Integrovaná prevence a omezování znečištění (IPPC)
|
|
- Markéta Brožová
- před 9 lety
- Počet zobrazení:
Transkript
1 EVROPSKÁ KOMISE GENERÁLNÍ ŘEDITELSTVÍ JRC SPOJENÉ VÝZKUMNÉ STŘEDISKO (JRC) Institut pro perspektivní technologické studie (Seville) Technologie pro udržitelný rozvoj Evropský úřad IPPC Integrovaná prevence a omezování znečištění (IPPC) Referenční dokument k aplikování nejlepších dostupných technik (BAT) na průmyslové chladicí soustavy Světové obchodní středisko, Isla de la Cartuja s/n, E Seville Španělsko Telefon: přímá linka (+34-95) , ústředna Fax: Internet:
2
3 Prováděcí souhrn PROVÁDĚCÍ SOUHRN Tento referenční dokument k aplikování nejlepších dostupných technik na průmyslové chladicí soustavy (BREF) vyjadřuje výměnu informací prováděnou podle článku 16 (2) Směrnice Rady 96/61/EC, která pojednává o IPPC. Tento dokument musí být chápán ve smyslu předmluvy, ve které jsou popsány cíle dokumentu a jeho používání. V rámci IPPC je průmyslové chlazení identifikováno jako horizontální záležitost. Znamená to, že nejlepší dostupné techniky (BAT) jsou v tomto dokumentu posuzovány bez podrobného resp. hloubkového posouzení průmyslového procesu, který má být ochlazován. Navzdory tomu jsou BAT pro chladicí soustavy posouzeny v rozsahu chladicích požadavků průmyslového procesu. Nicméně se ale uznává, že BAT pro chladicí proces je komplexní záležitostí, která vyvažuje chladicí požadavky daného procesu, faktory specifické pro předmětné místo a environmentální požadavky, což umožňuje implementaci (resp. realizování BAT) při ekonomicky a technicky proveditelných podmínkách. Termín průmyslové chladicí soustavy se vztahuje na soustavy, které odnímají nadměrné teplo z jakéhokoliv média (resp. látky) použitím výměníků tepla s vodou a/nebo vzduchem pro snížení teploty této látky směrem k (teplotním) hladinám okolního prostředí. V tomto dokumentu jsou popsány BAT pro chladicí soustavy, které jsou považovány za takové, které pracují jako pomocné soustavy pro normální provoz průmyslového procesu. Potvrzuje se, že spolehlivý provoz chladicí soustavy pozitivně ovlivní spolehlivost průmyslového procesu. Nicméně provoz chladicí soustavy ve vztahu k bezpečnosti procesu není zahrnut do tohoto BREF. V tomto dokumentu je uveden integrovaný přístup k dosažení BAT pro průmyslové chladicí soustavy při respektování skutečnosti, že konečné řešení BAT je převážně záležitostí, která je specifická pro předmětné místo. S ohledem na volbu chladicí soustavy se může tímto přístupem spíše jen prodiskutovat, které části jsou přidruženy k environmentálnímu provedení chladicí soustavy, než zvolit a kvalifikovat (diskvalifikovat) jakoukoliv z použitých chladicích soustav. Tam, kde jsou použita redukční opatření, přístup BAT se pokouší upozornit na přidružené průřezové účinky médií a tudíž klást důraz na to, že redukování různých emisí chladicích soustav vyžaduje uvedení do rovnováhy. V pěti kapitolách hlavního dokumentu je popsán přístup BAT, jeho klíčové problematiky a principy, jsou popsány chladicí soustavy a jejich environmentální aspekty, klíčová zjištění, a závěry a doporučení pro další práci. V jedenácti přílohách jsou uvedeny souvisící resp. doprovázející informace, které jsou zaměřeny na specifické aspekty navrhování a provozování chladicích soustav, a příklady pro znázornění přístupu BAT. 1. Integrovaný přístup Integrovaný přístup BAT posuzuje environmentální provedení chladicí soustavy v souvislosti s celkovým environmentálním provedením průmyslového procesu. Je zaměřen na minimalizaci jak přímých, tak i nepřímých dopadů provozování chladicí soustavy. Je založen na zkušenosti, že environmentální provedení chlazení procesu do značné míry závisí na volbě a konstrukčním řešení chladicí soustavy. Proto je přístup pro nové instalace zaměřen na prevenci emisí volbou vhodného chladicího uspořádání a patřičnou konstrukcí a výrobou chladicí soustavy. Kromě toho se redukování emisí dosáhne optimalizací denního provozu. Pro existující chladicí soustavy je krátkodobě k dispozici menší možnost pro prevenci prostřednictvím technologických opatření a důraz je kladen na redukování emise optimalizovaným provozem a řízením soustav. Pro existující soustavy může být pevně stanoven velký počet parametrů, jako je prostor, dostupnost provozních i
4 Prováděcí souhrn zdrojů, a existující legislativní omezení, což má za následek málo stupňů volnosti pro změny. Nicméně všeobecný přístup BAT v tomto dokumentu může být považován za dlouhodobý cíl, který je pro existující zařízení přizpůsoben cyklům výměny resp. náhrady zařízení. Přístup BAT uznává, že chlazení je podstatnou částí mnoha průmyslových procesů a že by mělo být chápáno jako důležitý prvek v celkovém systému managementu tepla. Ekonomické využití energie v průmyslových procesech je velmi důležité z hlediska environmentálního a z hlediska ekonomičnosti vynaložených nákladů. BAT především znamená, že musí být věnována pozornost energetické účinnosti průmyslového nebo výrobního procesu ještě předtím, než jsou učiněna opatření k optimalizaci chladicí soustavy. Pro zvýšení celkové energetické účinnosti směřují průmyslová odvětví k redukování množství tepla, které není možné rekuperovat, použitím vhodného managementu energie a přijetím řady integrovaných programů pro úsporu energie. Do tohoto se zahrnuje výměna energie mezi různými jednotkami v rozsahu ochlazovaného průmyslového nebo výrobního procesu, stejně tak, jako přidružení tohoto procesu k vedlejším procesům. V případě průmyslových regionů se vyskytuje tendence ke koncepci rekuperace tepla, kdy průmyslová místa jsou vzájemně propojena, nebo jsou připojena k přímému vytápění, nebo k zemědělské skleníkové výrobě. V případech, kde následná rekuperace nebo opětovné využití tohoto tepla nejsou možné, může být nutné toto teplo vypouštět do environmentu, resp. do životního prostředí. Rozlišuje se mezi nízkou hladinou (resp. úrovní) (10 C až 25 C), střední hladinou (25 C až 60 C) a vysokou hladinou (60 C) tepla, které není možné rekuperovat. Všeobecně vyjádřeno, mokré chladicí soustavy se používají pro nízkou hladinu tepla a suché chladicí soustavy pro vysokou hladinu tepla. Pro střední hladinu tepla, které nelze rekuperovat, není dávána přednost žádnému jednoduchému principu chlazení a (v praxi) lze nalézt rozdílná uspořádání. Po optimalizaci celkové energetické účinnosti průmyslového nebo výrobního procesu dané množství a hladina tepla, které nelze rekuperovat, zůstává, a první volba pro chladicí uspořádání k rozptýlení tohoto tepla může být uskutečněna vytvořením rovnováhy mezi: požadavky na chlazení procesu; omezeními pro předmětné místo (včetně lokální legislativy); a environmentálními požadavky. Požadavky na chlazení průmyslového nebo výrobního procesu musí být vždy splněny k zajištění podmínek spolehlivého procesu, včetně spuštění a zastavení. Musí být vždy zaručena požadovaná minimální teplota procesu a požadovaná kapacita chlazení tak, aby se zvýšila účinnost průmyslového nebo výrobního procesu, aby se snížila ztráta produktu (resp. snížila ztráta výrobku), a aby byly redukovány emise do životního prostředí. Se zvyšující se citlivostí těchto procesů na teplotu se bude zvětšovat důležitost výše uvedených požadavků. Podmínky v předmětném místě omezují volitelné možnosti konstrukčního provedení a možné způsoby, kterými může být chladicí soustava provozována. Tyto podmínky