i.e., ) and let us denote Q the opposite quantifier (i.e., ). We can easily verify that 1. ( x)ψ ( y)ψ(x/y), for any two variables x, y, 2. (Qx)ϕ (Q x) ϕ, 3. (Qx)ψ χ (Q x)(ψ χ), if x is not free in χ 4. ψ (Qx)χ (Qx)(ψ ψ), if x is not free in ψ Let us assume that we have a formula ϕ. First let us note that if we replace an occurrence of a subformula θ in ϕ by a logically equivalent subformula θ, the resulting formula ϕ will be logically equivalent to ϕ. If the formula ϕ is not in the prenex form, there exists a subformula θ of ϕ, which has one of the forms written above on the left side. We may assume that the variable x does not occur in both subformulas ψ, χ of θ. We can namely replace (Qx)ψ(x) (or (Qx)χ(x)) by (Qy)ψ(x/y) (or (Qy)χ(x/y), respectively) for a suitable variable y. The subformula θ satisfies the conditions and can be transformed into a subformula θ which has more subformulas in the scope of quantifiers (the right side). Because this transformation does not change the total number of subformulas, it follows that the process will eventually terminate. But then the resulting formula ϕ is in a prenex form. Theorem Let T be a theory. If for every conjunction of literals ϕ there exists a quantifier-free formula ψ such that ( x)ϕ and ψ are T-equivalent, then T allows the elimination of quantifiers. Proof. Let χ be a formula. We prove the result by induction on the creation of χ. If χ is atomic, it is quantifier-free. Suppose that χ has the form ϕ 0 or ϕ 1 ϕ 2, according to the induction hypothesis, ψ 0, ψ 1, ψ 2 are logically equivalent to quantifier-free formulas ϕ 0, ϕ 1, ϕ 2. Consequently, χ is equivalent to quantifier-free formula ϕ 0 or ϕ 1 ϕ 2, respectively. If χ has the form xϕ, where x does not occur in ϕ, then χ is logically equivalent to ϕ, which is logically equivalent to some quantifier free-formula according to the assumption. Finally, if χ has the form ( x)ϕ, where x does actually occur in ϕ, then ( x)ϕ is logically equivalent to ( x) ϕ. But ϕ is logically equivalent to the quantifier-free formula ψ. According to the assumption ( x)ψ is 28
29 logically equivalent to some quantifier-free formula θ. Therefore χ is logically equivalent to quantifier-free formula θ. Definition An L-theory T is said to be model complete, if A is an elementary substructure of B for every two T-models satisfying A B. Note that if A B are two models of a model complete theory T, then they are elementarily equivalent. Proposition If a theory T allows the elimination of quantifiers then it is model complete. Proof. Let us suppose that we have two T-models A B. We want to show that for every ϕ( x) and every parameters ā A the following equivalence holds true: A = ϕ(ā) B = ϕ(ā). Every atomic formula with parameters from A does hold in A if and only if it holds in B (A is a substructure), by the induction follows that every quantifier free formula with parameters from A holds in A if and only if it holds in B. Because the theory T allows the elimination of quantifier and both A and B are its models, there exists a quantifier free formula ψ( x) such that A = ϕ( x) ψ( x) and B = ϕ( x) ψ( x). Consequently A = ϕ(ā) A = ψ(ā) B = ψ(ā) B = ϕ(ā). 2.9 Definability Definition Let A be an L-structure with universe A. Any set B A n of the form B = { b A n : ϕ( b, ā)}, where ϕ is any L-formula and ā A l are any parameters from A, is called definable in A. A k-ary relation on some definable subset B A n is just a subset of A n k, hence we know when a k-ary relation on B is definable in A. We say that an l-ary function f on B is definable, if its graph 10 is definable. 10 The graph of the function f is the set {( b, f( b)): b B l }. 29
