Finding optimal Chudnovsky-Chudnovsky multiplication algorithms
|
|
- Michaela Říhová
- před 6 lety
- Počet zobrazení:
Transkript
1 Finding optimal Chudnovsky-Chudnovsky multiplication algorithms Matthieu Rambaud Télécom ParisTech, 46 rue Barrault, Paris, France Abstract. The Chudnovsky-Chudnovsky method provides today's best known upper bounds on the bilinear complexity of multiplication in large extension of nite elds. It is grounded on interpolation on algebraic curves : we give a theoretical lower threshold for the smallest bounds that one can expect from this method (with exceptions). This threshold appears often reachable : we moreover provide an explicit method for this purpose. We also provide new bounds for the multiplication in small-dimensional algebras over F 2. Building on these ingredients, we : explain how far elliptic curves can provide upper bounds for the multiplication over F 2; using these curves, improve the bounds for the multiplication in the NIST-size extensions of F 2; thus, turning to curves of higher genus, further improve these bounds with the well known family of classical modular curves. Although illustrated only over F 2, the techniques introduced apply to all characteristics. Keywords. elliptic modular curves, nite eld arithmetic, Chudnovsky- Chudnovsky interpolation, tensor rank, optimal algorithms 1 Framework, motivations and goals Let K be a eld and A a nite-dimensional K-algebra 1. The multiplication in A, m A, is seen as a K-bilinear map : m A : A A A (X, Y ) X.Y Denition 1 The symmetric bilinear complexity of the multiplication m A in A, is the lowest integer n, such that there exists : n linear forms (φ 1,..., φ n ) on A, along with n elements (w 1,..., w n ) of A, such that m A can be expressed as: n m A : (x, y) φ i (x).φ i (y).w i (2) i=1 This quantity 2 will be noted µ sym (A/K). 1 Which will here always be considered associative, commutative and unitary. 2 Which is, in other words, the partially-symmetric tensor rank of m A, seen as an element of (A A ) Sym A (this issue is addressed in general in [1]). (1)
2 Other complexity measures are possible, especially over the eld F 2. For example, one could count both the bitwise additions and multiplications. Or even take into account the possibility to perform computer-elementary operations on groups of 32 or 64-bits. To compute the multiplication in large extensions of nite elds, the interpolation method of Chudnovsky and Chudnovsky [2], provides algorithms having the today's lowest known bilinear complexities. In our symmetric framework, the construction can be summarized as follows. Suppose one wants to compute the multiplication in F q m over F q. Start with an algebraic curve X over F q, equipped with a point Q of degree m, and convenient divisors D and G. For instance, let G be a collection of degree-1 points P 1... P n. Assuming some hypotheses are satised, the multiplication of any x and y in F q m can be performed with the following steps (numbered in the diagram below) : 1O lift x and y to some functions f x and f y, in the space of global sections L(D), so that f x (Q) = x and f y (Q) = y. 2O evaluate f x and f y, separately, on each point P i of the divisor G. 3O compute, for each P i, the product of the two evaluations : a i = f x (P i ).f y (P i ). This is the critical step : here we perform deg G two-variables multiplications. We obtain the vector of values (a 1,, a n ). 4O interpolate this vector to the unique function g L(D + D) having values a i at the P i. 5O evaluate g at Q to nd the product of x and y. 4O s L(D + D) ev G n i=1 F q(p i ) 3O (deg G) mult. ev G 5O ev G ev Q 2O L(D) 1O r, L(D) ev Q ev Q r F q (Q) 1O Such a triple (G, D, Q), in the precise sense of Theorem 2 below, is called an interpolation system. This theorem draws the consequences, of such an algorithm, on the symmetric bilinear complexity of multiplication in nite elds. But before stating it, some conventions must be done. A curve X will always be assumed projective, smooth and geometrically irreducible over F q, often F 2. Given a divisor D on X, the notation O(D) stands for the sheaf of sections of D. By l(d) (resp. i(d) : the index of specialty of D) we will abridge the dimension of the F q -vector space of global sections H 0 (X, O(D)) (resp. of H 1 (X, O(D))). (3)
3 Recall that the Riemann-Roch theorem states : l(d) i(d) = deg D + 1 g, where g is the genus of X. More particularly, given P a closed point of X of degree n, D a divisor and l a positive integer, we will need the following map : the evaluation of a global section of the line bundle O(D) at the thickened point P [l], which takes values in F q n [y]. Let t y l P be a local parameter at P : multiplication by t v P (D) P provides a local trivialization of O(D) at P, and thus an evaluation map : ev Q : L(D) O X,P /(t l P ) f t v P (D) P f P mod (t l P ) (4) The target space maps isomorphically 3 to the F q -algebra Fn q [y] y l. This latter al- (m, l) for its symmetric (m, 1) is abbreviated as 4 µ sym (m). gebra has an internal multiplication map : note µ sym q bilinear complexity. µ sym q Theorem 2 ([3] th 3.5) Let X be a curve of genus g over F q, and let m, l 1 be two integers. Suppose that X admits a closed point Q of degree deg Q = m, and let t Q be an uniformizing parameter. Let G be an eective divisor on X and write G = u 1 P 1 + u n P n (5) where the P i are pairwise distinct closed points, of degree deg P i = d i and resp. of uniformizing parameters t Pi. Suppose there exists a divisor D on X such that: (i) The product of evaluation maps at thickened closed points L(D + D) n i=1 q O X,Pi /(t ui P i )O X,Pi (6) is injective (ii) The evaluation map then is surjective. Moreover, µ sym q (m) L(D) F q (Q) (7) n i=1 µ sym q (d i, u i ) (8) (i') an equivalent condition for (i) is that l(2d G) = 0, (ii') while a sucient condition for (ii) is that i(d Q) = 0. 3 As shown in [3], remark 3.4. This state-of-the-art version of the evaluation map on curves, is the key to the bounds recalled in theorem 2. 4 It is the symmetric complexity of the multiplication in the nite eld extension F q m.
4 It is noticeable that, in the inequality 8, for a divisor G of xed degree deg G, written as i u i.deg P i, the upper bound on µ sym q (m), given by the right-hand term of the last inequality, will be all the more large than the degrees of the points P i and their multiplicities u i are big. Thus, to minimise the symmetric bilinear complexity of the multiplication in F q m, one is lead to follow this roadmap : 1 Collect (and improve) the best bounds for the µ sym q (m, l). 2 Find curves with many points P i of low degree. 3 For such a curve X, x a (small) degree deg G of G such that one hopes the existence of an admissible interpolation system (G, D, Q) on X (as precised in next section). For this candidate value of deg G, nd a combination (u i, P i ) i of points and multiplicities that, numerically, minimises the upper bound of 8 under the constraint deg G i u i.deg P i. 4 For this xed candidate value deg G, given such a numerically optimal G = i u ip i, check the existence of an interpolation system (G, D, Q). 1 is the motivation for the next paragraph. 2 is the motivation for the last section. 3 is an integer programme and will be illustrated in Ÿ will be discussed in the next section. 2 New bounds for small-dimensional algebras F 2 m [y] y l Overview In the Table 1 below are recapitulated the best known upper and lower bounds for the complexities µ sym 2 (m, l) of the multiplication in these algebras 5. Each pair of lower-upper bound is given as "L-U". When no noticeable lower bound is known, the value of the lower bound L is left empty, so only " - U" is displayed. Finally, when the upper bound U is in fact optimal (so L=U), then one single value is displayed. In some cases, optimality results were unpublished to our knowledge. Therefore we detail our method of proof in the following paragraph. The three new upper bounds are displayed in bold 6 (new lower bounds beeing emphasized in Table 2). In the following Table 2, we attempt to give references or explanations for some bounds. We do not claim to always giving credit to the rst discoverer, nor to the most ecient method. In particular, the inequality µ sym q (m, l) µ sym (e, l)µ q d q (d) (see e.g. [3] Lemma 4.6) is often used. For the upper and lower bounds that are new, up to our knowledge, we provide more details about how they were established. For place reasons, we refrain from displaying the formulas for the three new upper bounds here, but keep them available on demand. 5 Note in particular that the rst row shows the best known bounds for the multiplication in small nite eld extensions of F 2. On the opposite, the rst column shows the best known bounds for the multiplication of polynomials modulo x l over F 2. 6 The most noteworthy might be µ sym lower than the upper bound 18=µ sym 2 3 (1, 2)µ sym 2 (3, 2), because its (exact) value, 16, is strictly 2 (3, 1).