jsou definovány lokálním klimatem, dostupností vody pro chlazení a vypouštění tepla, dostupností prostoru pro stavby (potřebných zařízení) a citlivostí okolního prostoru na emise. V závislosti na potřebách procesu z hlediska chlazení a podle požadované kapacity chlazení může být volba místa pro nová zařízení velmi důležitá (např. velký zdroj studené vody). V případech, kde se volba místa řídí podle jiných kritérií, nebo v případě již existujících chladicích soustav, jsou požadavky na chlazení procesu a charakteristiky místa pevně stanoveny. Pro chlazení je důležité lokální klima, poněvadž má vliv na teplotu konečné chladicí vody a vzduchu. Lokální klima je charakterizováno průběhem teplot vlhkého a suchého teploměru. Všeobecně jsou chladicí soustavy navrženy pro splnění požadavků na chlazení při nejméně příznivých podmínkách, které se lokálně mohou vyskytnout, tj. při nejvyšších teplotách vlhkého a suchého teploměru. Další krok při volbě a navrhování chladicí soustavy směřuje k splnění požadavků BAT, v rozsahu požadavků procesu, který má být ochlazován, a v rozsahu omezení, která se vyskytují v daném místě. Znamená to, že je zde kladen důraz na volbu vhodného materiálu a zařízení k zmenšení požadavků na údržbu, k usnadnění provozu ii
5 Prováděcí souhrn chladicí soustavy a k realizaci environmentálních požadavků. Kromě toho při vypouštění tepla do životních resp. okolních prostředí může dojít k dalším environmentálním účinkům, jako je emise přídavných látek, které jsou používány pro kondicionování chladicích soustav. Zdůrazňuje se že tam, kde může být redukováno množství a hladina tepla, které má být rozptýleno, bude výsledný environmentální dopad průmyslových chladicích soustav nižší. Zásady přístupu BAT mohou být také aplikovány na již existující chladicí soustavy. Mohou být k dispozici technologické volitelné možnosti, jako je změna technologie chlazení, nebo změna nebo modifikace existujícího zařízení nebo použitých chemických látek; nicméně tyto volitelné možnosti mohou být aplikovány jenom v omezeném rozsahu. 2. Použité chladicí soustavy Chladicí soustavy jsou založeny na termodynamických principech a jsou určeny k podporování výměny tepla mezi procesem a chladivem a k usnadnění uvolňování tepla, které nelze rekuperovat, do životního prostředí. Průmyslové chladicí soustavy mohou být kategorizovány podle jejich konstrukčního provedení a podle hlavních principů chlazení: použití vody nebo vzduchu, nebo kombinace vody a vzduchu jako chladiv. Výměna tepla mezi médiem použitým (látkou použitou) v procesu a chladivem se zvětší pomocí výměníků tepla. Chladivo odvádí teplo z výměníků tepla do životního prostředí. V otevřených (chladicích) soustavách je chladivo v kontaktu s životním prostředím. V uzavřených (chladicích) systémech cirkuluje chladivo nebo médium použité (látka použitá) v procesu uvnitř potrubí nebo trubkových hadů a není v otevřeném resp. přímém kontaktu s životním prostředím. Průtočné (chladicí) soustavy jsou obecně používány pro zařízení s velkým (chladicím) výkonem v lokalitách, kde jsou k dispozici dostatečná množství chladicí vody a recipientu, resp. přijímací povrchové vody. Jestliže není k dispozici spolehlivý vodní zdroj, používají se recirkulační soustavy (chladicí věže). Chladicí voda je v otevřených recirkulačních věžích ochlazována kontaktem s proudícím vzduchem. Věže jsou vybaveny zařízeními, která zvětšují kontakt vzduch/voda. Proud vzduchu může být vytvořen umělým tahem použitím ventilátorů, nebo přirozeným tahem. Věže s umělým tahem se ve značném rozsahu používají pro malé a velké (chladicí) výkony/kapacity. Věže s přirozeným tahem se převážně používají pro velké (chladicí) výkony/kapacity (např. v energetickém průmyslu). V soustavách s uzavřeným okruhem jsou potrubí nebo trubkové hady, ve kterých cirkuluje chladivo nebo médium použité (látka použitá) v procesu, ochlazovány, čímž se zase ochlazuje látka, která je v nich obsažena. V mokrých soustavách ochlazuje proud vzduchu v důsledku odpařování potrubí nebo trubkové hady, které jsou postřikovány vodou. V suchých soustavách proudí kolem potrubí/trubkových hadů pouze vzduch. V obou dvou konstrukčních provedeních mohou být trubkové hady vybaveny (chladicími) žebry, která zvětšují chladicí povrch a v důsledku toho chladicí účinek. Mokré (chladicí) soustavy s uzavřeným okruhem jsou v průmyslu používány ve velkém rozsahu pro menší kapacity. Princip suchého vzduchového chlazení je možné nalézt v menších průmyslových použitích stejně tak jako ve velkých elektrárnách v takových situacích, kde není k dispozici dostatečné množství vody, nebo tam, kde je voda velmi drahá. Otevřené chladicí soustavy a uzavřené hybridní chladicí soustavy jsou speciální konstrukční provedení chladicích věží s umělým tahem, které umožňují mokrý a suchý provoz k redukci vytváření viditelné parní vlečky. Použitím volitelné možnosti provozování soustav (zejména malé jednotky článkového typu) jako suchých soustav v průběhu období nízkých teplot okolního vzduchu může být dosaženo snížení roční spotřeby vody a zmenšení tvorby viditelné parní vlečky. iii
6 Prováděcí souhrn Tabulka 1: Příklad technických a termodynamických charakteristik různých chladicích soustav pro průmyslová (ne-elektrárenská) použití Chladicí soustava Chladicí médium (látka) Hlavní princip chlazení Minimální přiblížení (K)4) Otevřená průtočná soustava přímá Otevřená průtočná soustava nepřímá Otevřená recirkulační chladicí soustava přímá Otevřená recirkulační chladicí soustava nepřímá Mokrá chladicí soustava s uzavřeným okruhem Suchá vzduchová chladicí soustava s uzavřeným okruhem Otevřené hybridní chlazení Voda Vedení/ Proudění Vedení/ Proudění Odpařování3) Uzavřené hybridní chlazení Voda Voda1) Vzduch2) Voda1) Vzduch2) Voda1) Vzduch2) Vzduch Voda1) Vzduch2) Voda1) Vzduch2) 35 Minimální dosažitelná koncová teplota média použitého v procesu5) ( C) Výkon průmyslového procesu (MWth) < 0,01 > < 0,01 - > < 0,1 > Odpařování3) < 0,1 > 200 Odpařování + proudění Proudění 7 147) , < 0,1 100 Odpařování + proudění Odpařování + proudění ,15 2,56) ,15 2,56) Poznámky: 1) Voda je sekundární chladicí médium a převážně recirkuluje. Odpařovaná voda odvádí teplo do vzduchu. 2) 3) 4) Vzduch je chladicí médium, ve kterém je teplo odváděno do životního resp. okolního prostředí. Odpařování je hlavní princip chlazení. Teplo je také odváděno vedením/prouděním, ale v menším rozsahu. Přiblížení relativně ve vztahu k teplotám vlhkého a suchého teploměru. Musí být doplněna přiblížení výměníku tepla a chladicí věže. 5) Koncové teploty závisí na klimatu daného místa (údaje jsou platné pro průměrné středoevropské klimatické podmínky. 