30 Definition Let L and L be two languages with disjoint signatures. Let further the signature of L be finite. We denote its set of relational symbols by R, its set of functional symbols by F and its set of constant symbols by C. An L -structure B is definable in A if it is isomorphic to some structure {D A n, {R D } R R, {F D } F F, {C D } C C }, where D is a definable set in A and each relation R D and function F D is definable 11 in A. Definition Let a structure B with universe B be definable in a structure A with universe A. Without loss of generality we may assume that B is a subset of A n. From the definition of a definable structure follows that we can choose formulas ϕ B ( x, z), ϕ R ( x 1,..., x k, z R ) and ϕ F ( x 1,..., x l, ȳ, z F ) and parameters c B, c R, c F, c C such that: x, ȳ and all x i s have length n, ā B A = ϕ B (ā, c B ), R B (ā 1,...,ā k ) A = ϕ R (ā 1,...,ā k, c R ) for any k-ary relational symbol R R, F B (ā 1,..., ā l ) = b A = ϕ F (ā 1,...,ā n, b, c F ) for any l-ary functional symbol F F, C B = c C for any constant symbol C. Definition Let X B A n be a finite set of parameters and Y be the set of parameters used to define B. Let us set X := n i=1 π ix. Clearly, X is a subset of A. Moreover, the parameters X can be defined in A using the parameters X. It is possible to define 12 the interpretation I B : Form X X L FormYL of an L -structure in an L-structure such that for every L -formula ϕ the following equivalence holds true: A = I B (ϕ) B = ϕ. 11 Under our assumptions, all constants can also be defined, because there are only finitely many of them. 12 We skip the details, the basic idea is induction on creation of formulas and using Definition The only problem is how to get rid of complicated terms. 30
31 Let L and L be two disjoint languages. Let further the signature of L be finite. Let I : FormP L FormP L be a mapping. Let us denote the image of ϕ under I by ϕ I ( x, ȳ). If for every L-structure A and every choice of parameters ā A of length t the mapping I(A, ā): ϕ ϕ I ( x, ā) can be obtained as an interpretation resulting from a definition of some structure in A, we say that I is an interpretation of L in L. In this case we also use I(A, ā) to denote the corresponding structure that is defined in A. Let ϕ be a sentence. We use the notion ϕ B ( c) for the image I B (ϕ) to emphasize all the parameters used in the resulting formula I B (ϕ), similarly ϕ I ( c) means the image I(A, ā)(ϕ) while emphasizing all the used parameters. If B is defined in A using parameters ā, we have B = ϕ I B (A, ā) = ϕ. If we use parameters ā from A to define B, we write I B (A, ā) to denote the definable structure B. For interpretations of languages, we use the calligraphic letter I. Proposition Let L, L, L be three different first order languages and A be an L-structure, B be an L -structure, C be an L -structure. If C is definable in B which is definable in A, then C is definable in A. Proof. If a relational symbol R is defined via ϕ R in B, the formula I B (ϕ R ) defines R in A. The same reasoning can be used for other symbols Many models theorem Definition 2.61 (SOP and INDP). Let ϕ( x, ȳ) be an L-formula. Let T be a complete L-theory. We say that ϕ has the independence property (INDP) for T if in every model A of T and every 0 < n < ω there is a family b1, b 2,..., b n A, such that for every subset X {1,..., n} there is a tuple ā in A such that A = ϕ(ā, b i ) i X. We say that ϕ has the strict order property (SOP) for T if for every model A of T and every 0 < n < ω there are b 1, b 2,..., b n such that for any 0 < k, l n A = ( x) ( ϕ( x, b k ) ϕ( x, b l ) ) k < l. We say that T has SOP (or INDP), if there exists a formula ϕ which has SOP (or INDP, respectively) for T. 31