5 Table 1. Lower Upper bounds on the complexities µ sym 2 (m, l) l m Table 2. Details for table 1 entries µ sym 2 (m, l) Upper bound Lower bound (5, 1) [4] [5] (6, 1) µ sym 4 (3)µ sym 2 (2) (rst factor : by interpolation over P 1 F 4 ) [5] (7, 1) [4] [5] (8, 1) µ sym 4 (4)µ sym 2 (2) (unknown original contributor for the rst). (9, 1) [6]. (10, 1) µ sym 4 (5)µ sym 2 (2) (unknown original contributor for the rst). (1, 5) [7] [5] (1, 6) [7] [5] (1, 7) [7] (proved valid over a general ring, in [8]) [5] (1, 8) [8] [5] (1, 9) [8] [5] (1, 10) µ sym 4 (1, 5)µ sym 2 (2), the rst factor being equal to 10. (2, 2) µ sym 4 (1, 2)µ sym 2 (2) new (2, 3) µ sym 4 (1, 3)µ sym 2 (2) new (3, 2) new new (2, 4) µ sym 4 (1, 4)µ sym 2 (2), the rst factor being equal to 7. (4, 2) [3], inequality (94). (3, 3) µ sym 8 (1, 3)µ 2(3).
6 Update on exhaustive search methods To obtain the new upper and lower bounds, we built on the exhaustive search method introduced in [7], then in [5]. We would like rst to share the techniques of implementation and search, that contributed to these results. And last, regarding the new lower bounds, we give the arguments that make our computational proofs valid and reproducible, especially when new shortcuts are involved. Let K be a eld, A = K p a K-vector space of dimension p and B a (symmetric) K bilinear map, taking here values in A, seen as a tensor in A A A. Then, evaluation at the last component A denes a map 7 : A A A, whose image is a K-vector subspace noted T. Let G be the set of (symmetric) bilinear forms of rank one in A A. Then the (partially symmetric) tensor-rank of B is equal to the least number k, of elements of G, necessary to generate T. Going in the other direction, the incomplete basis theorem implies that : a subspace W of dimension k of A A, which both (i) is generated by elements of G and (ii) contains T, can be generated by a basis of T completed with elements of G. These arguments validate the following algorithm ([5]), which both : given an integer k, determine if B is of rank strictly greater than k and, if not, nd all the decompositions of length k of B. Algorithm 3 Start with the subspace W = T of A A, of dimension n. Then, for each element g of G independent from W, complete W by g, to obtain W = W g of dimension n + 1. Iterate until the dimension reaches k. Test if the subspace obtained is generated by elements of G. If it is not the case for all the subspaces produced, it thus implies that the (partially symmetric) rank of B is strictly greater than k. Here, we describe three implementation techniques that saved us signicant computation time. (1) When looking for a symmetric decomposition of a symmetric bilinear form B, the entire research can be implemented in the subspace of symmetric bilinear forms. (2) As pointed by F. Courbier, the nal step of the algorithm can be sped up. Instead of systematically computing the rank G W, one can check beforehand if its cardinality is lower than 8 dim W. (3) To avoid testing several times the same subspace, one can x once for all an ordering on G = (g 1,..., g M ). Then, at each step of the recursion, complete W = T Kg i1... Kg is by only the vectors g in G numbered after g is. Finally, we put apart an observation that, either, helps nding quicklier a decomposition of given length k (and thus an upper bound), or, when none exists, gives a theoretical shortcut to establish this fact 9. 7 This could be seen as a "tensor-attening map", but we ignore how far this helps. 8 This leads to noticing that, for algebras of dimension greater than 7, let k be the known upper bound for the tensor rank of multiplication, then a general subspace W of dimension k in (A A ) Sym will a priori contain less than 0.01 rank-one tensor. Thus, it would be interesting to know how to restrain the search to subspaces with a higher density of rank-one tensors. 9 This method might be an elementary case of tensor decomposition methods. (It originated thanks to an apparently innocuous lecture of G. Cohen on cyclic codes.)
7 Observation 4 Suppose that a group H of linear transformations of E = A A : (i) preserves the set G of symmetric rank-one bilinear forms, (ii) preserves the subspace T spanned by the components of the bilinear map B. Then, given an element g, there exists a subspace W of dimension k solution of the problem (i.e. (a) generated by rank one bilinear forms and (b) containing T ), if and only if, for each element h(g) in the orbit of g under H, there exists a subspace W of dimension k which is a solution of the problem The consequences of this observation are easily illustrated in the case when one knows, in advance, a particular orbit O of rank-one symmetric bilinear forms, such that every possible solution subspace W, must at least contain one element of O. One can then both reduce the time consumed : (1) by the search for an upper-bound. Indeed, one has the guarantee that, as soon as a solution of rank k exists, a recursive search of depth k n starting with any given element g i0 in the orbit O will lead to a solution; (2) by the proof of a lower-bound : given any xed element g i0 in this orbit O, if no subspace W containing g 0 is solution, then no solution subspace will contain any element in the orbit O of g 0, thus no solution exists. To have a proof of non-existence, one can thus restrain to a recursive search starting from g i0, hence divide the computation time by roughly half the cardinality of A. Here are two examples. In the case of a nite eld extension F q m of F q, there is one single big orbit in the set G of symmetric bilinear forms, under the action of the group H = F qm dened by composition with two-side multiplication : b F qm : λ(, ) λ(b, b ) (9) In the case of an algebra A = F q m [y], there are l orbits {O y l 1,..., O l } in G under the action of A (dened the same way as previously) : O j is the set of symmetric rank-one bilinear forms expressible as φ 2, where φ sends to zero every polynomial of F q m [y] of valuation in y greater or equal to l. In particular y l the last orbit O l, which is the largest, consists of elements φ 2, for which φ is not zero on at least one polynomial of valuation l 1. Regarding the last example, one remarks, in addition, that any minimal (symmetric) multiplication algorithm will involve at least one element of the greatest orbit O l. Hence, the previously discussed consequences apply. In particular, (2) underlies our computational proofs for lower bounds. This computations were performed with the C library dedicated to fast linear algebra in characteristic 2, [9], But far less computer resources were used than in [5], so we hope that these renements of the method will help further improvements. 3 Best expectable complexity using a given curve 3.1 Best expectable interpolation systems Let X be a curve of genus g over F q. An optimal symmetric interpolation system on X with respect to multiplication in a nite eld extension F q m, is a triple
