Přednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů
|
|
- Marek Musil
- před 9 lety
- Počet zobrazení:
Transkript
1 Přednáška č. 6 Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů
2 Třída sulfidů Převážně rudní minerály, které jsou charakteristické svými fyzikálními vlastnostmi (vysokým leskem a opakností). Obecný vzorec pro tuto třídu minerálů je X m Z n, kde X představuje kovový prvek a Z nekovový prvek. Poměr X : Z se používá i při rozdělení do jednotlivých oddělení.
3 Některé sulfidické minerály (minerály vytištěné tučně se vyskytují hojně nebo jsou důležité jako rudy)
4 CHALKOZÍN Cu 2 S Symetrie: Vysokoteplotní fáze nad 105 C je hexagonální, nízkoteplotní pod touto teplotou stabilní monoklinická. Forma výskytu: Tvoří tlustě tabulkovité, dipyramidální nebo sloupcovité krystaly, tabulkovité bývají někdy rýhované na ploše (001). Podle plochy (110) bývá často zdvojčatělý nebo ztrojčatělý. Může pseudomorfovat bornit nebo pyrit. Zpravidla je však kusový v celistvých agregátech nebo v povlacích. Krystal a dvojče chalkozínu; m (110), v (112), c (001), b (010), d (011) (zdroj Klein a Hurlbut, 1993)
5 CHALKOZÍN Fyzikální vlastnosti: H = 5,8; T = 2,5-3; barva černavě modrošedá na čerstvém lomu s kovovým leskem, který se rychle stává matným a černá. Je křehký, štěpnost (110) velmi nezřetelná. Složení a struktura: Může obsahovat malá množství Fe a Ag. Vznik a výskyt: Může vznikat na Cu bohatých hydrotermálních žilách, většinou je však vázán na cementační zóny sulfidických ložisek různých typů. Typický je v sedimentárních permských ložiscích typu red beds. Naleziště: Vrančice, Jáchymov (rudní žíly), Tsumeb (Namibia), Rio Tinto (oxidační zóna Fe-Cu ložiska, Španělsko), Horní Kalná (podkrkonošské pískovce) Použití: důležitá měděná ruda Diagnostické znaky: barva, tvar některých krystalů
6 GALENIT PbS Symetrie: kubická Forma výskytu: Krystaly kubického méně kubooktaedrického typu, může dvojčatět podle (111) nebo (114). Běžné jsou zrnité nebo celistvé agregáty. Spojky galenitu, zleva {110} a {111}, {100} a {110}, {100} a {110} (zdroj Slavík, 1974)
7 GALENIT PbS Fyzikální vlastnosti: H = 7,5; T = 2,5; barva olověně šedá se silným kovovým leskem. Štěpnost dokonalá podle krychle (100), kruchý. Složení a struktura: Tvoří izomorfní řadu se selenidem olova clausthalitem, přítomno je často velké množství jiných prvků jako Ag, Bi, Cd, Te, As a další. Galenit zpravidla obsahuje velké množství inkluzí, takže některé stopové prvky prokázané analýzou nemusí nutně vstupovat do struktury galenitu. Struktura galenitu je typu NaCl. Každý atom Pb je obklopen šesti atomy síry. Lze si to představit jako tělesově centrované kubické buňky atomů S a Pb, posunuté navzájem o 1/4 tělesové úhlopříčky.
8 GALENIT PbS Velikost krystalů cca 3 cm.
9 GALENIT PbS Vznik a výskyt: Galenit (často doprovázený sfaleritem) se vyskytuje na hydrotermálních žilách Pb-Zn, na žilách a metasomatických ložiscích mladých pásemných pohoří, je častým sulfidem fluorit - barytových žil, vyskytuje se na ložiscích Pb-Zn vulkanosedimentárního typu. Naleziště: Příbram, Vrančice, Stříbro (hydrotermální žilná ložiska), Harrachov (fluorit - barytové žíly), Mežica (Slovinsko), Tri State - Oklahoma (obě v karbonátových horninách). Použití: Důležitá ruda olova a stříbra, přičemž olovo se používá např. pro výrobu baterií, ve zbrojařském průmyslu, nebo se využívá při ochraně před RTG ionizujícím zářením. Diagnostické znaky: kovový lesk, dokonalá štěpnost
10 SFALERIT (Fe, Zn)S Symetrie: kubická Forma výskytu: Krystaly zpravidla tetraedrického vzhledu nebo zdvojčatělá podle (111) nebo (112). Kontaktní a penetrační srůsty způsobují rýhování štěpných ploch. Agregáty kusové, jemně až hrubě zrnité. Krystal sfaleritu a dvojčata podle (111); o (111), h (100), d (110), zdroj Ježek, 1932.
11 SFALERIT (Fe, Zn)S Fyzikální vlastnosti: H = 4,0; T = 3,5-4; barva je závislá na chemickém složení (obsah Fe) od téměř čirých sfaleritů přes žluté, červené, hnědé až k černým. Dokonalá štěpnost podle (110), lesk na krystalech až diamantový. V UV záření jeví různé luminiscenční barvy - modrou, žlutou nebo oranžovou. Složení a struktura: Sfalerit nikdy nebývá čistý, obsahuje poměrně značné množství izomorfních příměsí: Fe, Cd, Mn, Hg, Cu, In, As, Ag a další. Struktura sfaleritu je příbuzná se strukturou diamantu. Atomy Zn jsou obklopeny čtyřmi atomy síry v tetraedrické koordinaci, přičemž Zn atomy tvoří plošně centrovanou kubickou mřížku.
12 SFALERIT (Fe, Zn)S Vznik a výskyt: Sfalerit často doprovází galenit a i jejich podmínky vzniku jsou podobné, takže se vyskytuje na stejných typech ložisek. Naleziště: Kutná Hora, Příbram, Nová Ves u Rýmařova, Zlaté Hory, Horní Benešov Světová naleziště leží v Kanadě, USA, Austrálii Použití: důležitá ruda zinku( přes 90% Zn se získává ze sfaleritu), kadmia a india. Zinek se využívá při galvanizaci Fe (antikorozní povlaky 35-40% produkce), na výrobu slitin, v elektrických bateriích nebo k výrobě barev (ZnO), skla, ů, glazur, důležitý biogenní prvek (tělo dospělého člověka obsahuje asi 2 g Zn) Příprava: Ruda se praží na ZnO, který se dále upravuje elektrolyticky nebo se taví s koksem. Přitom získáváme také Cd nebo Pb (rudy PbS a ZnS se často vyskytují společně). Světová produkce Zn je asi 6 mil.tun ročně. Diagnostické znaky: tvar krystalů, dokonalá štěpnost
13 CHALKOPYRIT CuFeS 2 Symetrie: tetragonální, oddělení tetragonálně disfenoidické Forma výskytu: Krystaly mívají sfenoidický nebo pseudotetraedrický habitus, často deformovaný tvar s rýhovanými plochami. Dvojčata podle (112) nebo (102). Agregáty jsou jemnozrnné nebo celistvé, často zarostlé. Nejběžnější tvary krystalů chalkopyritu (zdroj Bernard, 1992)
14 CHALKOPYRIT CuFeS 2 Fyzikální vlastnosti: T = 3,5-4; H = 4,1-4,3; barva velmi sytě žlutá, která může nabíhat až do modrofialova. Lesk je kovový, lom nerovný, štěpnost nezřetelná. Složení a struktura: Vytváří pevné roztoky s pyrhotinem v různých poměrech a se sfaleritem je neomezeně mísitelný nad teplotu 450 C. Jeho strukturu lze odvodit od sfaleritu, kdy atomy Zn jsou střídavě nahrazeny atomy Fe a Cu.