6) 30 C/21 C teplota suchého/vlhkého teploměru a maximální teplotu vody 15 C). Kapacita resp. výkon malých jednotek při kombinaci několika jednotek nebo v případě speciálně 7) sestaveného chlazení je možné dosáhnout vyšší kapacity (většího výkonu) soustav. V případech, kde je použita nepřímá soustava, nebo je také použito proudění, se přiblížení v tomto příkladě zvyšuje o 3 K až 5 K, což vede k zvýšené teplotě procesu. V tabulce jsou uvedeny charakteristiky použitých chladicích soustav pro dané klimatické situace. Koncová teplota média použitého v procesu, které odchází z výměníku tepla po ochlazení, závisí na teplotě chladiva a na konstrukčním provedení soustavy chlazení. Voda má vyšší měrnou tepelnou kapacitu než vzduch a proto je lepší chladivo. Teplota chladicího vzduchu a chladicí vody závisí na lokálních teplotách suchého a vlhkého teploměru. Čím vyšší jsou teploty teploměru, tím obtížnější je uskutečnit ochlazení na dolní koncové teploty procesu. Koncová teplota procesu je součet nejnižší teploty okolí (chladiva) a minimálního požadovaného teplotního rozdílu mezi chladivem (přiváděným do soustavy chlazení) a látkou použitou v procesu (odváděné ze soustavy chlazení) v rozsahu výměníku tepla, což je také nazýváno (tepelné) přiblížení. Z technického hlediska může být přiblížení velmi nízké prostřednictvím konstrukčního provedení, nicméně náklady jsou nepřímo úměrné velikosti. Čím je přiblížení menší, tím nižší může být koncová teplota procesu. Každý výměník tepla bude mít svoji velikost přiblížení a v případě dalších výměníků tepla, sériově zapojených, se všechna přiblížení přičítají k teplotě chladiva (přiváděného do soustavy chlazení) k výpočtu dosažitelné koncové teploty procesu. Přídavné výměníky tepla se používají v chladicích soustavách s nepřímým chlazením, kde je použit další chladicí okruh. Tento sekundární okruh a primární chladicí okruh jsou spojeny výměníkem tepla. Chladicí soustavy s nepřímým chlazením se používají tam, kde úniku látek použitých v procesu do životního prostředí v důsledku netěsností musí být důsledně zabráněno. iv
7 Prováděcí souhrn Pro soustavy chlazení, které jsou obecně používány v energetickém průmyslu, jsou minimální přiblížení a výkonnosti chlazení poněkud rozdílné od ne-elektrárenských použití z důvodu speciálních požadavků procesu kondenzace vodní páry. Rozdílná přiblížení a relevantní kapacity výroby energie jsou znázorněny v níže uvedeném přehledu. Tabulka 2: Příklady výkonu a termodynamických charakteristik různých chladicích soustav v energetickém průmyslu Chladicí soustava Použitá přiblížení (K) Otevřené průtočné soustavy Otevřená mokrá chladicí věž Otevřená hybridní chladicí věž Suchý vzduchem chlazený kondenzátor (konečný rozdíl 3 5) Výkon procesu, při kterém je vyráběna energie (MWth) < < < < Environmentální aspekty použitých soustav chlazení Environmentální aspekty chladicích soustav se mění v závislosti na použitém uspořádání chlazení, ale středem pozornosti je převážně zvýšení celkové energetické účinnosti a snížení emisí do vodního prostředí. Spotřeba a emisní hladiny jsou do značné míry specifické pro předmětné místo a v případech, kde je možné provést jejich kvantifikaci, vykazují značné odchylky. Ve filozofii integrovaného přístupu BAT musí být při posouzení každého environmentálního aspektu a při posouzení přidružených redukčních opatření vzaty v úvahu průřezové účinky médií (resp. látek). Spotřeba energie Specifická (resp. měrná) přímá a nepřímá spotřeba energie je významný environmentální aspekt, který je relevantní pro všechny chladicí soustavy. Specifická (resp. měrná) nepřímá spotřeba energie je spotřeba energie procesu, který má být ochlazován. Tato nepřímá spotřeba energie se může zvýšit v důsledku chladicí výkonnosti použitého chladicího uspořádání, která je menší než optimální chladicí výkonnost, což může mít za následek zvýšení teploty procesu (ΔK) a vyjadřuje se v kwe/mwth/k. Specifická (resp. měrná) přímá spotřeba energie chladicí soustavy se vyjadřuje v kwe/mwth a vztahuje se na množství energie spotřebované všemi zařízeními chladicí soustavy, která spotřebovávají energii (čerpadla, ventilátory), na každou MWth, kterou chladicí soustava rozptyluje. Opatření pro snížení specifické nepřímé spotřeby energie jsou tato: volba chladicího uspořádání s nejnižší specifickou nepřímou spotřebou energie (všeobecně vzato to jsou průtočné chladicí soustavy); použití konstrukčního řešení s malými hodnotami přiblížení; a snížení odporu (průtoku) výměníku tepla správnou údržbou soustavy chlazení. Například v případě energetického průmyslu znamená změna z průtočného chlazení na recirkulační chlazení zvýšení spotřeby energie pro přídavná zařízení, stejně tak, jako snížení účinnosti tepelného cyklu. Pro snížení specifické přímé spotřeby energie jsou k dispozici čerpadla a ventilátory, které mají vyšší účinnosti. Odpor a poklesy tlaku v procesu mohou být sníženy konstrukčním provedením soustavy chlazení, použitím eliminátorů unášení, a použitím výplně (chladicí) věže s nízkým odporem. Řádné mechanické nebo chemické čištění povrchů udržuje nízký odpor v procesu v průběhu provozu (chladicí soustavy). v
8 Prováděcí souhrn Voda Voda je pro mokré chladicí soustavy důležitá jako převládající chladivo, ale také jako přijímací prostředí (resp. recipient) pro vypouštění chladicí vody. V případě velkých přívodů vody se vyskytuje narážení resp. potlučení a strhávání ryb a jiných vodních organismů. Vypouštění velkých množství teplé vody může také ovlivnit vodní prostředí, ale dopad může být řízen pomocí vhodného umístění přívodu a vyústění, a posouzením průtoků při přílivu, nebo průtoků v ústí řeky, k zajištění přiměřeného smíchání teplé vody s recipientem a rozptýlení tepla pomocí vodorovného proudění teplé vody. Spotřeba vody kolísá mezi 0,5 m3/h/mwth pro otevřenou hybridní věž a až 86 m3/h/mwth pro otevřené průtočné (chladicí) soustavy. Zmenšení velkých přívodů vody použitím průtočných (chladicích) soustav vyžaduje změnu směrem k recirkulačnímu chlazení, což současně sníží vypouštění velkých množství teplé chladicí vody a může také snížit emise chemických látek a odpadu. Spotřeba vody recirkulačních (chladicích) soustav může být snížena zvětšením počtu cyklů, zdokonalením jakosti doplňované vody, nebo optimalizováním použití zdrojů odpadní vody dostupných v předmětném místě nebo mimo předmětné místo. Obě dvě volitelné možnosti vyžadují sestavení komplexního programu úpravy chladicí vody. Hybridní chlazení, které v průběhu některých ročních obdobích umožňuje použít suché chlazení, je spojeno s nižšími požadavky na chlazení, nebo s nižšími teplotami vzduchu, a tak může snížit spotřebu vody zejména v případě malých jednotek článkového typu. Konstrukční provedení a umístění přívodu (chladicí vody) a různých zařízení (síta, přepážky, světlo, zvuk) se používají ke snížení strhávání a potlučení vodních organismů. Účinek těchto zařízení závisí na biologických druzích (vodních organismů). Náklady jsou vysoké a tato opatření jsou přednostně používána v situaci na (tzv.) zelené louce. Snížení požadovaného výkonu chlazení, pokud je možné pomocí zvýšení opětného využití tepla, může redukovat emise teplé chladicí vody do přijímací povrchové vody (recipientu). Emise tepla do povrchové vody Jak už bylo dříve zmíněno, emise tepla do povrchové vody může mít environmentální dopad na přijímací povrchovou vodu (recipient). Ovlivňující faktory jsou např. dostatečný chladicí výkon přijímací povrchové vody, skutečná teplota a ekologický stav povrchové vody. Emise tepla mohou mít za následek překročení EQS pro teplotu v průběhu horkých letních období jako následek vypouštění tepla do povrchové vody, které vyplývá z chladicí vody. Tepelné požadavky pro dva ekologické systémy (lososové vody a cyprinidové vody, resp. vody pro máloostní ryby) byly převzaty ze Směrnice 78/569/EEC. Relevantní pro ekologický dopad tepelných emisí není pouze skutečná teplota vody, ale také nárůst teploty na okraji oblasti směšování v důsledku vypouštění tepla do vody. Pro rozsah environmentálního dopadu jsou relevantní množství a hladina vypouštěného tepla do povrchové vody vztažené k rozměrům přijímací povrchové vody. V situacích, ve kterých je teplo vypouštěno do relativně malých povrchových vod, a kde horkovodní parní vlečka dosahuje na opačnou stranu řeky nebo kanálu, může tento stav vést k vytváření bariér pro migraci lososů. Kromě těchto účinků může vysoká teplota jako následek tepelných emisí vést k zvýšenému dýchání a biologické produkci (eutrofizaci, tzn. procesu, který vede k nadměrné produkci biomasy), což má následek nižší koncentraci kyslíku ve vodě. Při navrhování chladicí soustavy musí být vzaty v úvahu výše uvedené aspekty a možnosti k snížení množství tepla rozptylovaného do povrchové vody. Emise látek do povrchové vody Emise z chladicích soustav do povrchové vody jsou způsobeny: použitými přídavnými látkami do chladicí vody a jejich reagujícími složkami; látkami přenášenými vzduchem, který prochází chladicí věží; zplodinami koroze, které vzniknou v důsledku koroze zařízení chladicích soustav; a unikáním chemických látek použitých v procesu (produktů/výrobků) v důsledku netěsností a jejich reakčními produkty. vi