8 (G, D, Q) that provides a symmetric multiplication algorithm in F q m, reaching a lower bound for the complexity of the Chudnovsky-Chudnovsky interpolation method on X. This will be precised in Denition 9. The rst two key-observations were brought to us 10 by Randriambololona. Observation 5 When H 1 (X, O(D)) = 0, the sucient condition (ii') in theorem 2 is in fact equivalent to (ii). Moreover, it is remarkable that this situation happens, for instance, when deg D 2g 2, by the Riemann-Roch theorem. Indeed, one then has the shortened exact sequence : 0 H 0 (X, O(D Q)) H 0 (X, O(D)) ev Q O X,Q /(t Q ) H 1 (X, O(D Q)) 0 (10) Observation 6 Let X be a curve of genus g over F q, m an integer and Q a closed point of degree m. Suppose that there exists an interpolation system (G, D, Q) on X, with Q of degree m, which furthermore satises the sucient condition (ii') of theorem 2. Then 11, deg G 2m + g 1. Proof Let (G, D, Q) be the interpolation system of the hypothesis, and n (reps. d) the degree of G (resp. D). By condition (i) of theorem 2, l(2d G) = 0. Thus, the Riemann-Roch theorem applied to 2D G implies : 2d n g 1 (11) In addition, by condition (ii') of theorem 2, which is satised here by assumption, i(d Q) = 0. Thus, the Riemann-Roch theorem applied to D Q implies d m g 1. Multiplication by 2 of this inequality leads : 2(d m) 2(g 1) (12) Summing (11) with (12), leads to 2m n g + 1. Lemma 7 Let X be a curve of genus g, m an integer and Q a closed point of degree m. Suppose furthermore that m > g. Then, any divisor D belonging to an interpolation system (G, D, Q) on X satises deg D m + g 1. Proof Note d the degree of D. First case : suppose 2g 2 < d < m + g 1. Then, for degree reasons, i(d) = 0. Thus the Riemann-Roch theorem implies l(d) = d + 1 g < m = 10 We do not claim either to having rst drawn the consequences which follow. 11 The following inequality bounds below the complexity of a multiplication algorithm by interpolation on a given curve. Indeed, recall that the degree of G, bounds below this complexity. This bound is more constraining than the general lower bound, 2m 1, for the bilinear rank of multiplication in integral algebras (cf. [3] Lem. 1.9). Indeed, one considers here only a particular category of multiplication algorithms : the interpolation on curves method (here, the sub-category satisfying (ii'), but this restriction will be lifted, as soon as g < m).
9 dim F q (Q). Therefore, the evaluation map (ii) of theorem 2 cannot be surjective, for dimension reasons. Last case : suppose d 2g 2 < m + g 1. Then, K being the canonical divisor of X, the Riemann-Roch theorem and Serre duality imply that l(d) = l(k D) + d + 1 g. But K D being of non-negative degree, we also have the bounding l(k D) 2g 2 d + 1. Thus, l(d) g < m = dim F q (Q), thus the same contradiction as previously. Proposition 8 (Properties of optimal interpolation systems) Let X be a curve of genus g, m an integer and Q a closed point of degree m. Suppose furthermore, as previously, that m > g. Then : 1. The degree of an interpolation divisor G, belonging to an interpolation system (G, D, Q), cannot be lower than 12 2m + g 1; 2. For such an interpolation system, i.e. with deg G attaining the lower bound 2m + g 1, then the degree of D is necessarily equal to m + g 1. Proof Let (G, D, Q) be an interpolation system with Q of degree m. Note d the degree of D. Firstly, d being strictly greater than 2g 2, observation 5 applies. Hence, the interpolation system satises (ii'). Thus, observation 6 applies : G cannot be of degree lower than 2m + g 1. For the second part, let (G, D, Q) be an interpolation system as in the assumption, that is with Q of degree m and deg G attaining the lower bound 2m + g 1. Then, recall that by inequality (11), 2d deg G g 1. Thus here, d m + g 1. But by the previous lemma, we also have the opposite inequality : d m + g 1. Denition 9 Let X be a curve of genus g over F q, and m an integer. Suppose furthermore, as previously, that m > g. An optimal interpolation system on X in degree m is a triple (G, Q, D), with Q of degree m, that satises the three following conditions : 1. Satises the conditions (i') and (ii') of theorem 2; 2. deg G reaches the lower bound 2m + g 1 of proposition 8; 3. G is numerically optimal, that is : write G = u 1 P 1 + u n P n, then, this combination of points P i and multiplicities u i minimizes the upper bound on µ sym q (m) given by theorem 8. Proposition 10 (Eective construction) Let X be a curve of genus g, such that there exists an optimal interpolation system (G, D, Q), with Q of degree m. Note Cl 0 (X) the zero-class group of X. Then, it is possible to build (G, D, Q) with at most twice #Cl 0 (X) emptiness-checkings of Riemann-Roch spaces It is to be noted that today's best uniform and asymptotic bounds, over F 2, are obtained : (1) with curves of genus g m (one gets g 2.5m from the proof of [10] Th. 4.1) (2) but with degrees of G still greater than 2m + g 1. It would thus be interesting to know if one can improve this threshold. 13 Actually, both computations for (i') ("Step 1") and (ii') ("Step 2") will occur, here, in Cl g 1, so one can remove the factor 2, as soon as one keeps in memory all the classes of divisors already tested
10 Indeed, rst notice that, (G, D, Q) being optimal by assumption, the degree of D is m + g 1 by proposition 8. In particular by 5, the sucient condition (ii') of theorem 2 is actually equivalent to (ii). Thus, one does not miss any optimal interpolation system (G, D, Q) by checking conditions (i') and (ii') instead of (i) and (ii). Secondly, notice that conditions (i') and (ii') depend only on the class of D Q (resp. 2D G) in Cl 0 (X). Step 1 : Look for a numerically optimal G, of degree 2m + g 1, whose class has not been already produced in the previous runs 14 of Step 1, then proceed to Step 2. Step 2 : look for a divisor D, of degree m + g 1, such that l(2d G) = 0, and such that the class of D has not been considered yet in the previous runs 15 of Step 2. If such a D exists, proceed to Step 3. Step 3 : nd every possible closed point Q of degree m, such that the class of D Q in Cl g 1 (X) has not been tested yet in the previous runs of Step 3, and then test if i(d Q) = If so, return 17 (G, D, Q). If we are here, this means that the last run of Step 3 did not return any solution. Assuming that an optimal interpolation system does exist, this implies that there remain classes (C 1... C s ) in Cl m (X), which have not been tested yet in the previous runs of Step 3. Thus, return to Step 2. If we are here, it means that no divisors D were found in Step 2. Then, the assumption for the existence of an interpolation system implies that : there exists another numerically optimal divisor G, and another D, such that 14 Enumerating the (classes of) numerically optimal divisors on X is performed in two steps : (1) enumerate each collections of integers (n d,u ) d,u (where n d,u stands for the number of points of degree d involved with multiplicity u in G), that (a) minimise the upper bound of theorem 8 : d,u n d,uµ sym q (d, u), under the constraints that (b) the total degree d,u n d,udu (is greater or) equal to the above lower bound 2m + g 1, and (c) for each d, u n d,u is lower or equal to the number of points of degree d in X. (2) for each collection (n d,u ) d,u, enumerate the divisors involving exactly n d,u points of degree d with multiplicity u 15 This involves at most #Cl 0 (X) Riemann-Roch spaces emptiness checkings in Cl g 1 (X) (minus those already performed in the previous runs). 16 This involves at most #Cl 0 (X) Riemann-Roch spaces checkings in Cl g 1. (Notice here that, D Q being of degree g 1, the Riemann-Roch theorem implies that this condition is equivalent to l(d Q) = 0) 17 Under the additional assumption where points Q of degree m would exist in every single class Cl m (X), then the rst run of Step 3 always returns a solution as soon as an optimal interpolation system exists. Thus, if no solution is returned, this is a proof that no optimal interpolation system of degree m does exist on X. It is to be noted that, even if the case of genus one curves can be treated directly, a proof of the assumption in this case does exist. More precisely, [11] Th. 27 states that, for q 7 (and presumably 4 for m suciently large), for m , there exists a prime divisor of degree m in every class. Any analogous proof in higher genus would be of interest. [There is actually a mistake in Lem. 19 : in the rst line of (2), µ is actually meant to be n/v r. Thus, in the last but one line, µ can actually be equal to 1 when n has no square factors. This is compensated when, e.g., m is greater than 6! = 720.]