15 CHALKOPYRIT CuFeS 2 Vznik a výskyt: Je to jeden z nejběžnějších rudních minerálů. Při vzniku za vysokých teplot (magmatity, pegmatity) obsahuje odmíšeniny cubanitu a sfaleritu. Ložiska může tvořit odmíšením v bazických intruzívních horninách, zrudňuje kontaktní skarny, je hlavním minerálem ložisek porfyrových rud spjatých s intruzívním vulkanismem, běžný je na polymetalických ložiscích, baryt - sideritových žilách, stratiformních ložiscích a uplatňuje se i v sedimentárních ložiscích. Naleziště: Staré Ransko, Sudbury - Kanada (v bazických magmatitech), Kutná Hora, Příbram, Borovec, Banská Štiavnica (polymetalická ložiska), Použití: důležitá měděná ruda Diagnostické znaky: typická barva, nízká tvrdost
16 PYRHOTIN FeS Symetrie: hexagonální při teplotách nad 254 C, pro teploty nižší monoklinický. Forma výskytu: Prizmatické hexagonální krystaly jsou vzácné, zpravidla tvoří zrnité nebo celistvé agregáty, často bývá vtroušený. Fyzikální vlastnosti: T = 4; H = 4,6 (závisí na složení); barva je světle až tmavě bronzově hnědá s kovovým leskem. Zvláště monoklinické polymorfy jsou silně magnetické. Složení a struktura: Rovný poměr síry a železa mají pyrhotiny pouze za vysokých teplot ( C). Složení běžného monoklinického pyrhotinu se pohybuje kolem stechiometrie Fe 7 S 8. Časté jsou příměsi niklu.
17 PYRHOTIN FeS
18 PYRHOTIN FeS Vznik a výskyt: Pyrhotin vzniká zpravidla za vysokých teplot, proto je charakteristický pro bazické vyvřelé horniny (gabra, diority), dále vzniká na kyzových polymetalických asociacích, objevuje se na siderit - sulfidických žilách, méně častý je ve skarnech a pegmatitech, vzácný je v sedimentech. Naleziště: Staré Ransko, Norilsk - Rusko, Sudbury - Kanada (vše bazické vyvřeliny), Kutná Hora (polymetalická asociace), Měděnec (skarn) Použití: je ruda Ni, těží se zpravidla spolu s minerály Ni, Cu a Pt Diagnostické znaky: významný magnetismus, bronzová barva
19 CINABARIT HgS Symetrie: nízkoteplotní modifikace pod 344 C hexagonální, vysokoteplotní modifikace kubická, zpravidla se označuje jako metacinabarit Forma výskytu: Krystaly jsou klencové nebo sloupcovité, často zdvojčatělé podle bazální plochy. Agregáty jsou jemně zrnité až zemité, častá je forma povlaků. Krystal rumělky a dvojče podle (0001) (zdroj Ježek, 1932)
20 CINABARIT HgS Fyzikální vlastnosti: T = 2-2,5; H = 8,09; barva jasně červená s diamantovým leskem na krystalových plochách, agregáty mají lesk slabší. Dokonalá štěpnost. Složení a struktura: Síra může být nahrazována Se nebo Te, Hg může být mírně deficitní, časté jsou mechanické příměsi bitumenů, jílových minerálů a oxidů Fe. Rumělka (1cm krystal) Almaden, Španělsko (Ďuďa, 1990)
21 CINABARIT HgS Vznik a výskyt: Je nízkoteplotním minerálem, vznikajícím při teplotách kolem 100 C. Největší ložiska jsou na rudních žilách v mladých pásemných pohořích, často v asociaci s Sb a As. Hojné jsou i impregnace ve vápencích a bitumenózních břidlicích. Naleziště: Dědova hora u Komárova (ordovické sedimenty), Horní Luby (ordovické fylity), Nižná Slaná, Rudňany (polymetalické žíly), Almadén (Španělsko), Idria (Slovinsko) Použití: Důležitá ruda rtuti. Ta se využívá v elektrotechnice, stomatologii, při získávání zlata a stříbra. Diagnostické znaky: červená barva, často zemitý charakter, hustota
22 PYRIT FeS 2 Symetrie: kubická Forma výskytu: Krystaly pyritu se vyskytují až v 60-ti různých krystalových tvarech, z nichž nejběžnější je krychle a pentagondodekaedr. S typickým rýhováním krystalových ploch se setkáváme hlavně u krychle. Typická jsou i dvojčata podle (110) - tzv. železný kříž. Běžně se vyskytuje v kusových, zrnitých nebo vtroušených agregátech. Je častým fosilizačním materiálem. Krystaly pyritu: (a) rýhovaná krychle, (b) pentagon dodekaedr, (c) spojka krychle a pentagon dodekaedru, (d)(e) spojky oktaedru a pentagon dodekaedru (f) penetrační dvojče (110) - železný kříž (zdroj Klein a Hurlbut, 1993)
23 Krystal pyritu (2 cm) Španělsko (zdroj Ďuďa, 1990) Krystal pyritu Hnúšťa (Herčko, 1984)
24 PYRIT FeS 2 Fyzikální vlastnosti: T = 6-6,5; H = 4,9-5,2; barva je mosazně žlutá, ale může pestře nabíhat, vryp je hnědočerný. Lesk je kovový, lom lasturnatý, štěpnost nezřetelná. Vznik a výskyt: Pyrit je jeden z nejběžnějších sulfidických minerálů, který vzniká za nejrůznějších podmínek od magmatického procesu, přes pegmatitovou fázi, hydrotermální vznik, vzniká v sedimentech i v metamorfním procesu. Běžný je i ve skarnech, alpských žilách a mořských sedimentech. Naleziště: Kutná Hora (hydrotermální vznik), Dolní Bory (pegmatit), Horní Benešov, Zlaté Hory (metamorfogenní ložiska) a řada dalších. Použití: Používal se pro výrobu kyseliny sírové, často se těží pro obsahy zlata. Diagnostické znaky: vysoká tvrdost, snadno se mění na limonit
25 MARKAZIT FeS 2 Symetrie: rombická Forma výskytu: Krystaly mohou být tabulkovité podle (001), pyramidální nebo sloupcovité podle a, typická jsou kopinatá dvojčata podle (110) příp. jejich polysyntetické opakování či hřebenovité prorůstání. Tvoří velké bohatství agregátových forem - ledvinité, krápníkovité, kulovité a další. Srostlice markazitu (2,5 cm) Komořany (zdroj Ďuďa, 1990) Krystal markazitu, cyklická a kopinatá srostlice; c (001), m (110), l (011), r (014), zdroj Slavík, 1974
26 MARKAZIT FeS 2 Fyzikální vlastnosti: T = 6-6,5; H = 4,85-4,9; barva zpravidla mosazně žlutá s výraznými náběhovými barvami. Štěpnost dokonalá podle (110), lesk kovový. Složení a struktura: Nad 450 C se mění na pyrit. Základem struktury jsou nejtěsněji uspořádané atomy síry s Fe v šestičetné koordinaci. Vztahy markazit - pyrit nejsou v některých ohledech dostatečně známé. Struktura markazitu (zdroj Klein a Hurlbut, 1993)
27 MARKAZIT FeS 2 Vznik a výskyt: Je nízkoteplotním minerálem, vznikajícím i za povrchových podmínek, a při stoupající teplotě se mění na pyrit. Může vznikat jako pozdní minerál v pegmatitech a na hydrotermálních žilách. Významné jsou i akumulace v sedimentech - uhlí nebo jílech. Naleziště: Příbram, Stříbro, Chvaletice, sokolovská pánev Použití: podobné jako u pyritu, ale v menším měřítku Diagnostické znaky: krystalové tvary, přeměna na limonit nebo melanterit
28 MOLYBDENIT MoS 2 Symetrie: hexagonální Forma výskytu: Tvoří slabě nebo tlustě tabulkovité krystaly s nedokonale vyvinutými plochami, častěji se vyskytuje ve formě lístkovitých nebo šupinkatých agregátů, někdy i radiálně paprsčitě uspořádaných. Molybdenit v křemeni (2 cm), Altenberg (zdroj Ďuďa, 1990) Krystaly molybdenitu (zdroj Bernard, 1992)
