FOTOREALISTICKÁ VIZUALIZACE PRO AUTO-STEREOSKOPICKÁ ZAŘÍZENÍ PHOTO-REAL VISUALIZATION FOR THE AUTO-STEREOSCOPIC DEVICES
|
|
- Břetislav Vacek
- před 8 lety
- Počet zobrazení:
Transkript
1 FOTOREALISTICKÁ VIZUALIZACE PRO AUTO-STEREOSKOPICKÁ ZAŘÍZENÍ PHOTO-REAL VISUALIZATION FOR THE AUTO-STEREOSCOPIC DEVICES Tomáš Komenda 1, David Bražina 2 1 Ostravská univerzita v Ostravě, 30. dubna 22, Ostrava, tomas.komenda@osu.cz 2 Ostravská univerzita v Ostravě, 30. dubna 22, Ostrava, david.brazina@osu.cz Abstract This paper describes the process of photo-real visualization for auto-stereoscopic devices. The process is divided into few basic parts of production for better understanding of this problem. Keywords: visualization, photo-real, auto-stereoscopy, celvision, referencing, modeling, texturing, lighting, testing, rendering, composing 1 Úvod V současné době vzrůstá stále více zájem o moderní technologie. Dnešním největším tahounem na poli zobrazovacích technologií je bezpochyby 3D stereoskopická projekce, která nám umožňuje vnímat proud zobrazovaných dat prostorově. Tento vjem se podařilo docílit díky simulaci reálných optických principů. Stejně jako v reálném světě vnímáme okolí dvěma očima a díky tomu získáváme pojem o prostoru, tak i ve virtuálním světě se snažíme různými metodami a technikami docílit toho, aby každé oko vidělo mírně odlišný obraz. Tyto metody a techniky můžeme podle principu, na kterém pracují, rozdělit na aktivní a pasivní. V tomto článku se budeme zabývat aktivní stereoskopickou metodou ultimátních displayů a tvorbou fotorealistické vizualizace pro tato zařízení. Jako ukázkový projekt pro aplikaci postupů a technik, uvedených v následujícím článku, jsem si zvolil fotorealistickou vizualizaci diamantu. 2 Reference vizualizované scény Velmi důležitou částí tvorby fotorealistické vizualizace, je část zabývající se získávání referencí o daném vizualizovaném objektu. Tato část je nepostradatelná i u jednoduchých projektů. Potřebujeme nastudovat danou scénu z hlediska tvarů, světla, vlastností povrchů a dalších základních, ale i pokročilých charakteristik. Na následujícím obrázku můžete vidět ukázku obrazové dokumentace projektu. Obr. 1 Obrazová dokumentace projektu [IDNES 2010], [MADAM 2010], [CN 2010] 763
2 2.1 Základní charakteristiky vizualizované scény Jak již bylo uvedeno v úvodu tohoto článku, mým ukázkovým projektem je fotorealistická vizualizace diamantu. Čili mezi základní charakteristiky dané scény budou jistě patřit informace o vizualizovaném objektu a o prostředí, ve kterém se daný objekt nachází. Jedná se o tvar, barvu, pozici (objektů, světel, kamery, ). Obr. 2 Základní tvar a barva objektu [AM 2010], [OAK 2010] Jak je z tohoto obrázku vidět, diamant je geometricky velmi složitý objekt a má přesně stanovená pravidla. Tyto pravidla se týkají především tvaru, který má vliv na jeho interakci se světlem. Klasický tvar diamantu, jak je vidět na, je tvar s příznačným názvem briliant. Tento tvar se skládá z 57 symetricky vybroušených plošek na korunce a stanu. Na úzkém pásu pak dalších 32 až 96 plošek. Dalším důležitým ukazatelem kvality diamantu je jeho barva. Na můžeme vidět stupnici, která ukazuje rozdělení diamantů do několika tříd podle jeho zabarvení. Co se týče pozice objektů v námi předpokládané vizualizované scéně, řídili jsme se pouze pomocí základních kompozičních pravidel. Objekt je umístěn ve středu scény a položen na jednoduchém podstavci. 