11 there exist classes (C 1,, C s ) in Cl g 1 (X), that have not been tested in Step 3 and are of the form (D Q i ) i I. Thus, return to Step The example of elliptic curves, over F 2 Lowest expectable value for the degree of G We rst recall the known sucient conditions to build interpolation algorithms on elliptic curves over a general F q ([3], Prop. 4.3) : Proposition 11 Let X be an elliptic curve over F q, with all notations as in theorem 2, and P the zero element of the group of points of X(F q ). Let m be an integer. Suppose that X admits a closed point Q of degree 18 m. Let G be an eective divisor on X, and write: G = u 1 P u n P n (13) where the P i are pairwise distinct closed points, of degree deg P i = d i, so deg G = n i=1 d iu i. Then, n µ sym q (m) i=1 µ sym q (d i, u i ) provided one of the following conditions is satised : (i) deg G = 2ml and X(F q ) 2 and Cl 0 (X) is not entirely of 2-torsion. (ii) X(F q ) 2 and deg G 2ml + 1. Furthermore, if the additional criterion on G is satised : the divisor G deg G.P is not equivalent to 0 then deg G can even be taken equal to 2ml. (iii) deg G 2ml + 3. Taking the example of F 2, the ve equivalence classes of elliptic curves over this base eld are given by the following equations. y 2 + y + x 3 + x + 1 = 0 (14) y 2 + xy + x 3 + x = 0 (15) y 2 + y + x 3 = 0 y 2 + y + x 3 + x = 0 y 2 + xy + x = 0 (16a) (16b) (16c) In Table 3 below, we classify these curves along the previous conditions. For each curve X we give : the number B 1 of integral points, the structure of the group of points Cl 0 (X) and, thus, the smallest degree of G satisfying the previous sucient conditions : we call this value "upper-bound". In addition, we also 18 A sucient condition for that is m 7 cf. for example [12] V.2.10 c)
12 bound below the degree deg G of an interpolation divisor on X (distinguishing whether or not the sub-condition on G is satised). Regarding the 2-torsion case, we nally explain why it is in fact nearly always possible to nd a divisor G satisfying the subcondition. Before giving proofs, we can notice that all the lower bounds were actually reached by the known upper-bounds 19. Table 3. Lower-Upper bounds for the degree of the best interpolation divisor G Curve B 1 Cl 0 criterion on Additional G Lower bound on deg G Upper bound on deg G Is the additional criterion on G satisable? (14) ml + 3 2ml + 3. (15) 2 Z/2 (16a) 3 Z/3 (16b) 5 Z/5 (16c) 4 Z/4 when false : 2ml + 1 2ml + 1 yes, for nearly all when true : 2ml 2ml m ml 2ml. Demonstrations Curves (16a), (16b), (16c) and [(15) when condition on G true] : the lower-bounds settled at 2ml are a direct consequence of Prop. 8,1 20. Curve (15) - when condition on G false : if deg G were 2m, then by Prop. 8,2 the degree of D would by m, thus 2D G would be in the zero-class, thus l(2d G) would be one, which contradicts (i) by Riemann-Roch. Curve (14) : Firstly, it is not possible to build a degree 2m interpolation divisor G. We reuse the arguments of [3] 4.7. The evaluation map ev Q : L(D) O X,Q /(t Q ) ts in the long exact sequence 0 H 0 (X, O(D Q)) H 0 (X, O(D)) ev Q O X,Q /(t Q ) H 1 (X, O(D Q)) 0 (17) But, D being of degree m by proposition 8, the Riemann-Roch theorem implies that l(d) = m. Also, the divisor D Q having degree 0 and (iii) having trivial class group, D Q is then equivalent to zero, thus l(d Q) is equal to 1. As a result, dimension-counting implies that the evaluation map ev Q has image of dimension lower or equal to m 1, thus cannot be surjective. 19 The proofs and results for this column are the same on a general base eld F q. And regarding the discussion on the divisor G for the full 2-torsion curve (15), such cases of curves arise in nite number (indeed, it is a basic fact that the 2-torsion group of an elliptic curve is included in Z/2Z Z/2Z, and on the other hand, curves have enough points for q suciently large). Furthermore, the classication provided by [13] shows that this number is small. 20 And were probably known since Shokrollahi 1992
13 Secondly, deg G cannot be equal to 2m + 1. Indeed, the previous arguments shows that, in order to have the surjectivity of the evaluation at Q map, one must have d = deg D > m. Write d = m + i. Then, deg (2D G) = 2i 1 > 0. Thus, i(2d G) = 0 for degree reasons. So, by the Riemann-Roch theorem, l(2d G) = 2i g = 2i 1 > 0. So the condition (ii') is false. But recall that, by observation 5, the degree of D being greater than 2g 2, condition (ii) of theorem 2 is also not satised. Finally, deg G cannot be equal to 2m+2. For that, writing again d = m+i > m, two cases are possible : Either i > 1, thus deg (2D G) = 2i 2 > 0 so by the same argument as above, condition (ii) of theorem 2 is not satised; Or, i = 1. But then deg (2D G) = 0, thus linearly equivalent to zero, by triviality of the zero-class group of curve (iii). Thus l(2d G) = 1, contradicting condition (i) of 2. Curve (15) - satisability of the condition on G : Claim 21 : for each degree m , there exists a point P of degree m such that P mp does not lie in the zero class. As a consequence, for nearly all m, given a numerically optimal divisor G of degree 2m on Curve (15) (furthermore assumed not built using points of degree greater than ), it is possible to deduce a numerically optimal G that does not lie in the zero-class (by swapping a couple of points and/or multiplicities) 22. New bounds over NIST-size extensions of F 2 Five nite eld extensions of F 2 are recommended by the NIST in [14] to perform elliptic-curve based cryptography, of degrees from m = 163 to 571. The best known bounds for the symmetric complexities of the multiplication in these extensions have been set in [13]. To achieve this, the authors used interpolation divisors G of the smallest degree given by the previous sucient conditions 11. But we have just shown, in the previous paragraph, that these conditions on deg G could not be sharpened. Nevertheless, it is still possible to improve these ve bounds. Firstly, the authors seem to have used the value 15 as upper-bound on µ sym 2 (1, 6), although a better value, 14, is known (cf. table 1). Using this value, and interpolating on the curve of equation (16b) instead of (16a), already provides better bounds for all the ve extensions considered. This is shown below in the third column of Table 4. Secondly, plugging in the three new bounds given in Table 1, leads to further improved bounds for the two last extension degrees, as shown below in the last column of Table For the proof : one adapts the estimations in [11] that lead to Th. 16 (1), paying attention to a small mistake in the proof (see footnote 17), replacing q and the p i-torsion by their values, taking m great enough to compensate the new positive terms, and computationally check the values of m below this threshold. 22 Indeed, the possible degrees deg G = m i for which this swapping is not possible, lie among those for which all the points P i of X -up to a certain degree n i- occur in G with equal multiplicities. Therefore, the gaps in the sequence of the excluded degrees (m i) i take values in the (growing) set {B j, j {1,..., n i}}