29 MOLYBDENIT MoS 2 Fyzikální vlastnosti: T = 1-1,5; H = 4,62-4,8; barva je olověně modrošedá s vysokým kovovým leskem, dokonale štěpný podle báze. Lupínky jsou ohebné neelastické. Složení a struktura: Může obsahovat desetiny procent Re. Struktura je složena z vrstev atomů Mo, které jsou uloženy mezi vrstvami atomů S, mezi jednotlivými vrstvami jsou slabší vazby, což podmiňuje dokonalou bazální štěpnost. Vznik a výskyt: Je převážně vysokoteplotním minerálem, běžně se vyskytuje na puklinách granitoidních hornin, v pegmatitech, kontaktně metamorfovaných skarnech a greisenech. Největší ekonomické akumulace pocházejí z tzv. ložisek porfyrových rud. Nachází se i v sedimentech - bitumenových břidlicích. Naleziště: Černá Voda, Černá Hora (na puklinách granitoidů), Horní Slavkov, Krupka (greiseny). Použití: důležitá ruda Mo Diagnostické znaky: vysoký lesk, barva, tvrdost
30 ANTIMONIT Sb 2 S 3 Symetrie: rombická Forma výskytu: Krystaly jsou sloupcovité, jehlicovité nebo stébelnaté, často mají charakteristické rýhování podle osy c. Kusové agregáty jsou jemně zrnité, na plochách štěpnosti rýhované. Krystaly antimonitu (zdroj Bernard, 1992) Antimonit (agregát 3 cm) s barytem, Baia sprie, Rumunsko (zdroj Ďuďa, 1990)
31 ANTIMONIT Sb 2 S 3 Fyzikální vlastnosti: T = 2; H = 4,5-4,6; barva je olověně až ocelově šedá s namodralým odstínem, štěpnost dokonalá podle (010), lesk kovový. Relativně nízký bod tání 546 C. Složení a struktura: Chemismus může vykazovat příměsi Au, Ag, Fe, Pb a Cu. Základem struktury jsou řetězce ve směru osy c. Řetězce jsou tvořeny atomy S a Sb, vzdálenost atomů v řetězci je 2,5-3, m, což odpovídá kovalentním vazbám. Vzdálenost mezi řetězci je až 3, m. Existence řetězců ve struktuře způsobuje výše uvedenou dokonalou štěpnost.
32 ANTIMONIT Sb 2 S 3 Vznik a výskyt: Vyskytuje se ve středně- nebo nízkoteplotních paragenezích, často na křemenných žilách a v asociaci se zlatem. Méně častá jsou metasomatická ložiska. Významná ložiska jsou na žilách v mladých pásemných pohořích. Naleziště: Hynčice pod Sušinou, Krásná Hora, Bohutín, Kremnica, Baia Sprie (Rumunsko) Použití: důležitá ruda Sb, jehož některé sloučeniny se používají jako pigmenty a při výrobě skla Diagnostické znaky: vysoký lesk, dokonalá štěpnost
33 Třída halogenidů V této třídě minerálů je dominantní přítomnost silně elektronegativního prvku ze 7.sloupce periodické tabulky (Cl -, F -, I - a Br - ). Tyto poměrně velké anionty lehce vytvářejí sloučeniny s poměrně velkými jednomocnými kationty a výsledkem je zpravidla strukturní uspořádání s vysokou symetrií. Vazby v těchto sloučeninách jsou převážně iontové, sloučeniny jsou zpravidla měkké, nevodivé, se středním nebo vyšším bodem tání. Některé jsou velmi dobře rozpustné ve vodě.
34 HALIT NaCl Symetrie: kubická Forma výskytu: Krystaly jsou převážně kubické. Agregáty jsou celistvé, drobně zrnité, stébelnaté, může tvořit kůry a povlaky. Krystal halitu (3,5 cm), Searles Lake, Kalifornie (zdroj Lapis)
35 HALIT NaCl Fyzikální vlastnosti: T = 2; H = 2,16; barva bílá, hnědá, červená nebo modrá (je to vše výsledkem přítomnosti nečistot), čistá přírodní sůl je bezbarvá. Štěpnost dokonalá podle krychle, lesk skelný, slabě hygroskopický, ve vodě dobře rozpustný. Průměrný podíl v mořské vodě je 3,5%. Složení a struktura: Izomorfně může do struktury halitu místo Na vstupovat draslík (za vyšších teplot), často obsahuje heterogenní nečistoty jílových minerálů nebo hematitu, které jsou zodpovědné za zbarvení halitu. Struktura NaCl (zdroj Klein a Hurlbut, 1993)
36 HALIT NaCl Vznik a výskyt: Obrovská ložiska halitu vznikají evaporizací (odpařováním) mořské vody, kdy jsou těžena hlavně fosilní ložiska tohoto typu často spolu se sádrovcem a anhydritem. Halit může vznikat i na sopečných fumarolách, nebo tvoří výkvěty na půdách v aridních oblastech. Naleziště: Ostrava (v dolech krápníky vznikající ze solného obsahu nadloží), Prešov; Hallstadt, Bad Ischel (Rakousko - trias), Wieliczka (Polsko), záliv Karabogaz (Kaspické moře), oblast Hannoveru (Dolní Sasko) Použití: halit je důležitá biogenní sloučenina, používá se v potravinářství a chemickém průmyslu Diagnostické znaky: tvrdost, barva, forma výskytu
37 HALIT NaCl Nejvýznamnější naleziště soli na světě
38 HALIT NaCl Použití NaCl v USA (1974, 42,5 mil tun)
39 FLUORIT CaF 2 Symetrie: kubická Forma výskytu: Krystaly jsou zpravidla kubické nebo oktaedrické, resp. jejich spojky, plochy krychle mohou být parketované. Dvojčatné penetrační srůsty podle (111), agregáty převážně celistvé. Fyzikální vlastnosti: T = 4, H = 3,18; barva je v důsledku přítomnosti barevných center (obsah vzácných zemin, defekty ve struktuře) různá - modrá, zelená, žlutá, bílá, fialová, černá. V UV záření jeví fluorescenci, zpravidla v zelených odstínech. Lesk skelný, štěpnost podle (111) dokonalá. Zonální krystal fluoritu (2 cm), Annabel Lee mine, Illinois (zdroj Lapis)
40 FLUORIT CaF 2 Složení a struktura: Vápník mohou zastupovat některé prvky vzácných zemin. Struktura fluoritu je velmi důležitým strukturním typem. Vznik a výskyt: Výskyt fluoritu je poměrně široký - vzniká v magmatickém procesu (granity, pegmatity), na greisenových ložiscích Sn - W, ve skarnech, převážně však tvoří hlušinu na hydrotermálních žilách různého typu, kdy je dokonce vyčleňována fluorit - barytový typ. Dále bývá přítomen na alpských žilách, v kontaktních vápencích nebo i na recentních termálních pramenech. Naleziště: Harrachov, Moldava, Kožlí u Ledče (fluorit - barytová mineralizace), Horní Slavkov (greisen), Litice n. Orlicí (pukliny granitoidů), Jílové u Děčína (ložisková žíla fluoritu) Použití: hutnictví, výroba skla, chemický průmysl, speciální přístroje (monochromátory) atd. Diagnostické znaky: tvar krystalů, barva, štěpnost
41 Třída oxidů Oxidy tvoří skupinu minerálů s relativně vysokou tvrdostí a hustotou a vyskytují se zpravidla jako akcesorické minerály s vysokou odolností a schopností přecházet do klastických sedimentů. Principielně jsou oxidy sloučeniny kyslíku s kovem a dělí se podle složitosti na oxidy jednoduché a komplexní. Jednoduché oxidy jsou sloučeninou kyslíku a jednoho kovu v různých poměrech (např. CaO, Cu 2 O), zatímco komplexní oxidy obsahují alespoň dva nestejné kovy v různých strukturních pozicích. Další dělení se provádí na základě přítomnosti vody ve struktuře. Vazby jsou v oxidech převážně iontové. Mezi oxidy je řada minerálů, které mají obrovský ekonomický význam pro získávání Fe, Cr, U, Sn, Ti a dalších prvků.