9 Prováděcí souhrn Správné fungování chladicích soustav může vyžadovat úpravu chladicí vody proti korozi zařízení, tvorbě kotelního kamene a mikroznečištění a makroznečištění. Úpravy chladicí vody jsou odlišné pro otevřené průtočné chladicí soustavy a recirkulační chladicí soustavy. Pro recirkulační chladicí soustavy mohou být programy úpravy chladicí vody velmi složité a rozsah používaných chemických látek může být velmi široký. V důsledku toho emisní hladiny v odkalované chladicí vodě těchto soustav chlazení také vykazují značné odchylky a je obtížné uvést reprezentativní emisní hladiny. Někdy je odkalovaná chladicí voda před vypouštěním upravována. Emise oxidačních biocidů v otevřených průtočných (chladicích) soustavách, měřené jako volné oxidační látky v místě odvádění, kolísají mezi hodnotou 0,1 [mg FO/l] a hodnotou 0,5 [mg FO/l] v závislosti na systému resp. modelu a frekvenci dávkování. Tabulka 3: Chemické komponenty pro úpravy chladicí vody používané v otevřených a recirkulačních mokrých chladicích soustavách Problémy jakosti vody Příklady chemické úpravy* Tvorba kotelního kamene Koroze (Bio-)znečištění Průtočné Recirkulační Průtočné Recirkulační Průtočné soustavy soustavy soustavy soustavy soustavy Zinek Molybdenany Křemičitany Fosfonáty Polyfosfanáty Polyolestery Přírodní organické látky Polymery Neoxidační biocidy Oxidační biocidy X X X X X (X) (X) Recirkulační soustavy X X X X X X X X * Chroman se již ve velkém rozsahu nepoužívá vzhledem k jeho značnému účinku na životní prostředí Volba a používání chladicího zařízení, které je navrženo z materiálů vhodných pro prostředí, ve kterém bude provozováno, může zmenšit úniky netěsnostmi a korozi. Toto prostředí je popsáno těmito údaji: podmínky procesu, jako je teplota, tlak, rychlost proudění; ochlazovaná média (ochlazované látky); a chemické charakteristiky chladicí vody. Materiály běžně používané pro výměníky tepla, potrubí, čerpadla a skříně/pouzdra jsou uhlíková ocel, slitiny měď/nikl a nerezavějící oceli různých jakostí; nicméně ve zvětšeném rozsahu se používá titan (Ti). K ochraně povrchu se také používají povlaky a nátěry. Použití biocidů Otevřené průtočné (chladicí) soustavy jsou upravovány proti makroznečištění převážně oxidačními biocidy. Aplikované množství může být vyjádřeno jako ročně použité oxidační přídavné látky, vyjádřené jako ekvivalent chloru na MWth ve spojení s hladinou znečištění ve výměníku tepla nebo v jeho těsné blízkosti. Použití halogenů jako oxidačních přídavných látek v průtočných (chladicích) soustavách povede k zatížením životního prostředí především vytvářením halogenovaných vedlejších produktů. vii
10 Prováděcí souhrn V otevřených recirkulačních (chladicích) soustavách se používá předběžná úprava vody proti tvorbě kotelního kamene, korozi a mikroznečištění. Vzhledem k relativně menším objemům recirkulačních mokrých (chladicích) soustav jsou úspěšně aplikovány alternativní úpravy, jako je ozon a UV světlo, ale tyto alternativy vyžadují specifické podmínky procesu a mohou být docela nákladné. Provozní opatření, která snižují škodlivé účinky vypouštění chladicí vody, jsou uzavírání čištění v průběhu nárazové úpravy a úprava vody odkalované z chladicí soustavy před jejím vypouštěním do přijímací povrchové vody, resp. recipientu. Pro úpravu vody odkalované z chladicí soustavy v zařízení pro úpravu odpadní vody musí být zbytková biocidní aktivita monitorována, poněvadž může mít vliv na mikrobiální populaci. K redukování emisí ve vypouštěné chladicí vodě a k redukování dopadu na vodní prostředí jsou vybrány biocidy s cílem přizpůsobit požadavky chladicích soustav k citlivosti přijímacího vodního prostředí (recipientu). Emise do vzduchu Vzduch vypouštěný ze suchého okruhu chladicích věží se obvykle nepovažuje za nejdůležitější aspekt chlazení. Může se vyskytnout kontaminace, pokud se vyskytne únik produktu, který je způsoben netěsnostmi, ale správně prováděná údržba může tomuto jevu preventivně zabránit. Kapky nacházející se ve výstupu mokrých chladicích věží mohou být kontaminovány mikroby nebo produkty koroze, které jsou vytvořeny chemikáliemi použitými pro úpravu (chladicí) vody. Potenciální rizika sníží použití eliminátorů unášení a optimalizovaný program úpravy vody. Vytváření formací parních vleček se zvažuje tam, kde se vyskytne jejich účinek na horizont ( horizon-marring effect ) nebo tam, kde se vyskytuje riziko parní vlečky dosahující až na úroveň země. Hluk Emise hluku je lokálním problémem pro velké chladicí věže s přirozeným tahem a všechny mechanické chladicí soustavy (s umělým tahem). Hladiny netlumeného akustického výkonu kolísají mezi 70 [db(a)] pro chladicí věže s přirozeným tahem a 120 [db(a)] pro chladicí věže s umělým tahem. Kolísání je způsobeno rozdíly ve vybavení a místem, ve kterém je prováděno měření, protože hodnoty hluku jsou odlišné pro místo přívodu vzduchu a odvodu vzduchu. Hlavními zdroji hluku jsou ventilátory, čerpadla a padající voda. Rizikové aspekty Rizikové aspekty soustav chlazení pro mokré chladicí soustavy se vztahují na úniky z výměníků tepla v důsledku netěsností, na skladování chemikálií, a na mikrobiologickou kontaminaci (jako je choroba legionářů). Použitá opatření k prevenci úniků v důsledku netěsností, stejně tak, jako prevence mikrobiologické kontaminace, jsou preventivní údržba a monitorování. V těch případech, kde úniky netěsnostmi by mohly vést k vypouštění velkých množství látek, které jsou škodlivé pro vodní prostředí, se uvažuje o aplikování chladicích soustav s nepřímým chlazením, nebo o zvláštních preventivních opatřeních. Pro prevenci vývinu bakterií Legionellae pneumophila (LP) se doporučuje aplikovat patřičný program úpravy (chladicí) vody. Nemohly být stanoveny žádné horní mezní hodnoty koncentrace pro LP, naměřené v hodnotách jednotek tvořících kolonii [CFU na litr], při jejichž překročení nemá být očekáváno žádné riziko. Toto riziko musí být vzato v úvahu především v průběhu uskutečňování údržbářských operací. Residua z provozování soustav chlazení V záležitosti residuí nebo odpadů bylo oznámeno jen velmi málo informací. Kaly, které pocházejí z předběžné úpravy chladicí vody, nebo z nádrží chladicích věží musí být považovány za odpad. Tyto kaly se zpracovávají viii