14 Table 4. Today's best possible upper bounds for µ sym 2 (m) using elliptic curves m former upper bound ([13]) better bounds - with existing ingredients best bounds - using improved ingredients Further improvements, with classical modular curves 4.1 Method The well-known family of classical modular curves X 0 (N) Fp is a natural candidate to build interpolation systems. Indeed, they have been noticed for their high asymptotical rate of integer points of degree 2 (which led to improve a famous bound in coding theory). But also, computational tools exist to study them from dierent angles, as emphasized by what follows : To begin, the results of Igusa show that (1) for all positive integer N, there exists an integral model X 0 (N) Z of the modular curve X 0 (N) Q having good reduction over all the primes p N. (2) Moreover, the Hecke correspondences T p i, acting on Pic 0 (X 0 (N) Q ), can be reduced over these primes p to correspondences T p i, in a way compatible with the moduli interpretation (both results stated e.g. in [15], Th , resp. Diag. 8.30). Then, the Eichler-Shimura congruence relation implies that the number of F p m-points in X 0 (N) Fp can be computed from the value of the trace of the Hecke correspondances T p i, acting on Pic 0 (X 0 (N) Fp ). An explicit formula is provided in [16], Cor As a result, this enables to count closed points in the modular curves X 0 (N) Fp with analytic tools. Indeed, Pic 0 (X 0 (N) C ) is dual to the space of holomorphic forms H 0 (Ω X0(N), C). But computing with cusp-forms expansions cannot be performed in large level N. Instead, the previous space is preferably seen in the (twice) larger space of complex dierential forms on X 0 (N) C. Indeed one can describe, in a purely algebraic fashion, the action of the Hecke operators on the Poincaré dual, H 1 (X 0 (N), C), using a preferred basis called "Manin symbols". This action is implemented in Sage [17]. Then, to retrieve the trace of the Hecke operators on the subspace, H 0 (Ω X0(N), C), one can show that it suces to divide by two the total trace Indeed, there exists a basis of holomorphic forms H 0 (Ω X0 (N), C) such that the Hecke operators T n act by matrices with coecients in Q. An elementary way to see this
15 Having computed, with the previous method, the number of closed points of degrees up to 10 on the X 0 (N) F2 for N up to 1300, one can select those which provide the best numerically optimal divisors G, for the ve extension of F 2 considered. One can then compute rational projective models of some low genus curves, using the canonical embedding method developed in [19] 24. Notice, at this stage, that one has no guarantee that the models have good reduction modulo 2. This is often not the case, which explains the empty fth column of the following Table 5. It nally remains to check that these divisors G do belong to an optimal interpolation system, using the construction described in 10. This can be done in a timely manner, using a well-known proprietary software ([21]), which implements an algorithm of Hess for Riemann-Roch spaces computations. 4.2 Results The following Table 5 gives the best bounds obtained, using curves up to genus 6, for the X 0 (N) F2 which could actually be computed. Let us describe a reproducible run of algorithm 10, leading to the best entry (in bold) 900, for the extension degree m = 163. It is performed on the genus 6 curve X = X 0 (71) F2. The lowest expectable degree for G is = 331 and, in this case, D should be of degree = 168. Setting the random seed to 0 in Magma, we x once for all an enumeration of the points of X (up to degree 8) 25, and an isomorphism of the class group of X with Z/315Z Z : the rst generator (of degree 1) being called D 1 and the second (of degree 0), D 2. Step 1 : (using the notations of Footnote 14) (1) (a) x an optimal collection of integers : n 1,5 = 1, n 1,6 = 3, n 2,4 = 3, n 3,1 = 4, n 4,1 = 6, n 5,1 = 4, n 6,1 = 10, n 8,1 = 21, (b) which is of total degree 331 (c) and is compatible with the number of points on X of respective degrees up to 8. (2) Build a divisor G from this collection : a rst attempt is to use the points in the order they were enumerated (so that, for the four points of degree one on X, the rst is given multiplicity 5 and the three remaining multiplicity 6). Step 2 Building the class of D as i.d D 2, with a varying coecient i for D 1, it happens that for i = 2, the condition l(2d G) = 0 is satised. Step 3 : With various random seeds, we generate random points Q of degree m in several classes 26. It happens that for seed 1, i(d Q) = 0, thus giving an optimal interpolation system (G, D, Q). is to consider the Q-algebra T End(H 0 (Ω X0 (N), C)) generated by the Hecke operators acting on holomorphic forms. Then, noting T = Hom Q (T, Q) the dual algebra, and extending the scalars by C, proposition 3.24 of [18] establishes a natural isomorphism between T C and H 0 (Ω X0 (N), C). To conclude, one can check that this isomorphism transports the natural action of T on T, when extended over C, to the action of T on H 0 (Ω X0 (N), C). 24 For the genus 4 hyperelliptic curve X 0(47) Q, the plane integral model provided in [20], appeared to have good reduction over It then results from (8) that a numerically optimal G would lead to This is currently achieved by splitting only the place at innity, so we do not know if this leads to every possible class for points of degree m.
16 Table 5. Upper bounds on µ sym 2 (m), sorted by the genus of the curves used m\g 1 (Tab. 4) References 1. Bernardi, A., Brachat, J., Comon, P., Mourrain, B.: General tensor decomposition, moment matrices and applications. J. Symbolic Comput. 52 (2013) Chudnovsky, D., Chudnovsky, G.V.: Algebraic complexities and algebraic curves over nite elds. Journal of Complexity 4 (1988) Randriambololona, H.: Bilinear complexity of algebras and the Chudnovsky- Chudnovsky interpolation method. Journal of Complexity 28 (2012) Montgomery, P.L.: Five, six and seven-term Karatsuba-like formulae. IEEE Transactions on Computers 54 (2005) Barbulescu, R., Detrey, J., Estibals, N., Zimmermann, P.: Finding optimal formulae for bilinear maps. In: WAIFI'12. (2012) Cenk, M., Özbudak, F.: Improved polynomial multiplication formulas over F 2 using CRT. IEEE transactions on computers - brief contributions 58 (2009) Oceledets, I.: Optimal Karatsuba-like formulae for certain bilinear forms in GF(2). Linear Algebra and its Applications (2008) Cenk, M., Özbudak, F.: Multiplication of polynomials modulo x n. Theoretical Computer Science 412 (2011) Albrecht, M.: The M4rie library for dense linear algebra over small elds with even characteristic. Arxiv (2011) 10. Pieltant, J., Randriambololona, H.: New uniform and asymptotic upper bounds on the tensor rank of multiplication in extensions of nite elds. - (2013) 11. Shokrollahi, M.A.: Counting prime divisors on elliptic curves and multiplication in nite elds. In: Coding theory and Cryptography. (2000) 12. Stichtenoth, H.: Algebraic Function Fields and Codes. Springer (1993) 13. Ballet, S., Bonnecaze, A., Tukumuli, M.: On the construction of Chudnovsky-type algorithms for multiplication in large extensions of nite elds. - (2013) 14. NIST: FIPS (2013) 15. Diamond, F., Shurman, J.: A First Course in Modular Forms. springer (2004) 16. Moreno, C.J.: Algebraic Curves on Finite Fields. Cambridge (1993) 17. Stein, W., et al.: Sage mathematics software (Version 6.3). The Sage development team. (2014) Stein, W.: Modular Forms, a Computational Approach. AMS (2006) 19. Galbraith, S.D.: Equations For Modular Curves. PhD thesis, Oxford (1996) 20. Yang, Y.: Dening equations of modular curves. Advances in Mathematics 204 (2006) Bosma, W., Cannon, J., Playoust, C.: The magma algebra system. i. the user language. J. Symbolic Comput. 24 (1997)
Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz
SCHEME OF WORK Subject: Mathematics Year: first grade, 1.X School year:../ List of topisc # Topics Time period Introduction, repetition September 1. Number sets October 2. Rigtht-angled triangle October,
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:
WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.