42 HEMATIT Fe 2 O 3 Symetrie: hexagonální Forma výskytu: Krystaly čočkovité, tabulkovité. Agregáty jsou celistvé, zrnité nebo zemité, ledvinité agregáty s radiálně paprsčitou stavbou se nazývají lebníky, častá je forma oolitického hematitu, lístkovité agregáty se označují jako železná slída (spekularit) a v neposlední řadě jsou to nejrůznější zemité agregáty většinou ve směsi s dalšími oxidy a hydroxidy. Krystal hematitu (2 cm), Švýcarsko (zdroj Ďuďa, 1990)
43 HEMATIT Fe 2 O 3 Hematit - lebník (7 cm), Ibrg, Harz (zdroj Muller, 1990) Krystaly hematitu r (10-11), n (22-43), u (10-14), e (01-12), c (12-32) (zdroj Ježek, 1932)
44 HEMATIT Fe 2 O 3 Fyzikální vlastnosti: T = 6-6,5 (u krystalů, agregáty až kolem 1); H = 5,26 (krystaly); barva červená, červenohnědá až černá, vryp světle až tmavě červený, lesk krystalů kovový a u některých agregátů pouze matný. Složení a struktura: Zpravidla mívá příměsi Ti, Mn a inkluze SiO 2. Nad 950 C je zcela mísitelný s ilmenitem. Vznik a výskyt: Vzniká při různých teplotách a je obecně rozšířeným červeným pigmentem minerálů a hornin. Ekonomický význam mají ložiska páskovaných hematitů v jaspilitech (prekambrická ložiska) a metamorfovaná forma těchto ložisek (itabirity). Menší ložiskový význam mají oolitická a detritická sedimentární ložiska hematitu a reziduální ložiska Fe a Al rud v tropických oblastech. Naleziště: Lahn - Dill v Porýní, Krivoj Rog na Ukrajině (hemtit v jaspilitech), Itabira v Brazílii, okolí Železného Brodu (itabirity), Mníšek u Prahy (oolitický hematit), Rudňany, Slovinky (Slovensko, siderit - sulfidické žíly se spekularitem), Horní Blatná, Horní Halže (lebníky na mladých rudních žilách), Příbram (na rudních žilách), Elba (světoznámé krystaly). Použití: Významná ruda Fe Diagnostické znaky: barva vrypu
45 ILMENIT FeTiO 3 Symetrie: hexagonální Forma výskytu: Tlustě tabulkovité krystaly, celistvé až jemně zrnité agregáty, valounky, zrnka. Dvojčatné srůsty podle klenců. Velmi časté jsou přeměny na leukoxen, což je směs minerálů Fe a Ti. Fyzikální vlastnosti: T = 5-6; H = 4,5-5; barva hnědočerná až černá, lesk mdlý až polokovový, vryp černý až červenohnědý, dělitelný podle klence. Složení a struktura: Izomorfně bývají zastoupeny komponenty pyrofanitová (MnTiO 3 ) a geikelitová (MgTiO 3 ) běžný je i nízký obsah trojmocného železa. Krystaly ilmenitu (zdroj Bernard, 1992)
46 ILMENIT FeTiO 3 Vznik a výskyt: Je běžnou akcesorií častěji bazických magmatitů, bývá běžně v pegmatitech nebo na alpských žilách. Jako akcesorie se vyskytuje i v regionálně metamorfovaných horninách (ruly, amfibolity). V některých případech se dostává do aluvií - tzv. mořské černé plážové písky. Naleziště: Špičák u Deštného (gabro), kdyňský bazický masív (Orlovice), Pozďátky u Třebíče, Dolní Bory (pegmatity), Markovice u Čáslavi (alpská parageneze), amfibolity kutnohorského krystalinika a Silezika. Použití: ruda Ti, využívá se k výrobě bělob a antikorozivních nátěrů Diagnostické znaky: přeměny na leukoxen, barva vrypu
47 KASITERIT SnO 2 Symetrie: tetragonální Forma výskytu: Habitus krystalů je závislý na teplotách vzniku: vysokoteplotní krystaly bývají dipyramidální zpravidla zdvojčatělé, hydrotermálně vzniklé krystaly jsou jehličkovité a v epitermálních podmínkách je kolomorfní. Téměř vždy (i zdánlivé monokrystaly) bývá zdvojčatělý podle (101) a to i polysynteticky nebo cyklicky. Agregáty zpravidla zrnité. Kasiterit (2,5 cm), Cínovec (zdroj Ďuďa, 1990) Dvojčata kasiteritu podle (011); a (100), m (110), e (101), s (111) (zdroj Ježek, 1932)
48 KASITERIT SnO 2 Fyzikální vlastnosti: T = 6-7, H = 6,8-7,1; barva zpravidla hnědá až černá, může být ale i bezbarvý, lesk kovový, štěpnost nedokonalá. V závislosti na příměsích může být polovodičem. Složení a struktura: Izomorfně může být přítomno Fe, Nb a Ta. Vznik a výskyt: Je typickým minerálem cínonosných žul (greiseny) a některých pegmatitů. Je běžný na hydrotermálních Sn - W žilách, vyskytuje se ve skarnech, velký význam mají i subvulkanická ložiska Sn a barevných kovů bolivijského typu. Běžně se těží v náplavech. Naleziště: Cínovec, Krupka, Horní Slavkov (hydrotermální Sn - W mineralizace), Otov, Rožná, Hagendorf - Bavorsko (pegmatity) Použití: základní ruda Sn; používá se pro výrobu slitin, ve zbrojařském průmyslu
49 MAGNETIT Fe 3 O 4 Symetrie: kubická Forma výskytu: Běžně tvoří oktaedrické krystaly, které mohou být zdvojčatělé podle (111), agregáty hrubě zrnité. Magnetit (2 cm), Švýcarsko (zdroj Ďuďa, 1990) Fyzikální vlastnosti: T = 6, H = 5,18; barva černá, lesk kovový, vryp černý, lom lasturnatý. Je magnetický.
