Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika
|
|
- Jozef Vávra
- před 8 lety
- Počet zobrazení:
Transkript
1 Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika
2 EXPERIMENTY S JEDNOTLIVÝMI FOTONY Ondřej Haderka Společná laboratoř optiky UP a FZÚ AV ČR, Regionální centrum pokročilých technologií a materiálů, Univerzita Palackého v Olomouci Workshop Význam experimentu a praktických úloh ve vzdělávání Valašské Meziříčí,
3 Obsah Co jsou fotony? Vlastnosti fotonů Jak je detekovat? Kvantové projevy duality fotonů Kvantové optické komunikace o našem pracovišti autor 3
4 Experimenty s fotony
5 Experimenty s fotony
6 Co jsou fotony?
7 Foton 1900 M. Planck zákony vyzařování černého tělesa záření musí být vyzařováno nebo absorbováno po konečných kvantech 1905 A. Einstein záření může existovat jen v konečných množstvích energie (Lichtquant) [ photon pochází od G. Lewise (1926) - φως]
8 Vlna nebo částice - historie částicové modely světla (Newton) lom, ohyb, dvojlom vlnové teorie (Descartes 1637, Hooke 1665, Huygens 1678) poč. 19. stol interference, difrakce (Young, Fresnel) 1865 světlo je el.-mag. záření (Maxwell) 1888 exp. potvrzeno (Hertz) energie světla závisí na frekvenci (chemické reakce, fotoelektrický jev) záření černého tělesa (Planck) 1905 (Einstein) - pro termodynamickou rovnováhu mezi látkou a el.-mag. polem musí být pole kvantováno 1916 (Einstein) foton musí mít hybnost, navíc závislou na frekvenci (experiment Compton) léta 20. stol. korelační experimenty s fotony
9 Jak vznikají fotony? Energetické přechody na nižší hladiny v molekulách, atomech nebo jádrech Pohyb elektrického náboje se zrychlením synchrotronové záření Anihilace částice s antičásticí
10 Foton fyzikální vlastnosti nulová klidová hmotnost bez elektrického náboje stabilní částice (nerozpadá se) má dva polarizační stavy (a s tím související spin ±ħ) je popsán třemi komponentami vlnového vektoru (popisují jeho energii/vlnovou délku a směr šíření) E = ħω = hν = hc/λ, p = ħk = hk 0 /λ k = k = 2π/λ = 2πν/c = ω/c
11 Jednotky energie vlnová délka, frekvence, energie, vlnočet, λν = c Foton λ = 1 μm má ν = 3 x Hz E = hν = 2 x J elektronvolt: 1,24 ev (1 ev = 1,602 x J) převrácený centimetr: 10 4 cm -1 μm, nm, angström GHz, THz, PHz, EHz Pro plyn v termodynamické rovnováze (černé těleso) hν = kt ν [Hz] 2 x T [K]
12 Polarizace fotonu Obrázky: National Science Foundation, 2000
13 Detekce jednotlivých fotonů
14 Proč potřebujeme detekovat jednotlivé fotony? V klasické optice každý foton je cenný (drahý) (např. v astronomii) V kvantové optice a kvantové informatice časově-korelované čítání fotonů (TCPC) některé problémy lze řešit lépe s jednotlivými fotony (QKD, QM) některé úlohy vyžadují generaci a detekci jednotlivých fotonů (LOQC) Další aplikace v částicové fyzice, biomedicínském výzkumu, výzkumu vlastností atmosféry apod.