2.2 Pokročilé charakteristiky vizualizované scény Mezi pokročilé charakteristiky pak budou patřit informace o použitých materiálech, fyzikálních charakteristikách objektů ve scéně, informace o typu světel, použité kamerové technice, a další. Obr. 3 Odrazy a lomy světla [WDB 2010] 764
3 Jedna z nejdůležitějších fyzikálních charakteristik, pro náš projekt, je index lomu. Index lomu je definován jako podíl rychlosti světla ve vakuu a rychlosti světla v daném materiálu. V případě diamantu je to tedy km/s / km/s, což je přibližně u čirého diamantu 2,4175. Další charakteristikou je disperze světla (0,044), lesk (100%) a možné barvy (bezbarvý, bílý, žlutý, modrý). Tab. 1 Indexy lomu diamantu pro barevné světlo [WDB 2010] Wavelength (nanometers) Color Diamond refractive index red yellow green blue purple Ve scéně použijeme standardní globální osvětlení pomocí HDRI mapy a také několik sekundárních světel, jako emitorů fotonů do scény pro věrohodné zobrazení caustic efektu. 3 Modelování objektů Druhá fáze projektu se týká modelování objektů ve scéně. Zde již vycházíme z předem nastudovaných předpokladů a vlastností objektů viz. Obr. 4 (vlevo) Standardní proporce diamantu [JEWELRY 2010], (vpravo) Model objektu ve 3D scéně Model objektu, viz, byl vytvořen podle zadaných proporcí v 3D animačním software Autodesk Maya prostřednictvím polygonové reprezentace. Objekt je tvořen počtem 74 polygonů, což odpovídá počtu broušených ploch skutečného diamantu. 4 Tvorba textur a materiálů Aby mohl být objekt správně vizualizován, je potřeba zajistit jeho správné materiálové vlastnosti, založené na přesném fyzikálním modelu. Každý vizualizační software má celou škálu materiálů a to jak základních, tak i pokročilých, kterými můžeme, po správném nastavení, simulovat v podstatě jakýkoliv materiál. V našem případě vizualizace diamantu zvolíme materiál typu mia, který je součástí balíku mental ray. Tento materiál simuluje reálné fyzikální vlastnosti pevných těles. Pro dosažení reálných vlastností povrchu musíme upravit některé charakteristické atributy tohoto materiálu. Prvním atributem je index refrakce, který nastavíme na hodnotu podle Tab. 1. Dalším atributem je nastavení BRDF funkce, která definuje charakter odrazu a lomu paprsku na povrchu materiálu. V našem případě pro tento atribut použijeme Fresnelovi 765
4 rovnosti pro odrazivost. Poslední důležité vlastnosti diamantu jsou jeho maximální odrazivost a vysoký index lomu. 5 Osvětlení, testování a výsledný výpočet scény Nejdůležitější z celé produkce je správné nasvícení scény. Množství, vlastnosti, barva, teplota světla, jsou základní charakteristiky osvětlení scény. Abychom mohli kvalitně simulovat světelné podmínky, musíme rozhodnout, zda budeme daný objekt snímat v reálných nebo studiových podmínkách. Reálné podmínky se vyznačují přímým slunečním