50 MAGNETIT Fe 3 O 4 Složení a struktura: Běžné jsou příměsi - Cr, Mg, Al nebo V, za vyšších teplot Ti. Struktura je inverzní spinelová. Vznik a výskyt: Převážně vysokoteplotní minerál, vzniká ale i za pokojových teplot. V magmatických horninách (hlavně bazických a ultrabazických) tvoří akumulace, hojný je ve skarnech. Na hydrotermálních žilách spíše vzácný, na alpských žilách běžný. Pěkné krystaly bývají v chloritických a mastkových břidlicích, vzniká i v sedimentech za nízkých teplot. Naleziště: Obří důl - Krkonoše, Vlastějovice, Měděnec, Nedvědice (skarny), Bushveldský komplex - JAR (magmatity), Sobotín (v mastkových břidlicích), Použití: ruda Fe Diagnostické znaky: magnetismus, vryp
51 Děkuji za pozornost.
Přírodopis 9. Přehled minerálů SIRNÍKY
Přírodopis 9 11. hodina Přehled minerálů SIRNÍKY Mgr. Jan Souček Základní škola Meziměstí II. Sirníky sulfidy Soli kyseliny sirovodíkové (H 2 S). Slučují se jeden nebo dva atomy kovu s jedním nebo několika
VícePřednáška č. 5. Systematický přehled nejdůležitějších minerálů ze skupin prvků, sulfidů, halogenidů, oxidů a hydroxidů, karbonátů, sulfátů, fosfátů.
Přednáška č. 5 Systematický přehled nejdůležitějších minerálů ze skupin prvků, sulfidů, halogenidů, oxidů a hydroxidů, karbonátů, sulfátů, fosfátů. Třída prvků Kromě vzácných plynů se vyskytuje v elementárním
VíceSystematická mineralogie I
Systematická mineralogie I Princip mineralogického systému. Systematický přehled nejdůležitějších minerálů ze skupiny prvků, sulfidů, halogenidů, oxidů, karbonátů, sulfátů a fosfátů. Základní vlastnosti
VíceSULFIDY Sulfidy jsou sloučeniny S 2- s kovy (jedním nebo více).
SULFIDY Sulfidy jsou sloučeniny S 2- s kovy (jedním nebo více). Do skupiny sulfidů řadíme i takové minerály, kde síra je zčásti nebo úplně zastoupena As (arzenidy), Se (selenidy), Te (teluridy), zřídka
VíceMikroskopie minerálů a hornin
Mikroskopie minerálů a hornin Přednáška 4 Serpentinová skupina, glaukonit, wollastonit, sádrovec, rutil, baryt, fluorit Skupina serpentinu Význam a výskyt Tvar a omezení Barva, pleochroismus v bazických,
VíceHORNINA: Agregáty (seskupení) různých minerálů, popř. organické hmoty, od minerálů se liší svojí látkovou a strukturní heterogenitou
Přednáška č.5 MINERÁL: (homogenní, anizotropní, diskontinuum.) Anorganická homogenní přírodnina, složená z prvků nebo jejich sloučenin o stálém chemickém složení, uspořádaných do krystalové mřížky (tvoří
VíceZáklady geologie pro geografy František Vacek
Základy geologie pro geografy František Vacek e-mail: fvacek@natur.cuni.cz; konzultační hodiny: Po 10:30-12:00 (P 25) Co je to geologie? věda o Zemi -- zabýváse se fyzikální, chemickou, biologickou a energetickou
VíceMineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 3. Systematická mineralogie. Prvky až fosfáty
Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 3. Systematická mineralogie Prvky až fosfáty Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Klasifikace minerálů 1735 C. Linné - první
Více2. MINERALOGICKÁ TŘÍDA- SULFIDY:
2. MINERALOGICKÁ TŘÍDA- SULFIDY: Jedná se o chemické sloučeniny síry a kovu. Vznikají v zemské kůře při chladnutí magmatu krystalizací z jeho horkých vodných roztoků. Vznikají tak rudné žíly = ložiska
VíceHÁDANKY S MINERÁLY. Obr. č. 1
HÁDANKY S MINERÁLY 1. Jsem zářivě žlutý minerál. Mou velkou výhodou i nevýhodou je, že jsem velice měkký. Snadno se se mnou pracuje, jsem dokonale kujný. Získáš mě těžbou z hlubinných dolů nebo rýžováním
VíceHorniny a minerály II. část. Přehled nejdůležitějších minerálů
Horniny a minerály II. část Přehled nejdůležitějších minerálů Minerály rozlišujeme podle mnoha kritérií, ale pro přehled je vytvořeno 9. skupin, které vystihují, do jaké chemické skupiny patří (a to určuje
VíceÚvod do praktické geologie I
Úvod do praktické geologie I Hlavní cíle a tematické okruhy Určování hlavních horninotvorných minerálů a nejběžnějších typů hornin Pochopení geologických procesů, kterými jednotlivé typy hornin vznikají
VícePřednáška č. 7. Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů
Přednáška č. 7 Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů Třída oxidů Oxidy tvoří skupinu minerálů s relativně vysokou tvrdostí a hustotou a vyskytují se zpravidla
VícePřírodopis 9. Přehled minerálů PRVKY
Přírodopis 9 10. hodina Přehled minerálů PRVKY Mgr. Jan Souček Základní škola Meziměstí I. Prvky V přírodě existuje přes 20 minerálů tvořených samostatnými prvky. Dělí se na kovy: měď (Cu), stříbro (Ag),
VícePRVKY. Kovy skupiny mědi Cu, Ag, Au
PRVKY Z známých prvků (viz. periodická tabulka) se jich jenom málo vyskytuje v elementárním stavu jako minerály. Je to dáno především silnou slučivostí mnohých prvků s kyslíkem nebo sírou. ROZDĚLENÍ: -
VíceMINERALOGICKÁ SOUSTAVA I
MINERALOGICKÁ SOUSTAVA I PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VY_52_INOVACE_264 VZDĚLÁVACÍ OBLAST: ČLOVĚK A PŘÍRODA VZDĚLÁVACÍ OBOR: PŘÍRODOPIS ROČNÍK: 9 MINERALOGICKÁ
VícePRVKY. Kovy skupiny mědi Cu, Ag, Au
PRVKY Ze známých prvků (viz. periodická tabulka) se jich jenom málo vyskytuje v elementárním stavu jako minerály. Je to dáno především silnou slučivostí mnohých prvků s kyslíkem nebo sírou, případně Cl
VíceMineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc.
Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 2. Vlastnosti minerálů Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Fyzikální vlastnosti minerálů Minerály jako fyzikální látky mají
VíceOxidy. Křemen. Křišťál bezbarvá odrůda křemene. Růženín růžová odrůda. křemene. Záhněda hnědá odrůda křemene. Ametyst fialová odrůda.