15 Hubbleovo velmi hluboké pole Doposud nejhlubší pohled do vesmíru Oblast asi 1/10 průměru Měsíce bez jasných objektů (For) Asi galaxií z doby jen mil. let po velkém třesku Galaxií ve vesmíru je víc než hvězd v naší galaxii cca 1 foton za minutu Obrázky: Wikipedia Snímky a animace: NASA
16 Hubbleovo velmi hluboké pole Doposud nejhlubší pohled do vesmíru Oblast asi 1/10 průměru Měsíce bez jasných objektů (For) Asi galaxií z doby jen mil. let po velkém třesku Galaxií ve vesmíru je víc než hvězd v naší galaxii cca 1 foton za minutu Obrázky: Wikipedia Snímky a animace: NASA
17 Fotonásobiče nejstarší detektor pro čítání fotonů (1949) velké aktivní plochy ( > 10 mm) zesilovací šum lze potlačit použitím první dynody z velkým zesílením (GaP) η = 500 nm (GaAsP) d 100 Hz, Δt 300 ps η = 1550 nm 200 K), d 200 khz Hamamatsu Burle
18 Jednofotonová lavinová fotodioda (SPAD) fotodioda se závěrným předpětím nad úrovní průrazu (Geigerův mód) lavinu zastaví zhášecí obvod Si: η = 650 nm, d 25 Hz, Δt 400 ps, τ = 50 ns, vysoký zesilovací šum back-flashing d může být sníženo až na 8x10-4 Hz chlazením na 78K mělké přechody: Δt 40 ps InGaAs/InP: η = 1550 nm, d 10 khz, Δt 400 ps, τ = 10 μs, vysoký zesilovací šum, nutné hradlování Perkin-Elmer Micro Photon Devices idquantique
19 Transition-edge sensor supravodivá vrstva (W) udržovaná v blízkosti teploty supravodivého přechodu (100 mk) změna teploty způsobená absorpcí fotonu se projeví jako změna vodivosti (proudu) rozliší až 8 fotonů η = 1550 nm, d 3 Hz, Δt 100 ns, τ = 2 μs lze vyrobit pro jakoukoliv vlnovou délku mezi nm Cabrera et al., APL 73, 735 (1998) Rosenberg et al., PRA 71, (2005) Lita et al., OE 16, 3032 (2008)
20 Vláknové smyčky input state 15 m (75 ns) delay loop 10m delay loop 30 m (150 ns) delay loop APD input state 50/50 splitter variable ratio coupler connector 50/50 splitter APD connector 50/50 splitter 30 ns electronics delay Probability of detection Probability Time Delay after start pulse [ns] Delay after trigger [ns] Haderka et al., EPJD 28, 149 (2004) Fitch et al., PRA 68, (2003)
21 iccd kamery η = 550 nm, d ~ 10 4 Hz, Δt 2 ns Andor Roper Scientific Hamamatsu
22 Detekce pomocí iccd kamery signal strip idler strip noise reference summed image
23 Chování fotonů na jednoduchých optických elementech
24 Co je na tom kvantového? Detekce světla po kvantech hν Principiální náhodnost individuálních událostí Měření obecně mění stav měřeného objektu Superpozice stavů (qubit) Kvantová provázanost (entanglement) Teorém o neklonování
25 Foton na děliči svazku detektor B detektor A
26 Generátor náhodných čísel J. Soubusta, O. Haderka, M. Hendrych, P. Pavlíček, Quantum random number generator, Proc. SPIE Vol. 5259, p (2003)
27 Co je na tom kvantového? Detekce světla po kvantech hν Principiální náhodnost individuálních událostí Měření obecně mění stav měřeného objektu Superpozice stavů (qubit) Kvantová provázanost (entanglement) Teorém o neklonování
28 p(θ)=cos 2 (θ) Foton na polarizátoru
29 Měření neortogonálních stavů Polarizing cube I I/2 Intensity I 0 I/2 resend? intercept 100% 50% Probability 0% 50% original signal beamsplitting classical light beamsplitting impossible single photon
30 Co je na tom kvantového? Detekce světla po kvantech hν Principiální náhodnost individuálních událostí Měření obecně mění stav měřeného objektu Superpozice stavů (qubit) Kvantová provázanost (entanglement) Teorém o neklonování
31 Interference Obrázek: Museum Victoria, 2003.
32 Foton v interferometru
33 Foton v interferometru Machův-Zehnderův interferometr, 4x10-6 fotonu na impuls
34
35
36 Bezinterakční měření Nalezení vadných bomb bez odpálení těch funkčních Elitzur a Vaidman (1993) experiment Zeilinger et al. (1994) Funkční bombu lze odpálit dopadem jediného fotonu Nefunkční bomba s fotonem neinteraguje vůbec Detekce na detektoru C znamená úspěšnou detekci bomby (25%) oproti (50%) výbuchu (η=1/3). Lze dosáhnout až η=1/2 s nevyváženým děličem.