32 Note that we can even allow ϕ to contain parameters, as we can easily hide these parameters into b i s. Definition If a complete theory T has SOP or INDP, it is unstable, otherwise T is stable 13. Theorem 2.63 (Many models theorem). Let T be an unstable theory in a first-order language L. Then for every cardinal κ > L, there is a family {A i : i < 2 κ } of L-structures which are models of T of cardinality κ, such that for all i j, A i is not elementarily embeddable in A j. Proof. The proof is rather long, complicated and uses a lot of set theory, Hence we will skip the proof, which can be found in [13]. Lemma Let A be a model of a complete L-theory T with universe A. If there exists an infinite definable set X A, which is linearly ordered by some formula θ(ū, v, c) with parameters c and ū, v tuples of variables of the same length, then T has SOP. Proof. We can take an infinite linear order ā 1 < ā 2 <.... We set b i = ā 2a. Then the formula θ( x; ȳ, c) corresponding to x lies in X and it is less than ȳ in the defined order on X has SOP (with variables x and parameters b i in the place of ȳ). Corollary 2.65 (Undefinability of infinite order). Let T be a complete L-theory. If T does not have SOP, every definably linearly ordered definable set in any model of T is finite. In particular, if I(T, κ) < 2 κ for some κ > L, every definably linearly ordered definable set in any model of T is finite. Proof. If a complete theory T has less than 2 κ mutually non-isomorphic models, it clearly has less than 2 κ mutually elementarily non-embeddable models, hence the theory T cannot be unstable. By definition stable theory does not have SOP, hence no infinite order is definable in any model of T by the previous lemma. 13 Stability was originally defined differently, Shelah [14] proved that this definitions are equivalent. 32
33 Chapter 3 Combinatorics of a structure 3.1 The language of graphs The language of directed graphs L G allows to define many interesting properties of graphs. Let us first describe some auxiliary L G -sentences. Definition 3.1 (Auxiliary formulas). 1. E is function: ϕ func := ( x)(!y) xey 2. E is an injective function: ϕ inj := ϕ func ( y) ( 1 x ) xey 3. E is a surjective function: ϕ surj := ϕ func ( y)( x) xey 4. E avoids at least two elements ϕ two := ( 2 y )( x(xey) ) 5. E is a strict partial order ϕ ord := ( x xex) ( x y z xey yez xez) 33
34 6. E is a strict linear order ϕ lord := ϕ ord ( x)( y)(x < y x = y y < x) 7. E has maximum ϕmax := ( y x yex) 8. E has minimum ϕ min := ( y x xey) We will be mainly interested in how much structures differ from being finite, hence we list some statements in L G that are true in all finite structures. The main statements are the minimum and the maximum principle and the so called pigeon hole principles. We call these principles combinatorial. Definition 3.2 (Combinatorial principles). 1. Every linear order has a minimal element MIN := ϕ lord ϕ min 2. Every linear order has a maximal element 3. Every injective mapping is onto MAX := ϕ lord ϕmax PHP 1 := ϕ func ϕ inj ϕ surj 4. Every surjective mapping is injective PHP 2 := ϕ func ϕ surj ϕ inj 5. There is no injective mapping of A onto A without one element PHP 3 := (ϕ func ϕ inj ϕ surj ) ϕ two If the language L contains at least one functional symbol of arity one, we can formulate analogues of principles PHP 1, PHP 2 and PHP 3. As no misunderstanding arises, we will call these analogues also by PHP 1, PHP 2 and PHP 3. 34
On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia
On large rigid sets of monounary algebras D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia coauthor G. Czédli, University of Szeged, Hungary The 54st Summer School on General Algebra
Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz
SCHEME OF WORK Subject: Mathematics Year: first grade, 1.X School year:../ List of topisc # Topics Time period Introduction, repetition September 1. Number sets October 2. Rigtht-angled triangle October,
WORKSHEET 1: LINEAR EQUATION 1
WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:
WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.