Oxidy Sloučeniny kovů s kyslíkem Křišťál bezbarvá odrůda Ametyst fialová odrůda Křemen Složení: oxid křemičitý SiO2 Vzhled: krystalový šestiboké hranoly Barva: čirý, bělavý, šedavý barevné odrůdy h= 2,6
Více4. MINERALOGICKÁ TŘÍDA OXIDY. - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem).
4. MINERALOGICKÁ TŘÍDA OXIDY - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem). Výskyt: Oxidy se vyskytují ve svrchních částech zemské kůry (v místech, kde je litosféra
Více- Jsou to sloučeniny halových prvků s dalším prvkem. Za halové prvky - halogeny jsou označovány
3. MINERALOGICKÁ TŘÍDA HALOGENIDY - Jsou to sloučeniny halových prvků s dalším prvkem. Za halové prvky - halogeny jsou označovány první 4 prvky VII.A skupiny periodické tabulky prvků. Řadíme mezi ně FLUOR,
VícePETROLOGIE =PETROGRAFIE
MINERALOGIE PETROLOGIE =PETROGRAFIE věda zkoumající horniny ze všech hledisek: systematická hlediska - určení a klasifikace genetické hlediska: petrogeneze (vlastní vznik) zákonitosti chemismu (petrochemie)
VíceRegistrační číslo projektu: CZ.1.07/1.4.00/ Název projektu: Investice do vzdělání - příslib do budoucnosti
Registrační číslo projektu: CZ.1.07/1.4.00/21.2939 Název projektu: Investice do vzdělání - příslib do budoucnosti Číslo přílohy: VY_52_INOVACE_CH8.7 Autor Datum vytvoření vzdělávacího materiálu Datum ověření
VíceSULFÁTY (SÍRANY) - krystaluje v soustavě rombické, na krátce sloupcovitých krystalech vyvinuta prizmata a pinakoidy. Agregáty jsou zrnité.
SULFÁTY (SÍRANY) Sulfáty můžeme odvodit od kyseliny sírové H 2 SO 4. Tyto minerály jsou nekovového vzhledu a většinou měkké, někdy rozpustné ve vodě. Dělíme je na bezvodé a vodnaté. a) bezvodé sulfáty
VíceSULFIDY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 14. 3. 2013. Ročník: osmý
Autor: Mgr. Stanislava Bubíková SULFIDY Datum (období) tvorby: 14. 3. 2013 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Anorganické sloučeniny 1 Anotace: Žáci se seznámí s dvouprvkovými
VíceOXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci
OXIDY A HYDROXIDY Oxidy jsou sloučeniny O 2- s prvky kovovými i nekovovými. Ke skupině minerálů - oxidů jsou řazeny také přírodní hydroxidy a oxi-hydroxidy (např. Fe O /OH/). Systém oxidů - starší učebnice
VíceInovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
VíceČíslo klíčové aktivity: V/2
Název projektu: Pořadové číslo projektu: Název klíčové aktivity: Číslo klíčové aktivity: V/2 Název DUM: Číslo DUM: Vzdělávací předmět: Tematická oblast: Jméno autora: Anotace: Klíčová slova: Metodické
VíceMineralogie 4. Přehled minerálů -oxidy
Mineralogie 4 Přehled minerálů -oxidy 4. Oxidy - sloučeniny různých prvků s kyslíkem - vodu buď neobsahují - bezvodé oxidy - nebo ji obsahují vázanou ve své struktuře - vodnaté oxidy (zpravidla jsou amorfní)
VíceOpakování hydroxidy, halogenidy, oxidy; sulfidy Druh učebního materiálu: Prezentace s interaktivitou Časová náročnost:
Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_CH8SA_01_02_09
VícePřírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina
Přírodopis 9 15. hodina Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY Mgr. Jan Souček Základní škola Meziměstí VI. Uhličitany Uhličitany jsou soli kyseliny uhličité. Mají výrazně nekovový vzhled. Nejdůležitější
VíceMineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci
Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci silikátů 2. Nesosilikáty 3. Shrnutí 1. Co je minerál? Anorganická
VíceTestové otázky ke zkoušce z předmětu Mineralogie
Testové otázky ke zkoušce z předmětu Mineralogie 1) Krystal můžeme definovat jako: homogenní anizotropní diskontinuum. Co znamená slovo homogenní? 2) Krystal můžeme definovat jako: homogenní anizotropní
VícePřechodné prvky, jejich vlastnosti a sloučeniny
Přechodné prvky, jejich vlastnosti a sloučeniny - jsou to d-prvky, nazývají se také přechodné prvky - v PSP jsou umístěny mezi s a p prvky - nacházejí se ve 4. 7. periodě - atomy přechodných prvků mají
VíceHorniny a minerály II. část. Přehled nejdůležitějších minerálů
Horniny a minerály II. část Přehled nejdůležitějších minerálů Minerály rozlišujeme podle mnoha kritérií, ale pro přehled je vytvořeno 9. skupin, které vystihují, do jaké chemické skupiny patří (a to určuje
Více1. PRVKY kovové nekovové ZLATO (Au) TUHA (GRAFIT) (C)
Nerosty - systém 1. PRVKY - nerosty tvořené jediným prvkem (Au, C, ) - dělíme je na: kovové: - ušlechtilé kovy, - velká hustota (kolem 20 g/cm 3 ) - zlato, stříbro, platina, někdy i měď nekovové: - síra
VíceSYSTEMATICKÁ MINERALOGIE
1 SYSTEMATICKÁ MINERALOGIE doc. RNDr. Jiří Zimák, CSc. Katedra geologie PřF UP Olomouc, tř. Svobody 26, 77146 Olomouc, tel. 585634533, e-mail: zimak@prfnw.upol.cz (listopad 2005) OBSAH Úvod 1. Prvky a
VíceAnotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky s fyzikálními vlastnostmi nerostů. Materiál je plně funkční pouze s
Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky s fyzikálními vlastnostmi nerostů. Materiál je plně funkční pouze s použitím internetu. nerost (minerál) krystal krystalová
VíceMineralogie systematická /soustavná/
Mineralogie systematická /soustavná/ - je dílčí disciplínou mineralogie - studuje a popisuje charakteristické znaky a vlastnosti jednotlivých minerálů a třídí je do přirozené soustavy (systému) Minerál
VíceMineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3.
Mineralogie II Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3. Shrnutí 1. Cyklosilikáty Poměrně malá ale důležitá skupina silikátů,
VícePřírodopis 9. Fyzikální vlastnosti nerostů. Mgr. Jan Souček Základní škola Meziměstí. 8. hodina
Přírodopis 9 8. hodina Fyzikální vlastnosti nerostů Mgr. Jan Souček Základní škola Meziměstí Hustota (g/cm 3.) udává, kolikrát je objem nerostu těžší než stejný objem destilované vody. Velkou hustotu má
VíceMINERÁLY I Minerály I
MINERÁLY I Součástí projektu Geovědy vedle workshopů, odborných exkurzí a tvorby výukových materiálů je i materiální vybavení škol, které se do tohoto projektu přihlásily. Situace ve výbavě školních kabinetů
VíceK O V Y. 4/5 všech prvků
K O V Y 4/5 všech prvků Vlastnosti kovů 4/5 všech prvků jsou kovy kovový lesk dobrá elektrická a tepelná vodivost tažnost a kujnost nízká elektronegativita = snadno vytvářejí kationty pevné látky (kromě
VícePřednáška č. 5. Optická krystalografie, metody určování optických vlastností, polarizační mikroskop.