37 Kvantový Zenónův jev Zénón z Eleje (5. stol. př. n. l.) Achilles nedohoní želvu, letící šíp stojí 6 polarizačních rotátorů, každý otáčí polarizaci o 15º - foton přes poslední polarizátor neprojde jestliže vložíme polarizátor za každý rotátor, pak foton projde s pravděpodobností [cos 2 (15º)] 6 0,66
38 Fotonové páry a interference fotonů
39 Kvantová provázanost superpozice + 45 = 1 2 ( H + V ) 2 kvantová provázanost ψ = 1 2 ( HV + VH ) Spor o interpretaci kvantové mechaniky EPR paradox (1935) Bellův teorém (1964) 1 experimenty - Aspect et al. (1981-2) a řada dalších Obrázky: European Space Agency, Anton Zeilinger (University of Vienna)
40 Generace jednotlivých fotonů Není snadné vytvořit jednotlivé fotony! Zeslabené optické pulsy mohou obsahovat i žádný nebo naopak více než jeden foton. Využíváme toho, že entanglované fotony vznikají vždy v párech a vybíráme jen jednofotonové události.
41 Kvantová nelokalita Způsobení interference na dálku nelineární krystal úzký frekvenční filtr UV laser τ > τ coh Vložení úzkého frekvenčního filtru do dráhy jednoho fotonu z korelovaného páru fotonů indukuje vznik interferenčního obrazce v interferometru umístěném v dráze druhého svazku.
42 Rozhoduje informace Mandel et al
43 Co je na tom kvantového? Detekce světla po kvantech hν Principiální náhodnost individuálních událostí Měření obecně mění stav měřeného objektu Superpozice stavů (qubit) Kvantová provázanost (entanglement) Teorém o neklonování
44 Teorém o nemožnosti klonování
45 Kvantová teleportace
46 Kvantová kryptografie klasický kanál - autentizovaný EVA ALICE BOB kvantový kanál komunikace pomocí neortogonálních kvantových stavů Množství informace, které může Eva získat, lze kvantifikovat na základě měřitelného stupně degradace komunikace na kvantovém kanálu. To při komunikaci po klasickém kanálu nelze!!!
47
48 QKD v Olomouci (1998) Vzdálenost 0,5 km Vizibilita: 99,7% Chybovost: 0,3% Rychlost: 4,3 kbit/s
49
50
51 O našem pracovišti Společná laboratoř optiky UP a FZÚ AV ČR
52 Univerzita Palackého založena 1573 dnes 8 fakult cca studentů
53 Fyzikální ústav AV ČR, v.v.i. má sídlo v Praze největší ústav AV ČR (cca 770 zaměstnanců) 10 společných laboratoří s univerzitami
54 Společná laboratoř optiky Klasická optika, komponenty pro velké mezinárodní projekty (CERN, Observatoř Pierra Augera, Cherenkov Telescope Array) Laserové technologie Kvantová a nelineární optika od. r 2010 součást RCPTM
55 Společná laboratoř optiky povodně 1997
56 Děkuji za pozornost autor 57
Kvantová kryptografie
Kvantová kryptografie Ondřej Haderka Univerzita Palackého, Olomouc www.rcptm.com Kvantová kryptografie Metoda bezpečné komunikace na rozhraní klasické kryptografie, teorie informace a kvantové mechaniky
Karel Lemr. web: Karel Lemr Fotonové páry 1 / 26
Kvantové zpracování informace s fotonovými páry Karel Lemr Společná laboratoř optiky UP Olomouc a FzÚ AVČR web: http://jointlab.upol.cz/lemr email: lemr@jointlab.upol.cz Karel Lemr Fotonové páry 1 / 26
CZ.1.07/2.2.00/ AČ (SLO/RCPTM) Detekce a zpracování optického signálu 1 / 30
DETEKCE A ZPRACOVÁNÍ OPTICKÉHO SIGNÁLU Antonín Černoch Společná laboratoř optiky UP a FZÚ AV ČR Regionální centrum pokročilých technologií a materiálů CZ107/2200/070018 AČ (SLO/RCPTM) Detekce a zpracování
Kvantová informatika pro komunikace v budoucnosti
Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Zdroje a detektory pro nanofotoniku LASERY
Zdroje a detektory pro nanofotoniku LASEY Sylabus Lasery a laserové diody, principy a režimy činnosti. Laser v kontinuálním režimu. Q-spínání. Synchronizace módů. Ultrakrátké impulsy. Měření výkonu a energie.