světlem, velkou ambientní složkou a měkkými stíny. Studiové podmínky jsou zastoupeny ve větší míře odrazivou složkou a difuzní složkou. Pro vizualizaci diamantu jsem zvolil studiové podmínky a proměnlivý tří-bodový osvětlovací model. Podstata tří-bodového osvětlovacího modelu je ukázána na Obr. 5. Obr. 5 Tří-bodový osvětlovací model Na základě zvoleného modelu testujeme vhodnou polohu, intenzitu a barvu daných světel. Tato fáze produkce je z časového hlediska nejnáročnější. Některé testy lze provádět v základním výpočtu scény, což znamená menší výpočetní náročnost a tím i menší časovou náročnost. Složitější světelné efekty, jako globální osvětlení scény, final gathering a caustics, však musíme testovat v téměř plné výpočetní kvalitě. Několik testů můžeme vidět na následujícím obr. 6. Jedná se o testy v plné kvalitě. Obr. 6 Testování světelných vlastností vizualizované scény 766
5 6 Auto-stereoskopie Námi vizualizovaná scéna je tvořena pro produkci prostřednictvím auto-stereoskopických displejů. Tyto displeje umožňují zobrazení 3D prostorového efektu bez nutnosti použití speciálních brýlí nebo jiné pomocné techniky. Technologie, kterou tyto displeje používají, byla příznačně nazvána paralaxní bariéra. Jde o obdobu lentikulární folie, avšak místo čoček je zde použita právě paralaxní bariéra, která zajišťuje, aby každé oko vidělo jiný obraz. Tento obraz je, stejně jako v reálném světě, mírně prostorově posunutý a tím docílíme stereoskopického efektu. Technologie Celvision, pro kterou danou vizualizaci tvoříme, využívá 8 prostorově posunutých obrazů, a tím 7 pozorovacích úhlů. Obr. 7 Princip auto-stereoskopické technologie Celvision 7 Kompozice Principem technologie Celvision je vykreslení syntetické scény osmi různými na sobě závislými kamerami. Výsledný obraz se pak ukládá do speciálního formátu obsahujícího informace o snímání obrazu z těchto osmi kamer. Tyto jsou poskládány podle předem daných pravidel do mřížky 3x3 snímků tak, že chybějící devátý obraz vzniká rozdělením obrazů snímaného sedmou a osmou kamerou. Následující ukazuje rozložení osmi vstupních obrazů do matice 3x3. V případě video vstupu musí být stejným způsobem rozděleno 8 video sekvencí v daném pořadí. Přehrávač, vytvořený pro tuto technologii, pak dané obrazy zformuje do mřížky po jednotlivých pixelech tak, jak je vidět na Obr. 7. Mřížka 3x3, definovaná výše, je tedy pouze mezi-formát, pro srozumitelnější tvorbu vstupů pro tato zařízení. Tento formát se nazývá eight-tile. 767
6 Obr. 8 Vstup pro auto-stereoskopické zařízení Celvision 8 Závěr Námi vizualizovaný projekt diamantu získává díky auto-stereoskopickému zobrazení další rozměr a tím i podstatně jinou formu prezentace, vizualizace i vnímání. Jak již bylo uvedeno v úvodu, stereoskopické technologie jsou v dnešní době na vzestupu a jsou čím dál více používány ve všech vědních i populárních odvětvích. Auto-stereoskopické technologie jsou prozatím ve fázi vývoje a testování, avšak nebude dlouho trvat a začnou se rozvíjet ve velkém. Již dnes je několik komerčních zařízení, která s těmito technologiemi pracují (notebook, mobilní telefon, elektronický