Jednoduché polookruhy. Katedra algebry
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Vítězslav Kala Jednoduché polookruhy Katedra algebry Vedoucí bakalářské práce: Prof. RNDr. Tomáš Kepka, DrSc. Studijní program:
Database systems. Normal forms
Database systems Normal forms An example of a bad model SSN Surnam OfficeNo City Street No ZIP Region President_of_ Region 1001 Novák 238 Liteň Hlavní 10 26727 Středočeský Rath 1001 Novák 238 Bystřice
Compression of a Dictionary
Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction
Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová
Využití hybridní metody vícekriteriálního rozhodování za nejistoty Michal Koláček, Markéta Matulová Outline Multiple criteria decision making Classification of MCDM methods TOPSIS method Fuzzy extension
Základy teorie front III
Základy teorie front III Aplikace Poissonova procesu v teorii front II Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta
Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation
Aplikace matematiky Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky, Vol. 25 (1980), No. 6, 457--460 Persistent URL: http://dml.cz/dmlcz/103885 Terms
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA What is an FTP client and how to use it? FTP (File transport protocol) - A protocol used to transfer your printing data files to the MAFRAPRINT
VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace
VY_32_INOVACE_06_Předpřítomný čas_03 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING Eva Minaříková Institute for Research in School Education, Faculty of Education, Masaryk University Structure of the presentation What can we as teachers
Jakub Slavík. Nestandardní analýza dynamických systém DIPLOMOVÁ PRÁCE. Univerzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Jakub Slavík Nestandardní analýza dynamických systém Katedra matematické analýzy Vedoucí diplomové práce: Studijní program: Studijní
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
Litosil - application
Litosil - application The series of Litosil is primarily determined for cut polished floors. The cut polished floors are supplied by some specialized firms which are fitted with the appropriate technical
2. Entity, Architecture, Process
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš
Střední škola obchodní, České Budějovice, Husova 9, VY_INOVACE_ANJ_741. Škola: Střední škola obchodní, České Budějovice, Husova 9
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
Functions. 4 th autumn series Date due: 3 rd January Pozor, u této série přijímáme pouze řešení napsaná anglicky!
Functions 4 th autumn series Date due: 3 rd January 207 Pozor, u této série přijímáme pouze řešení napsaná anglicky! Problem. (3 points) David found the quadratic function f : R 0, ), f(x) = x 2 and a
Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.
Czech Republic EDUCAnet Střední odborná škola Pardubice, s.r.o. ACCESS TO MODERN TECHNOLOGIES Do modern technologies influence our behavior? Of course in positive and negative way as well Modern technologies
Transportation Problem
Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n
Dynamic programming. Optimal binary search tree
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Libuše Matulová Název materiálu: Education Označení materiálu: VY_32_INOVACE_MAT27 Datum vytvoření: 10.10.2013
Chapter 7: Process Synchronization
Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Critical Regions Monitors Synchronization in Solaris
Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční
Příloha I Seznam tabulek Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční odměny pro rozhodčí platný od roku
Třída: VI. A6 Mgr. Pavla Hamříková VI. B6 RNDr. Karel Pohaněl Schváleno předmětovou komisí dne: Podpis: Šárka Richterková v. r.
MATURITNÍ TÉMATA Školní rok: 2016/2017 Ředitel školy: PhDr. Karel Goš Předmětová komise: Matematika a deskriptivní geometrie Předseda předmětové komise: Mgr. Šárka Richterková Předmět: Matematika Třída:
Projekt: ŠKOLA RADOSTI, ŠKOLA KVALITY Registrační číslo projektu: CZ.1.07/1.4.00/21.3688 EU PENÍZE ŠKOLÁM
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 email: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
DC circuits with a single source
Název projektu: utomatizace výrobních procesů ve strojírenství a řemeslech egistrační číslo: Z..07/..0/0.008 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je spolufinancován
Informace o písemných přijímacích zkouškách. Doktorské studijní programy Matematika
Informace o písemných přijímacích zkouškách (úplné zadání zkušebních otázek či příkladů, které jsou součástí přijímací zkoušky nebo její části, a u otázek s výběrem odpovědi správné řešení) Doktorské studijní
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Student: Draw: Convex angle Non-convex angle
WORKBOOK http://agb.gymnaslo.cz Subject: Student: Mathematics.. School year:../ Topic: Trigonometry Angle orientation Types of angles 90 right angle - pravý less than 90 acute angles ("acute" meaning "sharp")-
1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení.