Společná laboratoř optiky. Skupina nelineární a kvantové optiky. Představení vypisovaných témat. bakalářských prací. prosinec 2011
Společná laboratoř optiky Skupina nelineární a kvantové optiky Představení vypisovaných témat bakalářských prací prosinec 2011 O naší skupině... Zařazení: UP PřF Společná laboratoř optiky skupina nelin.
Od kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
ČR v Olomouci 2008. Miroslav Hrabovský
SPOLEČNÁ LABORATOŘ OPTIKY Univerzity Palackého a Fyzikálního ústavu Akademie věd České republiky Tř. 17.listopadu 50a, 771 46 Olomouc Tel.: 585 63 1501, Fax: 585 631 531, e-mail: miroslav.hrabovsky@upol.cz
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
Optika. Nobelovy ceny za fyziku 2005 a 2009. Petr Malý Katedra chemické fyziky a optiky Matematicko fyzikální fakulta UK
Optika Nobelovy ceny za fyziku 2005 a 2009 Petr Malý Katedra chemické fyziky a optiky Matematicko fyzikální fakulta UK Optika zobrazování aplikace základní fyzikální otázky např. test kvantové teorie
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Vlnění, optika a atomová fyzika (2. ročník)
Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
školní vzdělávací program ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI RVP G 8-leté gymnázium Fyzika II. Gymnázium Dr.
školní vzdělávací program PLACE HERE Název školy Adresa Palackého 211, Mladá Boleslav 293 80 Název ŠVP Platnost 1.9.2009 Dosažené vzdělání Střední vzdělání s maturitní zkouškou Název RVP Délka studia v
Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený
Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013
1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného
ÈÁST VII - K V A N T O V Á F Y Z I K A
Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915
Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka
Kvantové provázání. Pavel Cejnar ÚČJF MFF UK Praha
Kvantové provázání Pavel Cejnar ÚČJF MFF UK Praha Seminář PřF UK Praha, listopad 2018 Kvantové provázání monopartitní tripartitní multipartitní Kanazawa, Japonsko bipartitní Zápasníci, Uffizi muzeum, Florencie
Vlnově částicová dualita
Vlnově částicová dualita Karel Smolek Ústav technické a experimentální fyziky, ČVUT Vlnění Vlněním rozumíme šíření změny nějaké veličiny prostorem. Příklady: Vlny na moři šíření změny výšky hladiny Zvukové
Úvod do moderní fyziky. lekce 2 částicové vlastnosti vln a vlnové vlastnosti částic, základy kvantové mechaniky
Úvod do moderní fyziky lekce 2 částicové vlastnosti vln a vlnové vlastnosti částic, základy kvantové mechaniky Hmota a záření v klasické fyzice jsou hmota a záření popsány zcela odlišným způsobem (Newtonovy
Ing. Stanislav Jakoubek
Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-3 III/2-1-3-4 III/2-1-3-5 Název DUMu Vnější a vnitřní fotoelektrický jev a jeho teorie Technické využití fotoelektrického jevu Dualismus vln a částic Ing. Stanislav
Paradoxy kvantové mechaniky
Paradoxy kvantové mechaniky Karel molek Ústav technické a experimentální fyziky, ČVUT Bezinterakční měření Mějme bombu, která je aktivována velmi citlivým mechanismem v podobě zrcátka, které je propojeno
Optika. Co je světlo? Laser vlastnosti a využití. Josef Štěpánek Fyzikální ústav MFF UK
Optika Co je světlo? Laser vlastnosti a využití Josef Štěpánek Fyzikální ústav MFF UK Optika Vědecká disciplína zabývající se světlem a zářením obdobných vlastností (optické záření) z hlediska jeho vzniku,