WORKSHEET 1: LINEAR EQUATION 1
WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable
Transportation Problem
Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n
On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia
On large rigid sets of monounary algebras D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia coauthor G. Czédli, University of Szeged, Hungary The 54st Summer School on General Algebra
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Compression of a Dictionary
Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction
Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová
Využití hybridní metody vícekriteriálního rozhodování za nejistoty Michal Koláček, Markéta Matulová Outline Multiple criteria decision making Classification of MCDM methods TOPSIS method Fuzzy extension
Introduction to MS Dynamics NAV
Introduction to MS Dynamics NAV (Item Charges) Ing.J.Skorkovský,CSc. MASARYK UNIVERSITY BRNO, Czech Republic Faculty of economics and business administration Department of corporate economy Item Charges
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING Eva Minaříková Institute for Research in School Education, Faculty of Education, Masaryk University Structure of the presentation What can we as teachers
Dynamic programming. Optimal binary search tree
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA What is an FTP client and how to use it? FTP (File transport protocol) - A protocol used to transfer your printing data files to the MAFRAPRINT
Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.
Czech Republic EDUCAnet Střední odborná škola Pardubice, s.r.o. ACCESS TO MODERN TECHNOLOGIES Do modern technologies influence our behavior? Of course in positive and negative way as well Modern technologies
The Over-Head Cam (OHC) Valve Train Computer Model
The Over-Head Cam (OHC) Valve Train Computer Model Radek Tichanek, David Fremut Robert Cihak Josef Bozek Research Center of Engine and Content Introduction Work Objectives Model Description Cam Design
Database systems. Normal forms
Database systems Normal forms An example of a bad model SSN Surnam OfficeNo City Street No ZIP Region President_of_ Region 1001 Novák 238 Liteň Hlavní 10 26727 Středočeský Rath 1001 Novák 238 Bystřice
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace
Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation
Aplikace matematiky Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky, Vol. 25 (1980), No. 6, 457--460 Persistent URL: http://dml.cz/dmlcz/103885 Terms
VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace
VY_32_INOVACE_06_Předpřítomný čas_03 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400
Jednoduché polookruhy. Katedra algebry
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Vítězslav Kala Jednoduché polookruhy Katedra algebry Vedoucí bakalářské práce: Prof. RNDr. Tomáš Kepka, DrSc. Studijní program:
Informace o písemných přijímacích zkouškách. Doktorské studijní programy Matematika
Informace o písemných přijímacích zkouškách (úplné zadání zkušebních otázek či příkladů, které jsou součástí přijímací zkoušky nebo její části, a u otázek s výběrem odpovědi správné řešení) Doktorské studijní
2. Entity, Architecture, Process
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš
Production: The Case of One Producer
Production: The Case of One Producer Economics II: Microeconomics VŠE Praha November 2009 Aslanyan (VŠE Praha) Monopoly 11/09 1 / 27 Microeconomics Consumers: Firms: People. Households. Optimisation Now
SPECIFICATION FOR ALDER LED
SPECIFICATION FOR ALDER LED MODEL:AS-D75xxyy-C2LZ-H1-E 1 / 13 Absolute Maximum Ratings (Ta = 25 C) Parameter Symbol Absolute maximum Rating Unit Peak Forward Current I FP 500 ma Forward Current(DC) IF
EXACT DS OFFICE. The best lens for office work
EXACT DS The best lens for office work EXACT DS When Your Glasses Are Not Enough Lenses with only a reading area provide clear vision of objects located close up, while progressive lenses only provide
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY. Stručný úvod do programování v jazyce C 2.díl. České vysoké učení technické Fakulta elektrotechnická
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Stručný úvod do programování v jazyce C 2.díl České vysoké učení technické Fakulta elektrotechnická A1B14MIS Mikroprocesory pro výkonové systémy 07 Ver.1.10 J. Zděnek,
FIRE INVESTIGATION. Střední průmyslová škola Hranice. Mgr. Radka Vorlová. 19_Fire investigation CZ.1.07/1.5.00/
FIRE INVESTIGATION Střední průmyslová škola Hranice Mgr. Radka Vorlová 19_Fire investigation CZ.1.07/1.5.00/34.0608 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/21.34.0608 Šablona: III/2 Inovace a zkvalitnění
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG
Chapter 7: Process Synchronization
Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Critical Regions Monitors Synchronization in Solaris
Litosil - application
Litosil - application The series of Litosil is primarily determined for cut polished floors. The cut polished floors are supplied by some specialized firms which are fitted with the appropriate technical
PITSTOP VY_22_INOVACE_26
PITSTOP VY_22_INOVACE_26 Vzdělávací oblast: Jazyk a jazyková komunikace Vzdělávací obor: Anglický jazyk Ročník: 9. PITSTOP 1/ Try to complete the missing words. Then listen and check your ideas. Eight
Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting
Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting Petr Macháček PETALIT s.r.o. 1 What is Redwood. Sensor Network Motion Detection Space Utilization Real Estate Management 2 Building
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Student: Draw: Convex angle Non-convex angle
WORKBOOK http://agb.gymnaslo.cz Subject: Student: Mathematics.. School year:../ Topic: Trigonometry Angle orientation Types of angles 90 right angle - pravý less than 90 acute angles ("acute" meaning "sharp")-
DC circuits with a single source
Název projektu: utomatizace výrobních procesů ve strojírenství a řemeslech egistrační číslo: Z..07/..0/0.008 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je spolufinancován
Progressive loyalty V1.0. Copyright 2017 TALENTHUT
Progressive loyalty Copyright 2017 TALENTHUT www.talenthut.io 1. Welcome The Progressive Loyalty Siberian CMS module will allow you to launch a loyalty program and reward your customers as they buy from
Aktivita CLIL Chemie III.
Aktivita CLIL Chemie III. Škola: Gymnázium Bystřice nad Pernštejnem Jméno vyučujícího: Mgr. Marie Dřínovská Název aktivity: Balancing equations vyčíslování chemických rovnic Předmět: Chemie Ročník, třída:
Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University Olomouc Czech Republic
ROBUST 13. září 2016 regression regresních modelů Categorical Continuous - explanatory, Eva Fišerová Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University
CZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients
KYBERNETIKA VOLUME 8 (1972), NUMBER 6 A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients JAROSLAV KRAL In many applications (for example if the effect
Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.