11 Prováděcí souhrn a likvidují různými způsoby, které závisí na mechanických vlastnostech a chemickém složení. Hladiny koncentrace se mění v závislosti na programu úpravy chladicí vody. Environmentální emise se dále redukují aplikováním méně škodlivých konzervačních metod pro zařízení a volbou materiálu, který může být po vyřazení z provozu nebo výměně zařízení chladicí soustavy recyklován. 4. Klíčové závěry BAT BAT nebo primární přístup BAT pro nové a již existující soustavy jsou uvedeny v Kapitole 4. Zjištění mohou být zrekapitulována tak, jak je dále uvedeno. Uznává se, že konečné řešení BAT bude řešením, které je specifické pro předmětné místo, ale pro některé technické záležitosti by mohlo být identifikováno jako všeobecný přístup BAT. Ve všech situacích musí být prozkoumány a použity dostupné a aplikovatelné volitelné možnosti pro opětné využití tepla k redukování množství a hladiny tepla, které není možné rekuperovat, ještě předtím, než se zvažuje rozptýlení tepla z průmyslového procesu do životního prostředí. Pro všechna zařízení je BAT technologie, metoda nebo postup a výsledek integrovaného přístupu k redukování environmentálních dopadů průmyslových chladicích soustav, udržující rovnováhu mezi přímými a nepřímými dopady na životní prostředí. Redukční opatření by měla být zvažována takovým způsobem, aby zasahovala minimálně do účinnosti chladicí soustavy, nebo by měla být zvažována z hlediska takové ztráty účinnosti, která je zanedbatelná ve srovnání s pozitivními účinky na environmentální dopady. Pro celou řadu environmentálních aspektů byly identifikovány techniky, které mohou být považovány za BAT v rozsahu přístupu BAT. Nebylo možné identifikovat žádné jednoznačné přístupy BAT v záležitosti redukování odpadu, nebo v záležitosti jak s odpadem manipulovat při současném vyvarování se kontaminaci půdy a vody, nebo vzduchu v případě spalování. Požadavky na proces a místo Volba mezi suchým, mokrým a suchým/mokrých chlazením pro splnění požadavků procesu a předmětného místa by měla být zaměřena na dosažení nejvyšší celkové energetické účinnosti. K dosažení vysoké celkové účinnosti při manipulování s velkými množstvími tepla s nízkou hladinou (10 C až 25 C) to je BAT k ochlazování použitím otevřených průtočných (chladicích) soustav. V situaci na zelené louce může tento aspekt ospravedlnit volbu (pobřežního) místa s dostupnými spolehlivými velkými množstvími chladicí vody a místa s povrchovou vodou, jejíž kapacita je dostatečná k přijímání velkých množství vypouštěné chladicí vody. V případech, kde jsou chlazeny nebezpečné látky (emitované přes soustavu chlazení), které sebou přinášejí vysoké riziko pro životní prostředí, to je BAT k aplikování chladicích soustav s nepřímým chlazením, které používají sekundární chladicí okruh. Použití podzemní vody pro účely chlazení musí být v zásadě minimalizováno, například tam, kde vyčerpání zdrojů podzemní vody nemůže být pod kontrolou. Snižování přímé spotřeby energie Nízké spotřeby energie soustavou chlazení se dosáhne redukováním odporu (proudění) vody a/nebo vzduchu v chladicí soustavě, a také použitím zařízení, jehož spotřeba energie je nízká. V případech, kde proces, který má být ochlazován, vyžaduje proměnlivé provozování, byla úspěšně aplikována modulace průtoku vody a vzduchu, a takové opatření může být považováno za přístup BAT. ix
Integrovaná prevence a omezování znečištění (IPPC)
EVROPSKÁ KOMISE GENERÁLNÍ ŘEDITELSTVÍ JRC SPOJENÉ VÝZKUMNÉ STŘEDISKO (JRC) Institut pro perspektivní technologické studie (Seville) Technologie pro udrţitelný rozvoj Evropský úřad IPPC Integrovaná prevence
VíceIntegrovaná prevence a omezování znečištění (IPPC) Listopad 2000
EVROPSKÁ KOMISE GENERÁLNÍ ŘEDITELSTVÍ JRC SPOJENÉ VÝZKUMNÉ STŘEDISKO (JRC) Institut pro perspektivní technologické studie (Seville) Technologie pro udržitelný rozvoj Evropský úřad IPPC Integrovaná prevence
VíceKapitola 1. Chladicí soustavy v průmyslu
Kapitola 1 Chladicí soustavy v průmyslu Kapitola 1.doc 1 / 5 Obsah 1... Úvod 1.1 Chladicí soustavy v průmyslu 1.2 Charakteristiky průmyslových chladicích soustav 1.3 Specifika pro energetický průmysl Kapitola
VíceKapitola 2. Technologické aspekty chladicích soustav. v energetice ČR. CENIA Praha. Pasportizace chladicích soustav v energetice ČR
Kapitola 2 Technologické aspekty chladicích soustav v energetice ČR Kapitola 2_ Úvod.doc 1 / 10 Obsah 2... TECHNOLOGICKÉ ASPEKTY CHLADICÍCH SOUSTAV V ENERGETICE 2.1 Průtočné chladicí soustavy - komentář
VíceKapitola 4. Aplikování BAT na chladicí soustavy. Část 2 Ostatní velká spalovací zařízení
Kapitola 4 Aplikování BAT na chladicí soustavy Část 2 Ostatní velká spalovací zařízení Kapitola 4_Část 2.doc 1 / 125 Obsah 4.2 ZBĚŽNÉ POROVNÁNÍ CHLADICÍCH SOUSTAV OSTATNÍCH VÝZNAMNÝCH ZVLÁŠTĚ VELKÝCH SPALOVACÍCH
VícePŘÍLOHY NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) /...,
EVROPSKÁ KOMISE V Bruselu dne 4.3.2019 C(2019) 1616 final ANNEXES 1 to 2 PŘÍLOHY NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) /..., kterým se mění přílohy VIII a IX směrnice 2012/27/EU, pokud jde o obsah
VíceKLIMATIZAČNÍ JEDNOTKA EnviMatic HC
VÝROBNÍ ŘADA KLIAIZAČNÍ JEDNOKA Enviatic HC Řada Enviatic HC je inovovanou řadou jednotek Enviatic H. Disponuje pracovním režimem cirkulace a dochlazování vnitřního vzduchu, čehož je využito při letních
VíceKompaktní chladící zařízení pro vnitřní instalaci s volným chlazením, adiabatickým chlazením odpařením a kompresorovým chladícím zařízením
ompaktní chladící zařízení pro vnitřní instalaci s volným chlazením, adiabatickým chlazením odpařením a kompresorovým chladícím zařízením Automaticky vybere nejefektivnější provozní režim! : Na první pohled:
VíceČESKÁ TECHNICKÁ NORMA
ČESKÁ TECHNICKÁ NORMA ICS 91.140.10 Srpen 2014 ČSN 06 0310 Tepelné soustavy v budovách Projektování a montáž Heating systems in buildings Design and installation Nahrazení předchozích norem Touto normou
VíceChlazení kapalin. řada WDE. www.jdk.cz. CT120_CZ WDE (Rev.04-11)
Chlazení kapalin řada WDE www.jdk.cz CT120_CZ WDE (Rev.04-11) Technický popis WDE-S1K je řada kompaktních chladičů kapalin (chillerů) s nerezovým deskovým výparníkem a se zabudovanou akumulační nádobou
VíceChladicí soustavy zvláště velkých spalovacích zařízení Ing. Miroslav Vlasák, CSc., Ing. Milan Vyležík str. 6 17
ČÍSLO 1 LEDEN 2007 ROČNÍK XII EIA IPPC SEA SEA co přinesla změna legislativy? Část 3: Jaká je praxe? Ing. Jana Svobodová, Ing. Jana Hrnčířová, Ing. Jitka Fidlerová-Kaslová, Mgr. Martin Smutný M., Ing.
VíceEkodesignový projekt. Centrum inovací a rozvoje (CIR) Centre for Innovation and Development
Ekodesignový projekt Centrum inovací a rozvoje (CIR) Ekodesign Centrum inovací a rozvoje (CIR) Vlastnosti a užitná hodnota každého je definována již v prvních fázích jejich vzniku. Při návrhu je nutné
VíceGradua-CEGOS, s.r.o. člen skupiny Cegos MANAŽER EMS PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI
Gradua-CEGOS, s.r.o. člen skupiny Cegos Gradua-CEGOS, s.r.o., certifikační orgán pro certifikaci osob č. 3005 akreditovaný Českým institutem pro akreditaci, o.p.s. podle ČSN EN ISO/IEC 17024 MANAŽER EMS
VíceJednoduché, chytré a spolehlivé odstranění vlhkosti ze stlačeného vzduchu.
Kondenzační sušičky MDX 400-84000 Jednoduché, chytré a spolehlivé odstranění vlhkosti ze stlačeného vzduchu. Kondenzační sušičky MDX Uživatelské benefity Jednoduchá instalace - lehký a kompaktní design
VíceEnergetické vzdělávání. prof. Ing. Ingrid Šenitková, CSc.