Obecná teorie relativity pokračování. Petr Beneš ÚTEF
Obecná teorie relativity pokračování Petr Beneš ÚTEF Dilatace času v gravitačním poli Díky principu ekvivalence je gravitační působení zaměnitelné mechanickým zrychlením. Dochází ke stejným jevům jako
Elektronový obal atomu
Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA
MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Elektromagnetické vlnění
Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů
Kvantová fyzika a náš svět
Kvantová fyzika a náš svět Miloslav Dušek Motto: Mě velmi těší, že se musíme uchýlit k tak podivným pravidlům a bizarnímu způsobu uvažování, abychom pochopili Přírodu, a baví mě o tom lidem vykládat.
Blue-light LED, modrá
Blue-light LED, modrá je dobrá Jan Soubusta Společná laboratoř optiky UP a FZÚ AVČR Obsah přednášky Nobelova cena Laureáti za fyziku 2014 Historický přehled Co je to LED? Výhody LED? Nobelova cena za fyziku
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
protony) se mohou chovat jako vlnění (tedy mohou interferovat) i jako částice (lze
1 Chování fotonu na děliči svazků Co je to vlastně foton? Pojmem foton myslíme kvantum elektromagnetického záření. Pokud budeme zmenšovat energii elektromagnetického záření (světla), potom někde na hodnotě
Elektronový obal atomu
Elektronový obal atomu Chemické vlastnosti atomů (a molekul) jsou určeny vlastnostmi elektronového obalu. Chceme znát energii a prostorové rozložení elektronů Znalosti o elektronovém obalu byly získány
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Využití fotonických služeb e-infrastruktury pro přenos ultrastabilních optických frekvencí
Využití fotonických služeb e-infrastruktury pro přenos ultrastabilních optických frekvencí Ondřej Číp, Martin Čížek, Lenka Pravdová, Jan Hrabina, Václav Hucl a Šimon Řeřucha (ÚPT AV ČR) Josef Vojtěch a
Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou
2. Zdroje a detektory světla
2. Zdroje a detektory světla transmitance (%) Spektrální rozsah Krátkovlné limity: Absorpce vzduchu (O 2,N 2,vodní pára) - 190 nm Propustnost optiky Spektrální rozsah zdroje vlnová délka (nm) http://www.hellma-analytics.com/text/283/en/material-and-technical-information.html
Fotonické nanostruktury (nanofotonika)
Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze
Podivuhodná říše kvant Pavel Cejnar pavel.cejnar @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Hvězdárna a planetárium Brno, 22. 1. 2015 Podivuhodná
Speciální spektrometrické metody. Zpracování signálu ve spektroskopii
Speciální spektrometrické metody Zpracování signálu ve spektroskopii detekce slabých signálů synchronní detekce (Lock-in) čítaní fotonů měření časového průběhu signálů metoda fázového posuvu časově korelované
Úvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
O bsah. P řed m lu v a 11
O bsah P řed m lu v a 11 1 H istorická m otiv ace v zn ik u kvan to v é te o rie 13 1.1 Spektrum tepelného z á ře n í... 13 1.2 Fotoefekt... 17 1.3 Měrné teplo při nízkých te p lo tá c h... 19 1.4 Čárová
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,
Maturitní otázky z předmětu FYZIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákony Klasifikace pohybů z hlediska trajektorie a závislosti rychlosti
Počátky kvantové mechaniky. Petr Beneš ÚTEF
Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl
Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena.