Moje hlavní město Londýn řešení: 1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení. Klíčová slova: capital, double decker bus, the River Thames, driving
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Výklad a cvičení z větné stavby, vy_32_inovace_ma_33_01
HASHING GENERAL Hashovací (=rozptylovací) funkce
Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný
EXACT DS OFFICE. The best lens for office work
EXACT DS The best lens for office work EXACT DS When Your Glasses Are Not Enough Lenses with only a reading area provide clear vision of objects located close up, while progressive lenses only provide
RNDr. Jakub Lokoč, Ph.D. RNDr. Michal Kopecký, Ph.D. Katedra softwarového inženýrství Matematicko-Fyzikální fakulta Univerzita Karlova v Praze
RNDr. Jakub Lokoč, Ph.D. RNDr. Michal Kopecký, Ph.D. Katedra softwarového inženýrství Matematicko-Fyzikální fakulta Univerzita Karlova v Praze 1 Relační algebra / Relational Algebra 2 Kino(Jmeno, Mesto,
FIRE INVESTIGATION. Střední průmyslová škola Hranice. Mgr. Radka Vorlová. 19_Fire investigation CZ.1.07/1.5.00/
FIRE INVESTIGATION Střední průmyslová škola Hranice Mgr. Radka Vorlová 19_Fire investigation CZ.1.07/1.5.00/34.0608 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/21.34.0608 Šablona: III/2 Inovace a zkvalitnění
Configuration vs. Conformation. Configuration: Covalent bonds must be broken. Two kinds of isomers to consider
Stereochemistry onfiguration vs. onformation onfiguration: ovalent bonds must be broken onformation: hanges do NT require breaking of covalent bonds onfiguration Two kinds of isomers to consider is/trans:
PITSTOP VY_22_INOVACE_26
PITSTOP VY_22_INOVACE_26 Vzdělávací oblast: Jazyk a jazyková komunikace Vzdělávací obor: Anglický jazyk Ročník: 9. PITSTOP 1/ Try to complete the missing words. Then listen and check your ideas. Eight
Digital Electronics. Jaroslav Bernkopf. 17 October 2008
Digital Electronics Jaroslav Bernkopf 7 October 2008 . Introduction Úvod. Representation of Values Zobrazení veliin.2 Analogue Representation Analogové zobrazení This is an analogue meter. Toto je analogový
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.
CURRICULUM VITAE - EDUCATION Jindřich Bláha Výukový materiál zpracován v rámci projektu EU peníze školám Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Bc. Jindřich Bláha. Dostupné z Metodického
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY RINGS OF ENDOMORPHISMS OF ELLIPTIC CURVES AND MESTRE S THEOREM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS RINGS OF ENDOMORPHISMS OF ELLIPTIC
Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University Olomouc Czech Republic
ROBUST 13. září 2016 regression regresních modelů Categorical Continuous - explanatory, Eva Fišerová Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University
Introduction to MS Dynamics NAV
Introduction to MS Dynamics NAV (Item Charges) Ing.J.Skorkovský,CSc. MASARYK UNIVERSITY BRNO, Czech Republic Faculty of economics and business administration Department of corporate economy Item Charges
11.12. 100 ΕΙΣΟΔΟΣ = E / ENTRANCE = E = = 1174 550 ΤΥΠΟΠΟΙΗΜΕΝΟ ΚΥ = 2000 (ΕΠΙΛΟΓΗ: 2100) / CH STANDARD = 2000 (OPTIONAL: 2100) 243 50 ΚΥ/CH + 293 ΚΥ/CH +103 100 ΚΥ /CH 6 11 6 20 100 0,25 ΚΑ (CO) + 45
ANGLICKÁ KONVERZACE PRO STŘEDNĚ POKROČILÉ
ANGLICKÁ KONVERZACE PRO STŘEDNĚ POKROČILÉ MGR. VLADIMÍR BRADÁČ ROZVOJ KOMPETENCÍ MANAGEMENTU A PRACOVNÍKŮ VŠ MSK (S PODPOROU ICT) PROJEKT OP VK 2.2: CZ.1.07/2.2.00/15.0176 OSTRAVA 2012 Tento projekt je
CZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
2 Axiomatic Definition of Object 2. 3 UML Unified Modelling Language Classes in UML Tools for System Design in UML 5
Contents Contents 1 Semestrální práce 1 2 Axiomatic Definition of Object 2 3 UML Unified Modelling Language 2 3.1 Classes in UML............................ 3 4 Tools for System Design in UML 5 5 Student
VY_22_INOVACE_60 MODAL VERBS CAN, MUST
VY_22_INOVACE_60 MODAL VERBS CAN, MUST Vzdělávací oblast: Jazyk a jazyková komunikace Vzdělávací obor: Anglický jazyk Ročník: 9. MODAL VERBS CAN, MUST, SHOULD 1/ Connect the verbs to their future forms.
Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku
Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku Aneta Milsimerová Fakulta strojní, Západočeská univerzita Plzeň, 306 14 Plzeň. Česká republika. E-mail: anetam@kto.zcu.cz Hlavním
Present Perfect x Past Simple Předpřítomný čas x Minulý čas Pracovní list
VY_32_INOVACE_AJ_133 Present Perfect x Past Simple Předpřítomný čas x Minulý čas Pracovní list PhDr. Zuzana Žantovská Období vytvoření: květen 2013 Ročník: 1. 4. ročník SŠ Tematická oblast: Gramatika slovesa
CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
a rhomboid, a side, an angle,a vertex, a height, a perimeter, an area an acute angle, an obtuse angle, opposite sides, parallel sides
Autor: Ing. Milada Kyselovská Škola: ZŠ a MŠ Klíč s.r.o. Česká Lípa440 RHOMBOID Mezipředmětové vztahy: Matematika, zeměpis, dějepis Časová dotace: 45minut Ročník: 7 Cíle: Matematika : procvičit výpočet
Zjistit, jak žáci zvládli učivo prvního pololetí. Pomůcky: Psací potřeby Zdroje: vlastní. III_2-05_54 Half term test, 6yr - řešení
Název školy: ZŠ Brno, Měšťanská 21, Brno-Tuřany Název práce: Half term test, 6yr Pořadové číslo: III_2-05_54 Předmět: Anglický jazyk Třída: 6. B Téma hodiny: Pololetní písemná práce Vyučující: Ing. Olga
Aktuální trendy ve výuce a testování cizích jazyků v akademickém prostředí
Jazykové centrum Aktuální trendy ve výuce a testování cizích jazyků v akademickém prostředí 15. 1. 2018 Projekt Zvýšení kvality vzdělávání a jeho relevance pro potřeby trhu práce CZ.02.2.69/0.0/16_015/0002362
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: II/2 Inovace a zkvalitnění výuky cizích jazyků na středních
PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I
E L E C T R O N I C C O N N E C T O R S 196 ept GmbH I Tel. +49 (0) 88 61 / 25 01 0 I Fax +49 (0) 88 61 / 55 07 I E-Mail sales@ept.de I www.ept.de Contents Introduction 198 Overview 199 The Standard 200
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
WYSIWYG EDITOR PRO XML FORM
WYSIWYG EDITOR PRO XML FORM Ing. Tran Thanh Huan, Ing. Nguyen Ba Nghien, Doc. Ing. Josef Kokeš, CSc Abstract: In this paper, we introduce the WYSIWYG editor pro XML Form. We also show how to create a form
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG
Aktivita CLIL Chemie III.