Energetické vzdělávání prof. Ing. Ingrid Šenitková, CSc. Kontrola klimatizačních systémů Podnikat v energetických odvětvích na území ČR lze na základě zákona č. 458/2000 Sb. (energetický zákon) ve znění
VíceKapitola 6. Stručné netechnické shrnutí údajů uvedených v žádosti 1 / 5
Kapitola 6 Stručné netechnické shrnutí údajů uvedených v žádosti 1 / 5 Obsah 6.1 Zařízení a jeho základní parametry...3 6.2 Vstupy do zařízení...4 6.3 Zdroje znečišťování...4 6.4 Územní situace...5 6.5
VícePrioritní osa 2 OPŽP 2014-2020. Zlepšení kvality ovzduší v lidských sídlech
2 Prioritní osa 2 OPŽP 2014-2020 Zlepšení kvality ovzduší v lidských sídlech Koncepční dokumenty jako základ P.O.2 Střednědobá strategie (do roku 2020) zlepšení kvality ovzduší v ČR V současné době připravena
VíceJednotky přesné klimatizace
Jednotky přesné klimatizace Přinášíme vám technologii úpravy vzduchu pro IT 130 Telekomunikační aplikace @DNOVA 2,5 26 132 Jednotky přesné klimatizace INNOV@ 6 128 134 Jednotky přesné klimatizace INNOV@
VíceKomfortní klimatizační jednotka s křížovým protiproudým rekuperátorem. PRŮTOK VZDUCHU: m /h. Ostatní výkonové parametry a možnosti:
Komfortní klimatizační jednotka s křížovým protiproudým rekuperátorem Vybere automaticky nejefektivnější provozní režim! a PRŮTOK VZDUCHU:.200-5.000 m /h Na první pohled: Přes 80 teplotní účinnostidíky
Vícedostupných technik v procesu IPPC březen 2015
Aplikace nejlepších dostupných technik v procesu IPPC Jan Kolář březen 2015 Obsah OZO ve vztahu k BAT Zdroje informací k posouzení BAT Systém výměny informací o BAT Způsob stanovení závazných podmínek
VíceTematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov
Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov 1. Klimatické poměry a prvky (přehled prvků a jejich význam z hlediska návrhu a provozu otopných systémů) a. Tepelná
VícePro centrální rozvody sterilní tlakové páry ABSOLUTNĚ TĚSNÝ! Zvlhčovač vzduchu pro tlakovou páru z centrálního zdroje CONDAIR ESCO
Pro centrální rozvody sterilní tlakové páry ABSOLUTNĚ TĚSNÝ! Zvlhčovač vzduchu pro tlakovou páru z centrálního zdroje CONDAIR ESCO Rotační keramický ventil systému Condair ESCO v poloze Otevřeno CONDAIR
VícePrioritní výzkumné cíle
Návrh projektu musí naplňovat jeden hlavní Prioritní výzkumný cíl. Prioritní výzkumné cíle Č. j.: TACR/1-32/2019 Uchazeč v příslušném poli elektronického návrhu projektu popíše, jak jeho návrh projektu
VíceVliv MORAVSKÉ VODÁRENSKÉ, a.s. (dále jen MOVO) na životní prostředí (významné environmentální aspekty a environmentální dopady)
Vliv MORAVSKÉ VODÁRENSKÉ, a.s. (dále jen MOVO) na životní prostředí (významné environmentální aspekty a environmentální dopady) Pozitivní vliv MOVO na životní prostředí 1. Nakládání s vodami: Provádění
VíceOchrana životního prostředí Ochrana veřejného zdraví
Soubor 100 zkušebních otázek pro ústní část zkoušky odborné způsobilosti podle 19 zákona č. 100/2001 Sb., o posuzování vlivů na životní prostředí a o změně některých souvisejících zákonů (zákon o posuzování
VíceFunkční vzorek průmyslového motoru pro provoz na rostlinný olej
Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný
VíceZpráva o ochraně životního prostředí
Zpráva o ochraně životního prostředí Zpráva o ochraně životního prostředí shrnuje důležité aspekty výrobních i nevýrobních činností Lučebních závodů a.s. Kolín a jejich dopady na životní prostředí. Poskytuje
VíceIntrCooll. Chlaďte velké budovy s o 80 % nižšími provozními náklady
IntrCooll Chlaďte velké budovy s o 80 % nižšími provozními náklady Počítejte s 80% úsporou nákladů a spolehněte se na 100% ochlazený čerstvý vzduch IntrCooll mění velké průmyslové a obchodní budovy na
VíceŠkolící program PATRES využití obnovitelných zdrojů energie v budovách
Evropská politika, směrnice a regulace Školící program PATRES využití obnovitelných zdrojů energie v budovách Ing. Michael ten Donkelaar ENVIROS, s.r.o. 1 Obsah Energetická politika EU Energetický balíček
VíceAktuální otázky v oblasti integrované prevence
Aktuální otázky v oblasti integrované prevence aktuální a připravované změny legislativy, možnosti finanční podpory Ing. Jan Slavík, Ph.D. Vápno, cement, ekologie 19.05.2015, Hotel Skalský dvůr Bystřice
VíceBuy Smart+ Zelené nakupování je správná volba. Budovy a jejich prvky/součásti
Buy Smart+ Zelené nakupování je správná volba Budovy a jejich prvky/součásti Budovy a zelené nakupování Úvod Vysoké investiční náklady Dlouhá životnost budov Kratší životnost TZB Komplexnost budovy sestávají
VíceZměna manipulačního řádu
KATALOG OPATŘENÍ ID_OPATŘENÍ 30 NÁZEV OPATŘENÍ Změna manipulačního řádu DATUM ZPRACOVÁNÍ Prosinec 2005 1. POPIS PROBLÉMU Manipulační řád (dále jen MŘ) vycházející z platného povolení k nakládání s vodami
VíceČistší produkce. a její podpora v České republice
1 Čistší produkce a její podpora v České republice Pavel Růžička, MŽP Seminář čistší produkce Brno, 6.10.2010 Co je čistší produkce? Preventivní strategie podporující efektivnější využívání vstupních zdrojů
VíceZpráva o ochraně životního prostředí
Zpráva o ochraně životního prostředí Zpráva o ochraně životního prostředí shrnuje důležité aspekty výrobních i nevýrobních činností Lučebních závodů a.s. Kolín a jejich dopady na životní prostředí. Poskytuje
VíceZpráva o udržitelném rozvoji a vlivu firmy na životní prostředí
VÝROBA A PRODEJ ČISTÝCH, SPECIÁLNÍCH A FARMAC H E Zpráva o udržitelném rozvoji a vlivu firmy na životní prostředí Profil firmy Firma Ing. Petr Švec PENTA byla založena v roce 1990 a od počátku je ryze
VíceZkušenosti s provozem kalibračních tratí. Ing. Vladislav Šmarda ENBRA, a. s.
Zkušenosti s provozem kalibračních tratí Ing. Vladislav Šmarda ENBRA, a. s. Zkušební zařízení v AMS a kalibračních laboratořích zkušební zařízení pro zkoušky a ověřování měřidel proteklého množství vody
VíceODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Kotle Úvod do problematiky Základní způsoby získávání energie Spalováním
VíceTechnický list. Vakuová destilace pro úpravu odpadních vod. Snadná úprava odpadních vod!
Vakuová destilace pro úpravu odpadních vod Snadná úprava odpadních vod! Destilační zařízení pro úpravu odpadních vod z průmyslové výroby. Tato vakuová destilace je evropskými směrnicemi uznávaná jako nejlepší
VíceMožnosti úspory energie
Leonardo da Vinci Project Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 3 Možnosti úspory energie Modul 5 Energie v prádelnách Kapitola 3 Možností úspory energie 1 Obsah
VíceŘÍZENÉ VĚTRÁNÍ RODINÝCH DOMŮ A BYTŮ. Elektrodesign ventilátory s.r.o
ŘÍZENÉ VĚTRÁNÍ RODINÝCH DOMŮ A BYTŮ 1 Legislativní předpisy pro byty a bytové domy Vyhláška č.268/2009 Sb. o technických požadavcích na stavby 11 WC a prostory pro osobní hygienu a vaření musí být účinně
VíceSONDEX. Celosvařované výměníky tepla SPS a SAW. Copyright Sondex A/S
SONDEX Celosvařované výměníky tepla SPS a SAW Copyright Sondex A/S Sondex A/S je dánská společnost specializující se na vývoj, konstrukci a výrobu deskových výměníků tepla. Od svého založení v roce 1984
VícePŘÍSTROJOVÉ SYSTÉMY. Elektrické rozváděče NN Oteplení v důsledku výkonových ztrát el. přístrojů
PŘÍSTROJOVÉ SYSTÉMY Elektrické rozváděče NN Oteplení v důsledku výkonových ztrát el. přístrojů Vnitřní teplota rozváděče jako důležitý faktor spolehlivosti Samovolný odvod tepla na základě teplotního rozdílu
VíceREMKO ARCTIC-WP INVERTOROVÁ TEPELNÁ ČERPADLA
REMKO ARCTIC-WP INVERTOROVÁ TEPELNÁ ČERPADLA Řešení s tepelnými čerpadly pro jednoduchou nástěnnou montáž Série RVT-ARCTIC 1-2014 Kvalita se systémem REMKO DODAVATEL SYSTÉMŮ ORIENTOVANÝ NA ZÁKAZNÍKY PO
VíceŘešení Panasonic pro výrobu studené a teplé vody!