Přednáška č. 5 Optická krystalografie, metody určování optických vlastností, polarizační mikroskop. Systematická mineralogie. Princip mineralogického systému (Strunz). Popis minerálů v jednotlivých třídách
VíceVnitřní geologické děje
Vznik a vývoj Země 1. Jak se nazývá naše galaxie a kdy pravděpodobně vznikla? 2. Jak a kdy vznikla naše Země? 3. Jak se následně vyvíjela Země? 4. Vyjmenuj planety v pořadí od slunce. 5. Popiš základní
VíceMoravský PísekP. Číslo projektu: : CZ.1.07/1.4.00/21.0624 Název. ové aktivity: Název DUM: : Nerosty prvky, halogenidy, sulfidy (prezentace)
Základní škola a Mateřsk ská škola, Moravský PísekP Číslo projektu: : CZ.1.07/1.4.00/21.0624 Název šablony klíčov ové aktivity: Využit ití ICT III/2 Inovace a zkvalitnění výuky Název DUM: : Nerosty prvky,
VíceOptické vlastnosti horninotvorných minerálů I
Optické vlastnosti horninotvorných minerálů I Pro studenty předmětů Mineralogie I a Mikroskopie minerálů a hornin Sestavil Václav Vávra Obsah prezentace křemen obraz 3 ortoklas obraz 16 mikroklin obraz
VíceOceánské sedimenty jako zdroj surovin
Oceánské sedimenty jako zdroj surovin 2005 Geografie Světového oceánu 2 Rozšíření sedimentů 2005 Geografie Světového oceánu 3 2005 Geografie Světového oceánu 4 MOŘSKÉ NEROSTNÉ SUROVINY 2005 Geografie Světového
VíceVýuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie
Úvod do mineralogie Specializovaná věda zabývající se minerály (nerosty) se nazývá mineralogie. Patří mezi základní obory geologie. Geologie je doslovně věda o zemi (z řec. gé = země, logos = slovo) a
VíceInovace profesní přípravy budoucích učitelů chemie
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
VícePŘECHODNÉ PRVKY - II
PŘECHODNÉ PRVKY - II Měď 11. skupina (I.B), 4. perioda nejstabilnější oxidační číslo II, často I ryzí v přírodě vzácná, sloučeniny kuprit Cu 2 O, chalkopyrit CuFeS 2 měkký, houževnatý, načervenalý kov,
VíceSOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7.
Mineralogie I Milan Novák Ústav geologických věd, PřF MU v Brně MINERALOGICKÝ SYSTÉM 2 SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře
VíceNEROSTY. Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními nerosty a jejich využitím.
NEROSTY Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními nerosty a jejich využitím. Nerosty a horniny jsou to neživé přírodniny skládá se z nich zemská kůra
VíceChemické složení Země
Chemické složení Země Geochemie: do hloubky 16 km (zemská kůra) Clark: % obsah prvků v zemské kůře O, Si, Al = 82,5 % + Fe, Ca, Na, K, Mg, H = 98.7 % (Si0 2 = 69 %, Al 2 0 3 =14%) Rozložení prvků nerovnoměrné
VícePodle vlastností rozdělujeme chemické prvky na. Periodická soustava prvků
Téma: Kovy Podle vlastností rozdělujeme chemické prvky na. Periodická soustava prvků kovy nekovy polokovy 4/5 všech prvků jsou pevné látky kapalná rtuť kovový lesk kujné a tažné vodí elektrický proud a
VíceOptické vlastnosti horninotvorných minerálů IV
Optické vlastnosti horninotvorných minerálů IV Pro studenty přednášek Mineralogie I a Mikroskopie minerálů a hornin sestavil Václav Vávra 1 Obsah prezentace titanit 3 karbonáty 11 epidot 18 klinozoisit
VíceStřední škola obchodu, řemesel a služeb Žamberk
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 12.3.2013
VíceCyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub
Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub Jihočeský Mineralogický Klub Témata přednášek 1. Minerály a krystaly 2. Fyzikální vlastnosti nerostů 3. Chemické vlastnosti nerostů 4. Určování
VíceFyzikální vlastnosti: štěpnost dle klence, tvrdost 3.5, hustota 3 g/cm 3. Je různě zbarven - bílý, šedý, naţloutlý, má skelný lesk.
7.7. Karbonáty (uhličitany) Karbonáty patří mezi běţné minerály zemské kůry. Jejich vzorce odvodíme od kyseliny uhličité H 2 CO 3. Můţeme je rozdělit podle strukturních typů, nebo na bezvodé a vodnaté.
VíceGeologie-Minerály I.
Geologie-Minerály I. Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Fyzikální vlastnosti minerálů: a) barva
VíceMineralogie I Prof. RNDr. Milan Novák, CSc.
Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Sorosilikáty 2. Cyklosilikáty 3. Inosilikáty 4. Shrnutí 1. Sorosilikáty skupina epidotu Málo významná skupina,
VíceModul 02 - Přírodovědné předměty
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 - Přírodovědné předměty Hana Gajdušková 12.skupina
VíceKovy a metody jejich výroby
Kovy a metody jejich výroby Kovy v periodické tabulce Základní vlastnosti kovů 80 % prvků v přírodě jsou kovy, v PSP stoupá kovový charakter směrem DOLEVA Vlastnosti: Fyzikální kovový lesk kujnost a tažnost
VíceMŘÍŽKY A VADY. Vnitřní stavba materiálu
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
VíceZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ
ZÁKLADY GEOLOGIE Úvod přednáška 1 RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ e-mail: vaneka@af.czu.cz Požadavky ke zkoušce 1) Účast na cvičeních, poznávačka základních minerálů a hornin = zápočet 2)
VíceVY_32_INOVACE_06_GALENIT_27
VY_32_INOVACE_06_GALENIT_27 Autor:Vladimír Bělín Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400
VíceVY_32_INOVACE_05_PYRIT_27
VY_32_INOVACE_05_PYRIT_27 Autor:Vladimír Bělín Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400
VíceNejrozšířenější kov V přírodě se vyskytuje v sloučeninách - jsou to zejména magnetovec a krevel Ve vysokých pecích se z těchto rud,koksu a přísad
Nejrozšířenější kov V přírodě se vyskytuje v sloučeninách - jsou to zejména magnetovec a krevel Ve vysokých pecích se z těchto rud,koksu a přísad železo vyrábí Surové železo se zpracovává na litinu a ocel
VíceNEROSTNÉ ZDROJE PRO JEDNOTLIVÉ PRVKY
NEROSTNÉ ZDROJE PRO JEDNOTLIVÉ PRVKY ॐVANAD Vanadinit - Pb 5 (VO 4 ) 3 Cl soustava hexagonální barva je žlutá, hnědá či červená, vryp bílý, lesk diamantový tvrdost 3, naleziště Zimbabwe, Mexiko, Kazachstán,
VíceLitogeochemická prospekce. - primární geochemické aureoly
Litogeochemická prospekce - primární geochemické aureoly Definice litogeochemie Litogeochemie vzorkování a analýza podložních hornin, sloužící k definování geochemické distribuce či mechanismů primárního
VíceFyzikální krystalografie, makrodiagnostické fyzikální vlastnosti minerálů.