Aktivita CLIL Chemie III. Škola: Gymnázium Bystřice nad Pernštejnem Jméno vyučujícího: Mgr. Marie Dřínovská Název aktivity: Balancing equations vyčíslování chemických rovnic Předmět: Chemie Ročník, třída:
Vánoční sety Christmas sets
Energy news 7 Inovace Innovations 1 Vánoční sety Christmas sets Na jaře tohoto roku jste byli informováni o připravované akci pro předvánoční období sety Pentagramu koncentrátů a Pentagramu krémů ve speciálních
Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.
1 Bad line breaks The follwing text has prepostions O and k at end of line which is incorrect according to Czech language typography standards: Mezi oblíbené dětské pohádky patří pohádky O Palečkovi, Alenka
AIC ČESKÁ REPUBLIKA CZECH REPUBLIC
ČESKÁ REPUBLIKA CZECH REPUBLIC ŘÍZENÍ LETOVÉHO PROVOZU ČR, s.p. Letecká informační služba AIR NAVIGATION SERVICES OF THE C.R. Aeronautical Information Service Navigační 787 252 61 Jeneč A 1/14 20 FEB +420
Theme 6. Money Grammar: word order; questions
Theme 6 Money Grammar: word order; questions Čas potřebný k prostudování učiva lekce: 8 vyučujících hodin Čas potřebný k ověření učiva lekce: 45 minut KLÍNSKÝ P., MÜNCH O., CHROMÁ D., Ekonomika, EDUKO
Are you a healthy eater?
Are you a healthy eater? VY_32_INOVACE_97 Vzdělávací oblast: Jazyk a jazyková komunikace Vzdělávací obor: Anglický jazyk Ročník: 8. 9.roč. 1. What does a nutrition expert tell four teenagers about their
Název projektu: Multimédia na Ukrajinské
Základní škola, Ostrava Poruba, Ukrajinská 1533, příspěvková organizace Operační program Vzdělávání pro konkurenceschopnost Název projektu: Multimédia na Ukrajinské číslo projektu: CZ1.07/1.4.00/21.3759
2011 Jan Janoušek BI-PJP. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE TRANSFORMACE GRAMATIK NA LL(1) GRAMATIKU. TABULKA SYMBOLŮ. VNITŘNÍ REPREZENTACE: AST. JAZYK ZÁSOBNÍKOVÉHO POČÍTAČE. RUNTIME PROSTŘEDÍ. 2011 Jan Janoušek BI-PJP Evropský
LOGOMANUÁL / LOGOMANUAL
LOGOMANUÁL / LOGOMANUAL OBSAH / CONTENTS 1 LOGOTYP 1.1 základní provedení logotypu s claimem 1.2 základní provedení logotypu bez claimu 1.3 zjednodušené provedení logotypu 1.4 jednobarevné a inverzní provedení
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Billy Elliot 1 Pre-watching activities A2/B1
Billy Elliot 1 Pre-watching activities A2/B1 Číslo projektu Kódování materiálu Označení materiálu Název školy Autor Anotace Předmět Tematická oblast Téma Očekávané výstupy Klíčová slova Druh učebního materiálu
Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products
Energy news2 1 Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products Doposud jste Energy znali jako výrobce a dodavatele humánních přírodních doplňků stravy a kosmetiky.