mikroskop a další). Poděkování: Tento článek vznikl za podpory projektu SGS15/PřF/ Literatura ČTK. V New Yorku se bude ve středu dražit obří diamant. [online], [citované ]. Dostupné na: < MADAM BUSINESS. Nejdražší diamant prodán. [online], [citované ]. Dostupné na: < FÜRBACH, M. Exkluzivně: jak se vyrábějí diamanty z lidí. Stačí hromádka kremačního popelu. [online], [citované ]. Dostupné na: < hromadka-kremacniho-popelu-175- /tec_reportaze.asp?c=a080910_171404_tec_reportaze_kuz> AM-DIAMONDS. Grading Polished Diamonds For Cut. [online], [citované ]. Dostupné na: < OAK RIDGE JEWELERS. About Diamonds. [online], [citované ]. Dostupné na: < WORLD DIAMOND BOURSE. Optical properties. [online], [citované ]. Dostupné na: < 768
7 JEWELRY FINDINGS. Refraction Of Gems And Effects. [online], [citované ]. Dostupné na: < Recenzent: doc. RNDr. PaedDr. Eva Volná, PhD., Ostravská univerzita v Ostravě, Přírodovědecká fakulta, Katedra informatiky a počítačů, 30. dubna 22, Ostrava, eva.volna@osu.cz 769
TVORBA SOFTWARE PRO AKTIVNÍ STEREOSKOPICKOU PROJEKCI
TVORBA SOFTWARE PRO AKTIVNÍ STEREOSKOPICKOU PROJEKCI Ing. David Bražina, Mgr. Tomáš Komenda Ostravská Univerzita v Ostravě david.brazina@osu.cz ABSTRAKT: V současné době dochází k prudkému rozvoji stereoskopických
VíceZobrazování a osvětlování
Zobrazování a osvětlování Petr Felkel Katedra počítačové grafiky a interakce, ČVUT FEL místnost KN:E-413 na Karlově náměstí E-mail: felkel@fel.cvut.cz S použitím materiálů Bohuslava Hudce, Jaroslava Sloupa
Vícezdroj světla). Z metod transformace obrázku uvedeme warping a morfing, které se
Kapitola 3 Úpravy obrazu V následující kapitole se seznámíme se základními typy úpravy obrazu. První z nich je transformace barev pro výstupní zařízení, dále práce s barvami a expozicí pomocí histogramu
VícePočítačová grafika III Úvod
Počítačová grafika III Úvod Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. Popis scény Geometrie Kde je jaký objekt ve scéně
VíceDigitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Více3D grafika. Proces tvorby sekvence s 3D modely Sbírání údajů na natáčecím place Motion capture Matchmoving Compositing
3D grafika Proces tvorby sekvence s 3D modely Sbírání údajů na natáčecím place Motion capture Matchmoving Compositing Počítačová grafika, 3D grafika 2 3D grafika CGI = computer graphic imagery Simulace
VíceModerní metody rozpoznávání a zpracování obrazových informací 15
Moderní metody rozpoznávání a zpracování obrazových informací 15 Hodnocení transparentních materiálů pomocí vizualizační techniky Vlastimil Hotař, Ondřej Matúšek Katedra sklářských strojů a robotiky Fakulta
VíceODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika
ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí
VícePočítačová grafika III Úvod
Počítačová grafika III Úvod Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. Popis scény Geometrie Kde je jaký objekt ve scéně
VíceFotonové mapy. Leonid Buneev
Fotonové mapy Leonid Buneev 21. 01. 2012 Popis algoritmu Photon mapping algoritmus, který, stejně jako path tracing a bidirectional path tracing, vyřeší zobrazovací rovnice, ale podstatně jiným způsobem.