VČETNĚ ČERPADLA TŘÍDY A VČETNĚ ČTYŘCESTNÉHO VENTILU OPTIMALIZOVANÝ VÝMĚNÍK TEPLA 1056 570 1010 (V Š H) VODNÍ PŘÍPOJKY R2 F Řešení Panasonic pro výrobu studené a teplé vody! Od 28 kw do 80 kw Hlavní výhody:
VícePožadavky na dodavatele působící v areálech ŠKODA AUTO z hlediska ochrany životního a pracovního prostředí, bezpečnosti a ochrany zdraví při práci
Požadavky na dodavatele působící v areálech ŠKODA AUTO z hlediska ochrany životního a pracovního prostředí, bezpečnosti a ochrany zdraví při práci PSU Ekologie a pracovní ochrana 01. 08. 2017 1/5 I. Dodržování
VíceVLIVY VÝROBY OXIDU UHLIČITÉHO A SUCHÉHO LEDU NA ŽIVOTNÍ PROSTŘEDÍ
VLIVY VÝROBY OXIDU UHLIČITÉHO A SUCHÉHO LEDU NA ŽIVOTNÍ PROSTŘEDÍ IGC Doc 111/03/E Český překlad proveden pracovní skupinou PS-4 ČATP EUROPEAN INDUSTRIAL GASES ASSOCIATION (EVROPSKÁ ASOCIACE PRŮMYSLOVÝCH
VíceZpráva o udržitelném rozvoji a vlivu firmy na životní prostředí
Zpráva o udržitelném rozvoji a vlivu firmy na životní prostředí Profil firmy Firma Ing. Petr Švec PENTA s.r.o. byla založena v roce 1990 a od počátku je ryze českou soukromou firmou. Od 1. ledna 2014 byla
VíceRekuperace. Martin Vocásek 2S
Rekuperace Martin Vocásek 2S Co je rekuperace? rekuperace = zpětné získávání tepla abychom mohli teplo zpětně získávat, musíme mít primární zdroj bez vnitřního (primárního) zdroje, kterým mohou být vedle
VíceTechnické údaje LA 60TUR+
Technické údaje LA TUR+ Informace o zařízení LA TUR+ Provedení - Zdroj tepla Venkovní vzduch - Provedení Univerzální konstrukce reverzibilní - Regulace - Výpočet teplotního množství integrovaný - Místo
VíceROZHODNUTÍ KOMISE. ze dne 12.7.2012
EVROPSKÁ KOMISE V Bruselu dne 12.7.2012 C(2012) 4754 final ROZHODNUTÍ KOMISE ze dne 12.7.2012 o oznámení České republiky o prodloužení lhůty pro dosažení mezních hodnot pro NO 2 ve čtyřech zónách kvality
VíceEPBD Semináře Články 8 & 9
EPBD Semináře Články 8 & 9 Zdeněk Kodytek Říjen 2005 Požadavky Směrnice v článcích 8 a 9 V článcích 8 a 9 Směrnice požaduje, aby členské státy aplikovaly pravidelné inspekce kotlů spalujících neobnovitelná
VíceIng. Vladislav Bízek Organizace DHV CR, spol. s r. o. Název textu Programy ke zlepšení kvality ovzduší BK10 - Legislativa a právo Datum Prosinec 2001
Autor Ing. Vladislav Bízek Organizace DHV CR, spol. s r. o. Název textu Programy snižování emisí Programy ke zlepšení kvality ovzduší Blok BK10 - Legislativa a právo Datum Prosinec 2001 Poznámka Text neprošel
VíceOmezování plynných emisí. Ochrana ovzduší ZS 2012/2013
Omezování plynných emisí Ochrana ovzduší ZS 2012/2013 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační
VíceParní turbíny Rovnotlaký stupeň
Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost
VíceTEPELNÉ ČERPADLO THERMA V VZDUCH / VODA
TEPELNÉ ČERPADLO THERMA V VZDUCH / VODA Řešení pro nový dům i rekonstrukci Výrobky řady THERMA V byly navrženy s ohledem na potřeby při rekonstrukcích (zrušení nebo výměna kotle) i výstavbách nových domů.
VícePARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ
Energetické využití odpadů PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ komunální a průmyslové odpady patří do kategorie tzv. druhotných energetických
Více23.7.2009 Úřední věstník Evropské unie L 191/35
23.7.2009 Úřední věstník Evropské unie L 191/35 NAŘÍZENÍ KOMISE (ES) č. 641/2009 ze dne 22. července 2009, kterým se provádí směrnice Evropského parlamentu a Rady 2005/32/ES, pokud jde o požadavky na ekodesign
VíceVytápění budov Otopné soustavy
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Vytápění budov Otopné soustavy 109 Systémy vytápění Energonositel Zdroj tepla Přenos tepla Vytápění prostoru Paliva Uhlí Zemní plyn Bioplyn
VícePředstavení OPŽP: Nový Program 2014-2020
Představení OPŽP: Nový Program 2014-2020 Konference Biomasa & Energetika, Třebíč, 9. a 10. prosince 2014 Ing. Vojtěch Beneš vedoucí metodického odboru SFŽP ČR Návaznost OPŽP 2007-13 a 2014-2020 OPŽP 2014-2020
VíceChlazení kapalin. řada WDC. www.jdk.cz. CT125_CZ WDC (Rev.04-11)
Chlazení kapalin řada WDC www.jdk.cz CT_CZ WDC (Rev.0-) Technický popis WDC-S1K je řada kompaktních průtokových chladičů kapalin (chillerů) s nerezovým deskovým výměníkem. Jednotka je vhodná pro umístění
VíceVynález se týká zařízení odluhu vody druhého okruhu jaderných elektráren typu WER.
ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA (1») POPIS VYNALEZU К AUTORSKÉMU OSVĚDČENÍ (22) Přihlášeno 14 07 88 (21) PV 5086-88.Z 265 650 Ol) (BI) Á13) (51) Int. Cl. 4 G 21 D 1/00 FEDERÁLNÍ ÚŘAD PRO VYNÄLEZY
VíceZajištění požadavků životního prostředí z hlediska provozuschopnosti dráhy
Zajištění požadavků životního prostředí z hlediska provozuschopnosti dráhy Ing. Rudolf Zelinka Správa železniční dopravní cesty, státní organizace Odbor provozuschopnosti oddělení životního prostředí e-mail:
VícePřipravované projekty MŽP v oblasti zlepšení kvality ovzduší v Moravskoslezském kraji
Připravované projekty MŽP v oblasti zlepšení kvality ovzduší v Moravskoslezském kraji Efektivita regulací SVRS Posouzení podílu sekundárních částic v koncentracích suspendovaných částic v MSK Stanovení
VíceKlimatizační jednotky pro IT
Klimatizační jednotky pro IT Moderní Flexibilní Efektivní Úsporné Přehled jednotek CoolTeg Plus a CoolTop CoolTeg Plus CW CoolTeg Plus DX CoolTeg Plus XC CoolTop Instalace Mezi IT rozvaděče Na střechu
VíceZveřejněno dne
Výběrová (hodnotící) kritéria pro projekty přijímané v rámci XVIII. výzvy Operačního programu Životní prostředí Zveřejněno dne 15. 2. 2010 MINISTERSTVO ŽIVOTNÍHO PROSTŘEDÍ STÁTNÍ FOND ŽIVOTNÍHO PROSTŘEDÍ
VíceENERGETIKA BUDOV V EVROPSKÉM KONTEXTU. Petr Sopoliga ENVIROS, s.r.o., Praha
ENERGETIKA BUDOV V EVROPSKÉM KONTEXTU Petr Sopoliga ENVIROS, s.r.o., Praha Obsah Důvody pro novelizace směrnic Směrnice 2010/31/EU o energetické náročnosti budov (EPBD II) Připravovaná novelizace směrnice
VíceDOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU
DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU SOUHRN VÝSTUPU B2D1 PROJEKTU LIFE2WATER EXECUTIVE SUMMARY OF DELIVERABLE B2D1 OF LIFE2WATER PROJECT BŘEZEN 2015 www.life2water.cz ÚVOD Sonolýzou ozonu se rozumí
VíceÚprava vody v elektrárnách a teplárnách Bezodpadové technologie Petra Křížová
Úprava vody v elektrárnách a teplárnách Bezodpadové technologie Petra Křížová MemBrain s.r.o., Pod Vinicí 87, 471 27 Stráž pod Ralskem 1 Úprava vody v elektrárnách a teplárnách a bezodpadové technologie
VíceSPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH
SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH Teplárenské dny 2015 Hradec Králové J. Hyžík STEO, Praha, E.I.C. spol. s r.o., Praha, EIC AG, Baden (CH), TU v Liberci,
VícePoužívání energie v prádelnách
Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie v prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie 1
VíceKEY PERFORMANCE INDICATORS (KPI)
KEY PERFORMANCE INDICATORS (KPI) Zavedením monitorováním a vyhodnocením KPI pro energetické provozy lze optimalizovat provoz a údržbu energetických zařízení, zlepšit účinnost a spolehlivost a také snížit
VíceNAŘÍZENÍ VLÁDY ze dne 20. srpna 2015 o státní energetické koncepci a o územní energetické koncepci
Strana 2914 Sbírka zákonů č. 232 / 2015 Částka 96 232 NAŘÍZENÍ VLÁDY ze dne 20. srpna 2015 o státní energetické koncepci a o územní energetické koncepci Vláda nařizuje podle 3 odst. 7 a 4 odst. 9 zákona
VícePřirozená kombinace HYBRIDNÍ TEPELNÉ ČERPADLO DAIKIN ALTHERMA
Přirozená kombinace HYBRIDNÍ TEPELNÉ ČERPADLO DAIKIN ALTHERMA 2 Nová říležitost v oboru rezidenčního vytápění! Vlastníci domů a bytů se stále častěji poohlíží po výměně stávajících vytápěcích systémů,
VíceEnergetické systémy pro nízkoenergetické stavby
Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Ústav elektroenergetiky Energetické systémy pro nízkoenergetické stavby Systémy pro vytápění a přípravu TUV doc. Ing. Petr
VícePřirozená ombinace SYSTÉM HYBRIDNÍHO TEPELNÉHO ČERPADLA DAIKIN ALTHERMA VYTÁPĚNÍ A OHŘEV TEPLÉ UŽITKOVÉ VODY
Přirozená ombinace SYSTÉM HYBRIDNÍHO TEPELNÉHO ČERPADLA DAIKIN ALTHERMA VYTÁPĚNÍ A OHŘEV TEPLÉ UŽITKOVÉ VODY 2 Budoucnost je tady 3 a je ohleduplnější k životnímu prostředí, energeticky účinnější a nákladově
VíceKATALOG VRF JEDNOTKY F5MSDC-AR3
KATALOG VRF JEDNOTKY -AR3 Moderní technologie s vysokou účinností Stejnosměrný (DC) motor Vysoká účinnost Nízký hluk Kompresory DC inverter Vysokotlaký typ Asymetrická spirálová konstrukce Rotor s permanentním
VíceZPRÁVA O VLIVU NA ŽIVOTNÍ PROSTŘEDÍ 2007
ZPRÁVA O VLIVU NA ŽIVOTNÍ PROSTŘEDÍ 27 Vážení čtenáři, Lovochemie, a.s., věnuje ochraně životního prostředí mimořádnou pozornost. Postupné snižování emisí do všech složek životního prostředí, vytváření
VíceMožnosti větrání tepelnými čerpadly v obytných budovách
www.tzb-info.cz 3. 9. 2018 Možnosti větrání tepelnými čerpadly v obytných budovách Možnosti větrání tepelnými čerpadly v obytných budovách Uvedený příspěvek je zaměřený na možnosti využití tepelných čerpadel
Více10.3.2015 konference Energetické úspory jako příležitost k růstu Institut pro veřejnou diskusi Petr Štulc, ČEZ, a.s.