Přednáška č. 4 Chemická krystalografie, stavba atomu, chemické vazby, koordinační čísla a polyedry, význam geometrického a chemického faktoru u různých typů izomorfie. Polymorfie a polytypie. Fyzikální
Více135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502
135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Katedra geotechniky K135 (5. patro budova B) - Geologie - Mechanika zemin - Zakládání staveb - Podzemní
VíceFylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí
Přednáška č. 7 Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich výskyt. Fylosilikáty:
VíceNa Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.
Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než
VícePERIODICKÁ TABULKA. Všechny prvky v tabulce můžeme rozdělit na kovy, nekovy a polokovy.
PERIODICKÁ TABULKA Je známo více než 100 prvků 90 je přirozených (jsou v přírodě) 11 plynů 2 kapaliny (brom, rtuť) Ostatní byly připraveny uměle. Dmitrij Ivanovič Mendělejev uspořádal 63 tehdy známých
VíceMINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST
MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VY_52_INOVACE_263 VZDĚLÁVACÍ OBLAST: ČLOVĚK A PŘÍRODA VZDĚLÁVACÍ OBOR: PŘÍRODOPIS ROČNÍK: 9 CO JE MINERÁL
VíceVLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 10. 2012. Ročník: osmý
Autor: Mgr. Stanislava Bubíková VLASTNOSTI KOVŮ Datum (období) tvorby: 12. 10. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci
VíceStavba Země. pro poznání stavby Země se používá výzkum šíření = seizmických vln Země má tři hlavní části kůra,, jádro
Stavba Země pro poznání stavby Země se používá výzkum šíření = seizmických vln Země má tři hlavní části kůra,, jádro Stavba Země: astenosféra litosféra (zemská kůra a svrchní tuhý plášť) plášť 2 900 km
VíceSOLI A JEJICH VYUŽITÍ. Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí
SOLI A JEJICH VYUŽITÍ Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí POUŽITÍ SOLÍ Zemědělství dusičnany, draselné soli, fosforečnany. Stavebnictví, sochařství vápenaté soli.
VíceMaramures 2003/2004 důlní revír Baia Mare
Maramures 2003/2004 důlní revír Baia Mare pro KJM připravil David Kříž červen 2004 Maramures Maramures Severní část Rumunska, kterou zaujímá především důlní revír Baia Mare, má velmi komplexní geologickou
Více5. MINERALOGICKÁ TŘÍDA UHLIČITANY
5. MINERALOGICKÁ TŘÍDA UHLIČITANY Minerály 5. mineralogické třídy jsou soli kyseliny uhličité. Jsou anorganického i organického původu (vznikaly usazováním a postupným zkameněním vápenitých koster a schránek
VícePoznávání minerálů a hornin. Cvičení 2 Fyzikální vlastnosti minerálů
Poznávání minerálů a hornin Cvičení 2 Fyzikální vlastnosti minerálů Jak poznáváme minerály? Pouze oči a zkušenosti (bez přístrojů): Může snadno dojít k omylu, určení je pouze orientační posouzení základních
VíceIII/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT
Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN
VíceMalý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát
Malý atlas minerálů. achát Acháty vznikají v dutinách vyvřelých hornin. Jsou tvořené soustřednými vrstvičkami různě zbarvených odrůd křemene a chalcedonu, které vyplňují dutinu achátová pecka. Nauč se
VíceKovy V rámci kovů rozlišujeme krystalochemicky příbuzné skupiny kovů.
7.2. PRVKY Ze známých prvků (viz. periodická tabulka, obr.72_1) se jich jenom málo vyskytuje v elementárním stavu jako nerosty. Je to dáno především silnou slučivostí mnohých prvků s kyslíkem nebo sírou.
VíceMineralogie systematická /soustavná/
Mineralogie systematická /soustavná/ - je dílčí disciplínou mineralogie - studuje a popisuje charakteristické znaky a vlastnosti jednotlivých minerálů a třídí je do přirozené soustavy (systému) Minerál/
VíceAkcesorické minerály
Akcesorické minerály Prof. RNDr. Milan Novák, CSc. Al 2 SiO 5 modifikace a další Al-bohaté minerály Osnova přednášky: 1. Úvod 2. Skupina Al 2 SiO 5 3. Alterace Al 2 SiO 5 4. Příbuzné minerály 5. Další
VícePřednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.
Přednáška č. 8 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných
VíceMineralogie a petrografie
Mineralogie a petrografie Pro 1. ročník, VŠB-TUO HGF Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Cíle předmětu mineralogie a petrografie Předmět seznamuje studenty se základy dvou vědních
VíceObecná a anorganická chemie
Šablona č. I, sada č. 2 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Člověk a příroda Chemie Obecná a anorganická chemie Sulfidy Ročník 9. Anotace Aktivita slouží k upevnění učiva na téma sulfidy,
VíceMineralogický systém skupina I - prvky
Mineralogický systém skupina I - prvky Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 11. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s vybranými nerosty, které
VícePrvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi 17.12.2011
FeCoNi Prvky 8. B skupiny FeCoNi Valenční vrstva: x [vzácný plyn] ns 2 (n-1)d 6 x [vzácný plyn] ns 2 (n-1)d 7 x [vzácný plyn] ns 2 (n-1)d 8 Tomáš Kekrt 17.12.2011 SRG Přírodní škola o. p. s. 2 FeCoNi Fe
Více1. Co je to mineralogie = věda o minerálech (nerostech), podmínkách jejich vzniku, stavbě a chemickém složení
Přírodopis 9. třída pracovní list Téma: Mineralogie Jméno:. 1. Co je to mineralogie = věda o minerálech (nerostech), podmínkách jejich vzniku, stavbě a chemickém složení 2. Definice minerálu = nerost =
VíceEU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
VíceMathesius U±Ag-Bi-Co-Ni
Horníci tvrdí, že když se vizmut vysype na odval, vizmut, který v sobě neměl ani očko stříbra, že v něm po několika létech nalezli stříbro, jak jsme také na začátku upozornili, že přirozeným působením
VíceHlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa
Přeměna hornin Téměř všechna naše pohraniční pohoří jako Krkonoše, Šumava, Orlické hory jsou tvořena vyvřelými a hlavně přeměněnými horninami. Před několika desítkami let se dokonce žáci učili říkanku"žula,
VíceEU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
VíceDIGITÁLNÍ UČEBNÍ MATERIÁL
DIGITÁLNÍ UČEBNÍ MATERIÁL Pořadové číslo DUM 252 Jméno autora Jana Malečová Datum, ve kterém byl DUM vytvořen 25.1.2012 Ročník, pro který je DUM určen 9. Vzdělávací oblast (klíčová slova) Člověk a příroda
VícePotok Besének které kovy jsou v minerálech říčního písku?
Potok Besének které kovy jsou v minerálech říčního písku? Karel Stránský, Drahomíra Janová, Lubomír Stránský Úvod Květnice hora, Besének voda dražší než celá Morava, tak zní dnes již prastaré motto, které
VíceCyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub
Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub Jihočeský Mineralogický Klub Témata přednášek 1. Minerály a krystaly 2. Fyzikální vlastnosti nerostů 3. Chemické vlastnosti nerostů 4. Určování
Více