VíceZáklady 3D modelování a animace v CGI systémech Cinema 4D C4D
EVROPSKÝ SOCIÁLNÍ FOND Základy 3D modelování a animace v CGI systémech Cinema 4D C4D PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Mgr. David Frýbert 2013 CGI systémy Computer - generated imagery - aplikace
VíceDistribuované sledování paprsku
Distribuované sledování paprsku 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz DistribRT 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 24 Distribuované
VíceÚvod do počítačové grafiky
Úvod do počítačové grafiky elmag. záření s určitou vlnovou délkou dopadající na sítnici našeho oka vnímáme jako barvu v rámci viditelné části spektra je člověk schopen rozlišit přibližně 10 milionů barev
Více5.3.1 Disperze světla, barvy
5.3.1 Disperze světla, barvy Předpoklady: 5103 Svítíme paprskem bílého světla ze žárovky na skleněný hranol. Světlo se láme podle zákona lomu na zdi vznikne osvětlená stopa Stopa vznikla, ale není bílá,
VíceBarvy a barevné modely. Počítačová grafika
Barvy a barevné modely Počítačová grafika Barvy Barva základní atribut pro definici obrazu u každého bodu, křivky či výplně se definuje barva v rastrové i vektorové grafice všechny barvy, se kterými počítač
VíceSpektrální charakteristiky
Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který
VíceNázev a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA
Více1. Polotóny, tisk šedých úrovní
1. Polotóny, tisk šedých úrovní Studijní cíl Tento blok kurzu je věnován problematice principu tisku polotónů a šedých úrovní v oblasti počítačové grafiky. Doba nutná k nastudování 2 hodiny 1.1 Základní
VíceZáklady vizualizace. Výpočetní metody
10 Základy vizualizace Reálným zobrazováním se zabývá samostatný obor nazvaný Vizualizace. Podstata většiny vizualizačních systémů vychází z jednoduché koncepce skupin objektů, které nazýváme Scéna. Základní
VícePráce na počítači. Bc. Veronika Tomsová
Práce na počítači Bc. Veronika Tomsová Barvy Barvy v počítačové grafice I. nejčastější reprezentace barev: 1-bitová informace rozlišující černou a bílou barvu 0... bílá, 1... černá 8-bitové číslo určující
VíceOdraz světla, BRDF. Petr Kadleček
Odraz světla, BRDF Petr Kadleček 17. října 2011 Úvod V minulé přednášce jsme si představili matematický model scény včetně geometrie, materiálů, zdroje světla, kamery, atd. Ukázali jsme si, že při formulaci
VíceStatSoft Jak vyzrát na datum
StatSoft Jak vyzrát na datum Tento článek se věnuje podrobně možnostem práce s proměnnými, které jsou ve formě datumu. A že jich není málo. Pokud potřebujete pracovat s datumem, pak se Vám bude tento článek
Více1 3D snímání: Metody a snímače
1 3D snímání: Metody a snímače Nejprve je potřeba definovat, že se v rámci tohoto předmětu budeme zabývat pouze bezkontaktními metodami zisku hloubkové informace. Metody pro 3D snímání lze dělit v podstatě
VíceHierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16
Hierarchický model 1995-2013 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchie v 3D modelování kompozice zdola-nahoru složitější objekty se sestavují
VíceObsah. Úvod do prostorového modelování 9. Prostředí AutoCADu při práci ve 3D 15 KAPITOLA 1 KAPITOLA 2
KAPITOLA 1 Úvod do prostorového modelování 9 Produkty společnosti Autodesk 9 3D řešení 10 Vertikální řešení založené na platformě AutoCAD 10 Obecný AutoCAD 11 Obecné 2D kreslení 11 Prohlížeče a pomocné
VíceKalibrační proces ve 3D
Kalibrační proces ve 3D FCC průmyslové systémy společnost byla založena v roce 1995 jako součást holdingu FCC dodávky komponent pro průmyslovou automatizaci integrace systémů kontroly výroby, strojového
Více27. 11. 2012, Brno Připravil: Ing. Jaromír Landa. Postprocessing videa
27. 11. 2012, Brno Připravil: Ing. Jaromír Landa Postprocessing videa Digitální video Digitální video Typ záznamového zařízení, které pracuje s digitálním signálem a ne s analogovým. Proces, kdy se v určitém