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Číslo projektu: Číslo šablony: Název materiálu: Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 CZ.1.07/1.5.00/34.0410 II/2 Business correspondence Business English Ročník: Identifikace materiálu:
User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com
1/ 11 User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 2/ 11 Contents 1. MINIMUM SYSTEM REQUIREMENTS... 3 2. SŘHV ON-LINE WEB INTERFACE... 4 3. LOGGING INTO SŘHV... 4 4. CONTRACT
Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Libuše Matulová Název materiálu: European Union Označení materiálu: VY_32_INOVACE_MAT 22 Datum vytvoření:
Verb + -ing or infinitive
Verb + -ing or infinitive Verb + -ing or infinitive There are 3 groups of verbs: 1. Verbs followed by ing form 2. Verbs followed by infinitive 3. Verbs that can have ing form or infinitive, but the meaning
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY. Stručný úvod do programování v jazyce C 2.díl. České vysoké učení technické Fakulta elektrotechnická
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Stručný úvod do programování v jazyce C 2.díl České vysoké učení technické Fakulta elektrotechnická A1B14MIS Mikroprocesory pro výkonové systémy 07 Ver.1.10 J. Zděnek,
SPECIAL THEORY OF RELATIVITY
SPECIAL THEORY OF RELATIVITY 1. Basi information author Albert Einstein phenomena obsered when TWO frames of referene moe relatie to eah other with speed lose to the speed of light 1905 - speial theory
Brisk guide to Mathematics
Brisk guide to Mathematics Jan Slovák and Martin Panák, Michal Bulant, Vladimir Ejov, Ray Booth Brno, Adelaide, 208 Authors: Ray Booth Michal Bulant Vladimir Ezhov Martin Panák Jan Slovák With further
Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic
Dynamic Development of Vocabulary Richness of Text Miroslav Kubát & Radek Čech University of Ostrava Czech Republic Aim To analyze a dynamic development of vocabulary richness from a methodological point
Progressive loyalty V1.0. Copyright 2017 TALENTHUT
Progressive loyalty Copyright 2017 TALENTHUT www.talenthut.io 1. Welcome The Progressive Loyalty Siberian CMS module will allow you to launch a loyalty program and reward your customers as they buy from
Unit 3 Stereochemistry
Unit 3 Stereochemistry Stereoisomers hirality (R) and (S) Nomenclature Depicting Asymmetric arbons Diastereomers Fischer Projections Stereochemical Relationships Optical Activity Resolution of Enantiomers
CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.
VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O. Návrh konceptu konkurenceschopného hotelu v době ekonomické krize Diplomová práce 2013 Návrh konceptu konkurenceschopného hotelu v době ekonomické krize Diplomová
Mut goes shopping VY_22_INOVACE_27. Vzdělávací oblast: Jazyk a jazyková komunikace. Vzdělávací obor: Anglický jazyk. Ročník: 6
Mut goes shopping VY_22_INOVACE_27 Vzdělávací oblast: Jazyk a jazyková komunikace Vzdělávací obor: Anglický jazyk Ročník: 6 1.Find the hidden words in the word search and write their meaning: A O U P T
POSLECH. M e t o d i c k é p o z n á m k y k z á k l a d o v é m u t e x t u :
POSLECH Jazyk Úroveň Autor Kód materiálu Anglický jazyk 9. třída Mgr. Martin Zicháček aj9-kap-zic-pos-07 Z á k l a d o v ý t e x t : Margaret: Hi Eric. Eric: Oh, hi Margaret. How are you doing? Margaret:
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
PAINTING SCHEMES CATALOGUE 2012
Evektor-Aerotechnik a.s., Letecká č.p. 84, 686 04 Kunovice, Czech Republic Phone: +40 57 57 Fax: +40 57 57 90 E-mail: sales@evektor.cz Web site: www.evektoraircraft.com PAINTING SCHEMES CATALOGUE 0 Painting
Lineární kódy nad okruhy
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Tomáš Kobrle Lineární kódy nad okruhy Katedra Algebry Vedoucí diplomové práce: Mgr. Jan Šťovíček, PhD Studijní program: Matemarika
LOGBOOK. Blahopřejeme, našli jste to! Nezapomeňte. Prosím vyvarujte se downtrade
název cache GC kód Blahopřejeme, našli jste to! LOGBOOK Prosím vyvarujte se downtrade Downtrade (z GeoWiki) Je to jednání, kterého byste se při výměnách předmětů v keších měli vyvarovat! Jedná se o snížení
DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16
zákaznická linka: 840 50 60 70 DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1997 Apr 16 1999 Apr 23 str 1 Dodavatel: GM electronic, spol. s r.o., Křižíkova 77, 186 00 Praha
BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS ONE-SIDED RANDOM