Vlnově-korpuskulární dualismus, fotony, fotoelektrický jev vnější a vnitřní. Elmg. teorie záření vysvětluje dobře mnohé jevy v optice interference, difrakci, polarizaci. Nelze jí ale vysvětlit např. fotoelektrický
VYPOUŠTĚNÍ KVANTOVÉHO DŽINA
VYPOUŠTĚNÍ KVANTOVÉHO DŽINA ÚSPĚŠNÉ OMYLY V HISTORII KVANTOVÉ FYZIKY Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Prosinec 2009 1) STARÁ KVANTOVÁ TEORIE Světlo jsou částice! (1900-1905) 19.
Jak ovládnout šum světla?
Jak ovládnout šum světla? Radim Filip katedra optiky PřF University Palackého Petr Marek, Miroslav Gavenda, Vladyslav Usenko Ladislav Mišta, Jaromír Fiurášek U.L. Andersen (DTU Lyngby), G. Leuchs (MPI
Přehled posledních experimentů skupiny kvantové a nelineární optiky v Olomouci
Přehled posledních experimentů skupiny kvantové a nelineární optiky v Olomouci Jan Soubusta, Antonín Černoch, Karel Lemr, Karol Bartkiewicz, Radek Machulka, Společná laboratoř optiky Univerzity Palackého
13. Vlnová optika I. Interference a ohyb světla
13. Vlnová optika I. Interference a ohyb světla Od časů Isaaca Newtona si lidstvo láme hlavu problémem, je-li světlo vlnění nebo proud částic. Tento spor rozdělil svět vědy na dva zdánlivě nesmiřitelné
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Fotonické sítě jako médium pro distribuci stabilních signálů z optických normálů frekvence a času
Fotonické sítě jako médium pro distribuci stabilních signálů z optických normálů frekvence a času Ondřej Číp, Šimon Řeřucha, Radek Šmíd, Martin Čížek, Břetislav Mikel (ÚPT AV ČR) Josef Vojtěch a Vladimír
Využití infrastruktury CESNET pro distribuci signálu optických atomových hodin
Využití infrastruktury CESNET pro distribuci signálu optických atomových hodin Ondřej Číp, Martin Čížek, Lenka Pravdová, Jan Hrabina, Břetislav Mikel, Šimon Řeřucha a Josef Lazar (ÚPT AV ČR) Josef Vojtěch,
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického
Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami
Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo
MATURITNÍ TÉMATA Z FYZIKY
MATURITNÍ TÉMATA Z FYZIKY Školní rok 2016 / 2017 Struktura zkoušky: příprava ke zkoušce trvá 15 minut; ústní zkouška trvá 15 minut - její součástí je i řešení fyzikálních úloh Pomůcky: Matematické, fyzikální
Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012
Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan
CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24
MĚŘENÍ SPEKTRA SVĚTLA Antonín Černoch Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/15.0147 AČ (RCPTM) Spektroskopie 1 / 24 Úvod Obsah 1 Úvod 2 Zobrazovací spektrometry Disperzní
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012
Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
Maturitní otázky z předmětu FYZIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákon Relativnost klidu a pohybu, klasifikace pohybů z hlediska
laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa
Vyučovací předmět Fyzika Týdenní hodinová dotace 2 hodiny Ročník 1. Roční hodinová dotace 72 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy používá s porozuměním učivem zavedené fyzikální
Vybrané podivnosti kvantové mechaniky
Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:
Vznik a šíření elektromagnetických vln
Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův
Detektory optického záření
Detektory optického záření Vrbová, Jelínková, Gavrilov, Úvod do laserové techniky, ČVUT FJFI, 1994 Kenyon, The light fantastic, Oxford Goldman, Lasers in Medicine, kapitola Optická a tepelná dozimetrie
Fotonické nanostruktury (alias nanofotonika)
Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (alias nanofotonika) Jan Soubusta 27.10. 2017 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5.
FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)
Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření
Maturitní okruhy Fyzika 2015-2016
Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o.
POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH Libor Lenža Hvězdárna Valašské Meziříčí, p. o. Obsah 1. Co jsou to spektrální čáry? 2. Historie a současnost (přístroje, družice aj.) 3. Význam pro sluneční fyziku
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Úvod do moderní fyziky. lekce 3 stavba a struktura atomu
Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi
L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.
L A S E R Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami Stimulovaná emise Princip laseru Specifické vlastnosti laseru jako zdroje
Optoelektronika. Zdroje. Detektory. Systémy
Optoelektronika Zdroje Detektory Systémy Optoelektronika Optoelektronické součástky využívají interakce záření a elektricky nabitých částic v polovodičích. 1839 E. Becquerel - Fotovoltaický jev 1873 W.
Reliktní záření a jeho polarizace. Ústav teoretické fyziky a astrofyziky
Reliktní záření a jeho polarizace Jiří Krtička Ústav teoretické fyziky a astrofyziky Proč je obloha temná? v hlubohém lese bychom v každém směru měli vidět kmen stromu. Proč je obloha temná? pokud jsou
Scintilace. Co zachytí oko? Pokud během 1/10 s nejméně 15 fotonů. Jedna z nejstarších detekčních metod (Rutherford a ZnS)
Scintilace Jedna z nejstarších detekčních metod (Rutherford a ZnS) scintilace -puls světla krátce po průchodu částice fluorescence světelný puls krátce (< 10 ns) po absorpci γ kvanta fosforescence emise
5.5 Vzdělávací oblast - Člověk a příroda 5.5.1.1 Fyzika 5.5.1.2 Blok přírodovědných předmětů - Fyzika
5.5 Vzdělávací oblast - Člověk a příroda 5.5.1 Fyzika 5.5.2 Blok přírodovědných předmětů - Fyzika Ročník 3. 4. Hodinová dotace Fyzika 2 2 0 0 Hodinová dotace Blok přírodovědných předmětů - fyzika 0 0 R
λ hc Optoelektronické součástky Fotorezistor, Laserová dioda
Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů
Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz
Kvantová fyzika Pavel Cejnar pavel.cejnar @ mff.cuni.cz Jiří Dolejší jiri.dolejsi @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Světlo = vlny i částice! 19. století:
3. Optoelektronický generátor náhodných čísel
3 Optoelektronický generátor náhodných čísel Fyzikální generátor náhodných čísel může být založen na nejrůznějších fyzikálních procesech Jde přitom o to, aby proces samotný byl náhodný ve smyslu nepředpověditelnosti
Relativistické jevy při synchronizaci nové generace atomových hodin. Jan Geršl Český metrologický institut
Relativistické jevy při synchronizaci nové generace atomových hodin Jan Geršl Český metrologický institut Objasnění některých pojmů Prostoročas Vlastní čas fyzikálního objektu Souřadnicový čas bodů v prostoročase
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
Základy fyzikálněchemických
Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Fotoelektrické snímače
Fotoelektrické snímače Úloha je zaměřena na měření světelných charakteristik fotoelektrických prvků (součástek). Pro měření se využívají fotorezistor, fototranzistor a fotodioda. Zadání 1. Seznamte se
Kvantová kryptografie
PEF MZLU v Brně 18. listopadu 2009 Úvod V dnešní době se používá pro bezpečnou komunikaci asymetrická kryptografie. Jde o silnou šifrovací metodu, která je v dnešní době s použitím současných technologií
Základy fyziky laserového plazmatu. Lekce 1 -lasery
Základy fyziky laserového plazmatu Lekce 1 -lasery Co je světlo a co je laser? Laser(akronym Light Amplification by Stimulated EmissionofRadiation česky zesilování světla stimulovanou emisí záření) Je