VíceStřední škola aplikované kybernetiky s.r.o.: Maturitní okruhy z odborných předmětů 2010
NAW WEBOVÉ STRÁNKY 1 Barevné modely (nejen v oblasti webdesignu), fyzikální podstata barvy 2 Zacházení s barvou v oblasti webdesignu a její účinek na psychiku 3 Tvar vizuálních prvků webdesignu, vliv na
VíceIng. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010
Ing. Jan Buriánek (ČVUT FIT) GPU a GTC BI-MGA, 2010, Přednáška 10 1/38 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek,
VíceSvětlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h
Světlo Světlo Podstata světla Elektromagnetické záření Korpuskulární charakter Vlnění, foton Rychlost světla c = 1 079 252 848,8 km/h Vlnová délka Elektromagnetické spektrum Rádiové vlny Mikrovlny Infračervené
Více3D REKONSTRUKCE ARCHITEKTURY DAVID SEDLÁČEK
3D REKONSTRUKCE ARCHITEKTURY DAVID SEDLÁČEK Měření ve fotografii 3D rekonstrukce architektury Simulace osvětlení reálných budov a interiérů Situování budovy do okolí Návrh přestavby části budovy Vygenerování
VícePočítačová grafika 2 (POGR2)
Počítačová grafika 2 (POGR2) Pavel Strachota FJFI ČVUT v Praze 19. února 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: pavel.strachota@fjfi.cvut.cz WWW:
Více3D Vizualizace muzea vojenské výzbroje
3D Vizualizace muzea vojenské výzbroje 3D visualization of the museum of military equipment Bc.Tomáš Kavecký STOČ 2011 UTB ve Zlíně, Fakulta aplikované informatiky, 2011 2 ABSTRAKT Cílem této práce je
VíceOndřej Baar ( BAA OO6 ) Prezentace ZPG 2008 Kalibrace Barev. Kalibrace Barev. Ondřej Baar 2008 ~ 1 ~
Kalibrace Barev Ondřej Baar 2008 ~ 1 ~ Úvod do problému: Proč je potřeba kalibrace barev: Při zpracování obrazu může vlivem nejrůznějších nepřesností dojít k rozladění barev. Ty je pak třeba zpětně upravit,
VíceVÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro
VíceLaboratorní práce č. 3: Měření vlnové délky světla
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test
VíceAnimace a geoprostor. První etapa: Animace 3. přednáško-cvičení. Jaromír Landa. jaromir.landa@mendelu.cz Ústav informatiky PEF MENDELU v Brně
Animace a geoprostor První etapa: Animace 3. přednáško-cvičení Jaromír Landa jaromir.landa@mendelu.cz Ústav informatiky PEF MENDELU v Brně Náplň přednáško-cvičení Nasvícení scény Světelné zdroje umělé
VíceInovace studia obecné jazykovědy a teorie komunikace ve spolupráci s přírodními vědami
Inovace studia obecné jazykovědy a teorie komunikace ve spolupráci s přírodními vědami reg. č.: CZ.1.07/2.2.00/28.0076 Dějiny vizuality: od ikony k virtuální Vizuální percepce: teoretická, empirická i
VíceInovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Vizualizační technika Ing. Jakab Barnabáš
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Vizualizační technika
VíceProblematika snímání skla a kvalifikace povrchové struktury
Problematika snímání skla a kvalifikace povrchové struktury Vlastimil Hotař, Katedra sklářských strojů a robotiky, Technická univerzita v Liberci Seminář moderní metody rozpoznávání a zpracování obrazových
VíceTerestrické 3D skenování
Jan Říha, SPŠ zeměměřická www.leica-geosystems.us Laserové skenování Technologie, která zprostředkovává nové možnosti v pořizování geodetických dat a výrazně rozšiřuje jejich využitelnost. Metoda bezkontaktního
VíceSvětlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V
Kapitola 2 Barvy, barvy, barvičky 2.1 Vnímání barev Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V něm se vyskytují všechny známé druhy záření, např. gama záření či infračervené
VíceMěření průtoku kapaliny s využitím digitální kamery
Měření průtoku kapaliny s využitím digitální kamery Mareš, J., Vacek, M. Koudela, D. Vysoká škola chemicko-technologická Praha, Ústav počítačové a řídicí techniky, Technická 5, 166 28, Praha 6 e-mail:
VíceZavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické
VíceGrafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
VíceRozšíření bakalářské práce
Rozšíření bakalářské práce Vojtěch Vlkovský 2011 1 Obsah Seznam obrázků... 3 1 Barevné modely... 4 1.1 RGB barevný model... 4 1.2 Barevný model CMY(K)... 4 1.3 Další barevné modely... 4 1.3.1 Model CIE
VíceKonstrukce zdroje záření a jeho využití ve výuce optiky
Konstrukce zdroje záření a jeho využití ve výuce optiky LENKA TICHÁČKOVÁ, LENKA HÖNIGOVÁ Ostravská univerzita v Ostravě Abstrakt Tento článek se věnuje zdroji záření viditelné oblasti a UV. Jak tento levný
VícePočítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO
Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO 1 Základní dělení 3D grafika 2D grafika vektorová rastrová grafika 2/29 Vektorová grafika Jednotlivé objekty jsou tvořeny křivkami Využití: tvorba diagramů,
VíceVýpočet vržených stínů
Výpočet vržených stínů 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Shadows 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18 Metody vícenásobný
VíceNázev: VY_32_INOVACE_PG3314 Rendering - vykreslení vytvořené scény. Vzdělávací oblast / téma: 3D grafika, počítačová grafika, 3DS Max
Název: VY_32_INOVACE_PG3314 Rendering - vykreslení vytvořené scény Autor: Mgr. Tomáš Javorský Datum vytvoření: 05 / 2012 Ročník: 3 Vzdělávací oblast / téma: 3D grafika, počítačová grafika, 3DS Max Anotace:
VíceZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14
ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 13 0:40 Implementace Umělá inteligence (UI) Umělá inteligence
VíceGIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
VíceIng. Jiří Fejfar, Ph.D. Dálkový průzkum Země
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný
VíceLaserové skenování (1)
(1) Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským sociálním fondem astátním rozpočtem
VíceKde se používá počítačová grafika
POČÍTAČOVÁ GRAFIKA Kde se používá počítačová grafika Tiskoviny Reklama Média, televize, film Multimédia Internetové stránky 3D grafika Virtuální realita CAD / CAM projektování Hry Základní pojmy Rastrová
VíceStaré mapy TEMAP - elearning
Staré mapy TEMAP - elearning Modul 5 Digitalizace glóbů Ing. Markéta Potůčková, Ph.D. 2015 Přírodovědecká fakulta UK v Praze Katedra aplikované geoinformatiky a kartografie Motivace Glóby vždy byly a jsou
VíceLIGHT SOURCE FOR PUPILS EXPERIMENTS
LIGHT SOURCE FOR PUPILS EXPERIMENTS Mgr. Lenka Hönigová, Ph.D. Bc. Lenka Ticháčková KFY, Přírodovědecká fakulta Ostravská univerzita ICTE 2015 15. 9. 17. 9. 2014 Rožnov pod Radhoštěm Content Fotometry
VícePočítačová grafika. Studijní text. Karel Novotný
Počítačová grafika Studijní text Karel Novotný P 1 Počítačová grafika očítačová grafika je z technického hlediska obor informatiky 1, který používá počítače k tvorbě umělých grafických objektů a dále také
VíceV poslední době se v oblasti dokumentace archeologických movitých i nemovitých památek začíná objevovat zcela nová, digitální metoda tzv.
3D FOTOGRAMMETRIE V poslední době se v oblasti dokumentace archeologických movitých i nemovitých památek začíná objevovat zcela nová, digitální metoda tzv. pozemní 3D fotogrammetrie. Jedná se o tvorbu
VíceFTTX - Měření v optických sítích. František Tejkl 17.9.2014
FTTX - Měření v optických sítích František Tejkl 17.9.2014 Náplň prezentace Co lze měřit v optických sítích Vizuální kontrola povrchu ferule konektoru Vizuální hledání chyb Optický rozpočet Přímá metoda
VíceJednoduchý elektrický obvod
21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod
VíceMonitor EU peníze středním školám Didaktický učební materiál
Monitor EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT1.12 Předmět: Informatika a výpočetní technika Tematická oblast: Úvod do studia informatiky, konfigurace
VíceKaždý umělec má pro svou práci k dispozici valéry, které lze snadno seřadit do stupnice šedí, tak jak je uvedeno na obrázku.