Potenciál úspor a zvyšování účinnosti v energetice v kontextu nových technologií 10.3.2015 konference Energetické úspory jako příležitost k růstu Institut pro veřejnou diskusi Petr Štulc, ČEZ, a.s. 0 Energetické
VíceEFEKTIVNÍ ZCHLAZENÍ. Odpařovací chladič Condair ME. Zvlhčování vzduchu a odpařovací chlazení
EFEKTIVNÍ ZCHLAZENÍ Odpařovací chladič Zvlhčování u a odpařovací chlazení ODOLNÉ PROTI DEMINERALIZOVANÉ VODĚ BEZ OBSAHU SKELNÝCH VLÁKEN BEZ OBSAHU ŠKODLIVIN Efektivní odpařovací chlazení Stejnoměrný rozvod
VíceZávěsné kondenzační kotle
Závěsné kondenzační kotle VU, VUW ecotec plus Výhody kondenzační techniky Snižování spotřeby energie při vytápění a ohřevu teplé užitkové vody se v současné době stává stále důležitější. Nejen stoupající
VícePožadavky tepelných čerpadel
Požadavky tepelných čerpadel na přípravu, pravu, návrh, projekt a stavební dokumentaci seminář ASPIRE v Rožnově pod Radhoštěm Ing. Tomáš Straka, Ph.D. 0 2000 4000 6000 8000 10000 12000 14000 1973 1979
VíceCíle a limity ČR v oblasti obnovitelných zdrojů energie
obnovitelných zdrojů energie 1 Působnost státní správy LIMITY, OMEZENÍ NEBO PODMÍKY PODPORY? 2 Působnost MPO 1. Vyjednávání v orgánech EU při procesu tvorby a úpravy směrnic EP a Rady a další legislativy
VícePásová sušárna čistírenských kalů HUBER BT
Pásová sušárna čistírenských kalů HUBER BT Maximální energetická efektivita Využití odapdního tepla dle individuálních potřeb Plně automatizováno Nenáročný provoz Kompaktní a robustní konstrukce z nerezové
VíceTEPELNÁ ČERPADLA VZUCH - VODA
TEPELNÁ ČERPADLA VZUCH - VODA www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Omezení emisí CO 2 Spotřeba energie Životní prostředí Principem každého
VíceTopení a chlazení pomocí tepla z odpadní vody - HUBER ThermWin
WASTE WATER Solutions Topení a chlazení pomocí tepla z odpadní vody - HUBER ThermWin Zpětné získávání tepelné energie z komunálních a průmyslových odpadních vod Uc Ud Ub Ua a stoka b šachta s mechanickým
VíceNOVÝ Zpětný ventil. Typ 561 a 562. www.titan-plastimex.cz
NOVÝ Zpětný ventil Typ 561 a 562 www.titan-plastimex.cz VÝHODY Nové zpětné ventily jsou maximálně spolehlivé a výkonné díky optimalizované geometrii proudění vede k vašemu prospěchu a vyššímu zisku. Zpětné
VíceOstatní výkonové parametry a možnosti:
Komfortní klimatizační zařízení s vysoce účinnými regeneračními pakety zásobníků tepla ybere automaticky nejefektivnější provozní režim! a PRŮTOK ZDUCHU: 3.900-23.100 m /h Na první pohled: Přístroje řady
VíceTepelné čerpadlo Excellence pro komfortní a úsporný dům
Tepelné čerpadlo Excellence pro komfortní a úsporný dům V současné době, kdy se staví domy s čím dál lepšími tepelně izolačními vlastnostmi, těsnými stavebními výplněmi (okna, dveře) a vnějším pláštěm,
VíceOrientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody.
Proces Biodestil Biodestil je nový pokrokový proces pro zpracování vysoce kontaminovaných nebo zasolených odpadních vod, které jsou obtížně likvidovatelné ostatními konvenčními metodami. Tento proces je
VíceTEPELNÁ ČERPADLA S MĚNIČEM. měničem dokáže efektivně pracovat s podlahovým topením i vodními fan-coily a radiátory pro ohřev či chlazení.
TEPELNÁ ČERPADLA S MĚNIČEM Tepelné čerpadlo Nelumbo s frekvenčním měničem dokáže efektivně pracovat s podlahovým topením i vodními fan-coily a radiátory pro ohřev či chlazení. Kvalitní komponenty Bezproblémový
VíceAUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno
AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, 612 00 Brno Popis Prototyp automatického kotle o výkonu 100 kw
VíceOBNOVA ČEZ A PRAKTICKÁ APLIKACE NEJLEPŠÍCH DOSTUPNÝCH TECHNOLOGIÍ
OBNOVA ČEZ A PRAKTICKÁ APLIKACE NEJLEPŠÍCH DOSTUPNÝCH TECHNOLOGIÍ 20-21. května 2008 Konference AEA Úspory energie - hlavní úkol pro energetické auditory JAN KANTA ředitel sekce Legislativa a trh JELIKOŽ
VíceZávěsné kondenzační kotle
VC 126, 186, 246/3 VCW 236/3 Závěsné kondenzační kotle Technické údaje Označení 1 Vstup topné vody (zpátečka) R ¾ / 22 2 Přívod studené vody R ¾ / R½ 3 Připojení plynu 1 svěrné šroubení / R ¾ 4 Výstup
VíceTB HEATING TECHNIQUE TUTBM
HEATING TECHNIQUE Zastoupení pro Českou republiku LIPOVICA trade s.r.o., Zeleného, CZ 1 00 Brno, +0 0 0 3 TECHNICKÝ MANUÁL pro instalaci, použití a údržbu nerezového ohřívače vody Centrometal d.o.o. nenese
VíceNovela zákona č. 406/2000 Sb., o hospodaření energií
Novela zákona č. 406/2000 Sb., o hospodaření energií 1 Novela zákona č. 406/2000 Sb., o hospodaření energií energetickým posudkem písemná zpráva obsahující informace o posouzení plnění předem stanovených
VíceEVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU
EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU Sídlo/kancelář: Březinova 42, Brno Pobočka: Místecká 901, Paskov Česká Republika eveco@evecobrno.cz www.evecobrno.cz INTRODUCTION Společnost EVECO
VíceČeská politika. Alena Marková
Česká politika Alena Marková Strategický rámec udržitelného rozvoje ČR schválený vládou v lednu 2010 základní dokument v oblasti udržitelného rozvoje dlouhodobý rámec pro politické rozhodování v kontextu
Vícewww.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.
www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.cz OBSAH Úvod... 3 Technická specifikace... 4 Popis filtru... 6 Popis činnosti
VíceEco V REKUPERAČNÍ JEDNOTKY
Eco V REKUPERAČNÍ JEDNOTKY Rekuperační jednotky Firma LG Electronics představuje systém Eco V, rekuperační jednotku, která umožňuje úpravu vzduchu vnitřního prostředí a zvyšuje tak kvalitu ovzduší v místnosti.
Více