1/ 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Soft biometric traits in de identification process Hair Jiri Prinosil Jiri Mekyska Zdenek Smekal 2/ 13 Klepnutím
Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku
Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku Aneta Milsimerová Fakulta strojní, Západočeská univerzita Plzeň, 306 14 Plzeň. Česká republika. E-mail: anetam@kto.zcu.cz Hlavním
2 Axiomatic Definition of Object 2. 3 UML Unified Modelling Language Classes in UML Tools for System Design in UML 5
Contents Contents 1 Semestrální práce 1 2 Axiomatic Definition of Object 2 3 UML Unified Modelling Language 2 3.1 Classes in UML............................ 3 4 Tools for System Design in UML 5 5 Student
Brisk guide to Mathematics
Brisk guide to Mathematics Jan Slovák and Martin Panák, Michal Bulant, Vladimir Ejov, Ray Booth Brno, Adelaide, 208 Authors: Ray Booth Michal Bulant Vladimir Ezhov Martin Panák Jan Slovák With further
POSLECH. Cinema or TV tonight (a dialogue between Susan and David about their plans for tonight)
POSLECH Jazyk Úroveň Autor Kód materiálu Anglický jazyk 9. třída Zora Smolková aj9-jes-smo-pos-01 Z á k l a d o v ý t e x t : Cinema or TV tonight (a dialogue between Susan and David about their plans
CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor: Sylva Máčalová Tematický celek : Gramatika Cílová skupina : mírně pokročilý - pokročilý Anotace Materiál má podobu pracovního listu, který obsahuje cvičení, pomocí nichž si žáci procvičí rozdíly
Dynamic Signals. Ananda V. Mysore SJSU
Dynamic Signals Ananda V. Mysore SJSU Static vs. Dynamic Signals In principle, all signals are dynamic; they do not have a perfectly constant value over time. Static signals are those for which changes
2011 Jan Janoušek BI-PJP. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE TRANSFORMACE GRAMATIK NA LL(1) GRAMATIKU. TABULKA SYMBOLŮ. VNITŘNÍ REPREZENTACE: AST. JAZYK ZÁSOBNÍKOVÉHO POČÍTAČE. RUNTIME PROSTŘEDÍ. 2011 Jan Janoušek BI-PJP Evropský
User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com
1/ 11 User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 2/ 11 Contents 1. MINIMUM SYSTEM REQUIREMENTS... 3 2. SŘHV ON-LINE WEB INTERFACE... 4 3. LOGGING INTO SŘHV... 4 4. CONTRACT
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
Present Perfect x Past Simple Předpřítomný čas x Minulý čas Pracovní list
VY_32_INOVACE_AJ_133 Present Perfect x Past Simple Předpřítomný čas x Minulý čas Pracovní list PhDr. Zuzana Žantovská Období vytvoření: květen 2013 Ročník: 1. 4. ročník SŠ Tematická oblast: Gramatika slovesa
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY RINGS OF ENDOMORPHISMS OF ELLIPTIC CURVES AND MESTRE S THEOREM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS RINGS OF ENDOMORPHISMS OF ELLIPTIC
Radiova meteoricka detekc nı stanice RMDS01A
Radiova meteoricka detekc nı stanice RMDS01A Jakub Ka kona, kaklik@mlab.cz 15. u nora 2014 Abstrakt Konstrukce za kladnı ho softwarove definovane ho pr ijı macı ho syste mu pro detekci meteoru. 1 Obsah
Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční
Příloha I Seznam tabulek Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční odměny pro rozhodčí platný od roku
Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.
1 Bad line breaks The follwing text has prepostions O and k at end of line which is incorrect according to Czech language typography standards: Mezi oblíbené dětské pohádky patří pohádky O Palečkovi, Alenka
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení.
Moje hlavní město Londýn řešení: 1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení. Klíčová slova: capital, double decker bus, the River Thames, driving
Zelené potraviny v nových obalech Green foods in a new packaging
Energy News1 1 Zelené potraviny v nových obalech Green foods in a new packaging Již v minulém roce jsme Vás informovali, že dojde k přebalení všech tří zelených potravin do nových papírových obalů, které
Instrukce: Cvičný test má celkem 3 části, čas určený pro tyto části je 20 minut. 1. Reading = 6 bodů 2. Use of English = 14 bodů 3.
Vážení studenti, na následujících stranách si můžete otestovat svou znalost angličtiny a orientačně zjistit, kolik bodů za jazykové kompetence byste získali v přijímacím řízení. Maximální počet bodů je
Výukový materiál zpracovaný v rámci projektu EU peníze do škol. illness, a text
Výukový materiál zpracovaný v rámci projektu EU peníze do škol ZŠ Litoměřice, Ladova Ladova 5 412 01 Litoměřice www.zsladovaltm.cz vedeni@zsladovaltm.cz Pořadové číslo projektu: CZ.1.07/1.4.00/21.0948
Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.
- University I would like to enroll at a university. Stating that you want to enroll I want to apply for course. Stating that you want to apply for a course an undergraduate a postgraduate a PhD a full-time
Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.
- University Rád/a bych se zapsal/a na vysoké škole. Stating that you want to enroll Rád/a bych se zapsal/a na. Stating that you want to apply for a course bakalářské studium postgraduální studium doktorské
Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.
CURRICULUM VITAE - EDUCATION Jindřich Bláha Výukový materiál zpracován v rámci projektu EU peníze školám Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Bc. Jindřich Bláha. Dostupné z Metodického
Functions. 4 th autumn series Date due: 3 rd January Pozor, u této série přijímáme pouze řešení napsaná anglicky!
Functions 4 th autumn series Date due: 3 rd January 207 Pozor, u této série přijímáme pouze řešení napsaná anglicky! Problem. (3 points) David found the quadratic function f : R 0, ), f(x) = x 2 and a
PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I
E L E C T R O N I C C O N N E C T O R S 196 ept GmbH I Tel. +49 (0) 88 61 / 25 01 0 I Fax +49 (0) 88 61 / 55 07 I E-Mail sales@ept.de I www.ept.de Contents Introduction 198 Overview 199 The Standard 200
7 Distribution of advertisement
Legal regulation relating to the text message advertisement: There are different conditions regarding the SMS advertisement for two groups of recipients. The first group consists of recipients who are
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
POSLECH. M e t o d i c k é p o z n á m k y k z á k l a d o v é m u t e x t u :
POSLECH Jazyk Úroveň Autor Kód materiálu Anglický jazyk 9. třída Mgr. Martin Zicháček aj9-kap-zic-pos-07 Z á k l a d o v ý t e x t : Margaret: Hi Eric. Eric: Oh, hi Margaret. How are you doing? Margaret:
DOPLNĚK K FACEBOOK RETRO EDICI STRÁNEK MAVO JAZYKOVÉ ŠKOLY MONCHHICHI
MONCHHICHI The Monchhichi franchise is Japanese and held by the Sekiguchi Corporation, a famous doll company, located in Tokyo, Japan. Monchhichi was created by Koichi Sekiguchi on January 25, 1974. Sekiguchi
11.12. 100 ΕΙΣΟΔΟΣ = E / ENTRANCE = E = = 1174 550 ΤΥΠΟΠΟΙΗΜΕΝΟ ΚΥ = 2000 (ΕΠΙΛΟΓΗ: 2100) / CH STANDARD = 2000 (OPTIONAL: 2100) 243 50 ΚΥ/CH + 293 ΚΥ/CH +103 100 ΚΥ /CH 6 11 6 20 100 0,25 ΚΑ (CO) + 45
Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products
Energy news2 1 Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products Doposud jste Energy znali jako výrobce a dodavatele humánních přírodních doplňků stravy a kosmetiky.
Bioinformatika a výpočetní biologie. KFC/BIN VII. Fylogenetická analýza
ioinformatika a výpočetní biologie KF/IN VII. Fylogenetická analýza RNr. Karel erka, Ph.. Univerzita Palackého v Olomouci Fylogeneze Vznik a vývoj jednotlivých linií organismů Vývoj člověka phylogenetic
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Příručka ke směrnici 89/106/EHS o stavebních výrobcích / Příloha III - Rozhodnutí Komise
Příručka ke směrnici 89/106/EHS o stavebních výrobcích / Příloha III - Rozhodnutí Komise ROZHODNUTÍ KOMISE ze dne 27. června 1997 o postupu prokazování shody stavebních výrobků ve smyslu čl. 20 odst. 2
Algebraic methods in Computer Vision Zuzana Kukelova, Tomas Pajdla, Martin Bujnak
Algebraic methods in Computer Vision Zuzana Kukelova, Tomas Pajdla, Martin Bujnak Center for Machine Perception Department of Cybernetics, Faculty of Electrical Engineering Czech Technical University in
Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám
VY_22_INOVACE_AJOP40764ČER Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu: Název projektu: Číslo šablony: CZ.1.07/1.5.00/34.0883 Rozvoj vzdělanosti II/2 Datum vytvoření:
Právní formy podnikání v ČR
Bankovní institut vysoká škola Praha Právní formy podnikání v ČR Bakalářská práce Prokeš Václav Leden, 2009 Bankovní institut vysoká škola Praha Katedra Bankovnictví Právní formy podnikání v ČR Bakalářská
Základy teorie front III
Základy teorie front III Aplikace Poissonova procesu v teorii front II Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta
Ošetřovací plán Treatment Plan
Ošetřovací plán Treatment Plan Czech / Česky Contents 1. Contents 2. Examination 3. Periodontitis ( Gum Disease ) 4. Treatment 5. Root Treatment 6. Crown 7. Extraction 8. Dentures 9. Exemption 10. HC2
CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Problém identity instancí asociačních tříd
Problém identity instancí asociačních tříd Autor RNDr. Ilja Kraval Ve školeních a také následně po jejich ukončení se stále častěji objevují dotazy, které se týkají tzv. identity instancí asociační třídy.
Příručka ke směrnici 89/106/EHS o stavebních výrobcích / Příloha III - Rozhodnutí Komise
Příručka ke směrnici 89/106/EHS o stavebních výrobcích / Příloha III - Rozhodnutí Komise ROZHODNUTÍ KOMISE ze dne 17. února 1997 o postupu prokazování shody stavebních výrobků ve smyslu čl. 20 odst. 2
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Libuše Matulová Název materiálu: Education Označení materiálu: VY_32_INOVACE_MAT27 Datum vytvoření: 10.10.2013
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Výklad a cvičení z větné stavby, vy_32_inovace_ma_33_01
ITICA. SAP Školení přehled 2012. Seznam kurzů
ITICA SAP Školení přehled 2012 Seznam kurzů SAP Školení v roce 2012 Způsob realizace školení Naše školení jsou zaměřena především na cíl předvést obrovský a rozsáhlý systém SAP jako použitelný a srozumitelný
Let s(x) denote the sum of the digits in the decimal expansion of x. Find all positive integers n such that 1 s(n!) = 9.
Integers 4 th autumn series Date due: 8 th January 2018 Pozor, u této série přijímáme pouze řešení napsaná anglicky! Problem 1. Consider a pair of integers with the following properties: (3 points) (i)
VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová
VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová VZDĚLÁVÁNÍ V ČR VY_32_INOVACE_AH_3_03 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět
Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY. Číslo Servisní Informace Mechanika: 5-2013
Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY Servisní Informace Datum vydání: 20.2.2013 Určeno pro : AMS, registrované subj.pro montáž st.měř. Na základě SI VDO č./datum: Není Mechanika
WL-5480USB. Quick Setup Guide
Quick Setup Guide 1 Czech 7 Install Utility Software Note1: Before installing the utility software, DO NOT inserts the into your computer. If the adapter is inserted already, Windows will detect the adapter
PRODEJNÍ EAUKCE A JEJICH ROSTOUCÍ SEX-APPEAL SELLING EAUCTIONS AND THEIR GROWING APPEAL
PRODEJNÍ EAUKCE A JEJICH ROSTOUCÍ SEX-APPEAL SELLING EAUCTIONS AND THEIR GROWING APPEAL Ing. Jan HAVLÍK, MPA tajemník Městského úřadu Žďár nad Sázavou Chief Executive Municipality of Žďár nad Sázavou CO
LOGBOOK. Blahopřejeme, našli jste to! Nezapomeňte. Prosím vyvarujte se downtrade
název cache GC kód Blahopřejeme, našli jste to! LOGBOOK Prosím vyvarujte se downtrade Downtrade (z GeoWiki) Je to jednání, kterého byste se při výměnách předmětů v keších měli vyvarovat! Jedná se o snížení
Social Media a firemní komunikace
Social Media a firemní komunikace TYINTERNETY / FALANXIA YOUR WORLD ENGAGED UČTE SE OD STARTUPŮ ANALYSIS -> PARALYSIS POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE
Name: Class: Date: RELATIONSHIPS and FAMILY PART A
Name: Class: Date: RELATIONSHIPS and FAMILY PART A 1. Read the text A and complete it. Lidé jsou už ze své podstaty společenští, což znamená, že patří vždy do nějaké sociální společenské skupiny (1. )
CODE BOOK NEISS 8. A code book is an identification tool that allows the customer to perform a test result evaluation using a numeric code.
CODE BOOK NEISS 8 A code book is an identification tool that allows the customer to perform a test result evaluation using a numeric code. Kodová kniha je identifikační pomůcka, která umožňuje provést
Configuration vs. Conformation. Configuration: Covalent bonds must be broken. Two kinds of isomers to consider
Stereochemistry onfiguration vs. onformation onfiguration: ovalent bonds must be broken onformation: hanges do NT require breaking of covalent bonds onfiguration Two kinds of isomers to consider is/trans:
By David Cameron VE7LTD
By David Cameron VE7LTD Introduction to Speaker RF Cavity Filter Types Why Does a Repeater Need a Duplexer Types of Duplexers Hybrid Pass/Reject Duplexer Detail Finding a Duplexer for Ham Use Questions?
Czech Technical University in Prague DOCTORAL THESIS
Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering DOCTORAL THESIS CERN-THESIS-2015-137 15/10/2015 Search for B! µ + µ Decays with the Full Run I Data of The ATLAS
ANGLICKÁ KONVERZACE PRO STŘEDNĚ POKROČILÉ
ANGLICKÁ KONVERZACE PRO STŘEDNĚ POKROČILÉ MGR. VLADIMÍR BRADÁČ ROZVOJ KOMPETENCÍ MANAGEMENTU A PRACOVNÍKŮ VŠ MSK (S PODPOROU ICT) PROJEKT OP VK 2.2: CZ.1.07/2.2.00/15.0176 OSTRAVA 2012 Tento projekt je
TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"
Projekt "Podpora výuky v cizích jazycích na SPŠT" Pera a klíny TKGA3 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR Pera a klíny Pera a klíny slouží k vytvoření rozbíratelného
SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91
SEZNAM PŘÍLOH Příloha 1 Dotazník Tartu, Estonsko (anglická verze)... 90 Příloha 2 Dotazník Praha, ČR (česká verze)... 91 Příloha 3 Emailové dotazy, vedení fakult TÜ... 92 Příloha 4 Emailové dotazy na vedení