MÍCHÁNÍ BAREV Pro mnoho začínajících umělců, se zdá míchání barev velice těžkou disciplínou. Nepřidává tomu ani skutečnost, že v současnosti je na trhu nepřeberné množství barevných odstínů a je obtížné
Více(Umělé) osvětlování pro analýzu obrazu
(Umělé) osvětlování pro analýzu obrazu Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky 166 36 Praha
VíceOPTIKA - NAUKA O SVĚTLE
OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790
VícePowerPoint lekce II.
PowerPoint lekce II. Formát pptx Základem, všech dokumentů je xml formát Bez nutnosti nastavení, transformace či konverze nativní součást ukládání Ve skutečnosti souhrn dílčích souborů Text, obrázky, styly
Více2D grafika. Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace. Počítačová grafika, 2D grafika 2
2D grafika Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace Počítačová grafika, 2D grafika 2 2D grafika PC pracuje s daným počtem pixelů s 3 (4) kanály barev (RGB
VíceGIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
VíceGeometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
VíceZobrazovací zařízení. Základní výstupní zařízení počítače, které slouží k zobrazování textových i grafických informací.
Zobrazovací zařízení Základní výstupní zařízení počítače, které slouží k zobrazování textových i grafických informací. Hlavní částí každého monitoru je obrazovka, na jejímž stínítku se zobrazují jednotlivé
VíceMetody automatického texturování 3D modelu měst s využitím internetových fotoalb 3D town model for internet application
Jihočeská univerzita v Českých Budějovicích Katedra informatiky Pedagogické fakulty Metody automatického texturování 3D modelu měst s využitím internetových fotoalb 3D town model for internet application
VíceLekce 12 Animovaný náhled animace kamer
Lekce 12 Animovaný náhled animace kamer Časová dotace: 2 vyučovací hodina V poslední lekci tohoto bloku se naučíme jednoduše a přitom velice efektivně animovat. Budeme pracovat pouze s objekty, které jsme
VíceÚvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014
Úvod, optické záření Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Materiál je pouze grafickým podkladem k přednášce a nenahrazuje výklad na vlastní
VíceFluorescenční mikroskopie
Fluorescenční mikroskopie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 VYUŽITÍ FLUORESCENCE, PŘÍMÁ FLUORESCENCE, PŘÍMÁ A NEPŘÍMA IMUNOFLUORESCENCE, BIOTIN-AVIDINOVÁ METODA IMUNOFLUORESCENCE
VíceOtázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu
Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce
VíceTvorba posterů prakticky
Tvorba posterů prakticky Ivo Šnábl Web studio Institut biostatistiky a analýz MU snabl@iba.muni.cz Operační program Vzdělávání pro konkurenceschopnost Projekt Zvyšování IT gramotnosti zaměstnanců vybraných
Více3D stereoskopická projekce
3D stereoskopická projekce Současnost, trendy, budoucnost Ing. Jan Buriánek, AV MEDIA, a.s. Jan.Burianek@avmedia.cz +420 604 298 259 3D v inženýrské aplikace 3D v průmyslu 3D v digitálních kinech 3D nejen
Více1. Dialog Shadow/Highlight (Stíny a světla)
Obsah 1. Dialog Shadow/Highlight (Stíny a světla) 2. Photo Filter (Fotografický filtr) 3. Světelné efekty Díky těmto efektům se naučíte upravit fotografii k obrazu svému. Pokud u fotky nebudete spokojeni
VíceTECHNICKÉ PREZENTACE
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ TECHNICKÉ PREZENTACE Tvorba animací v rámci prezentace Ing. Pavel Smutný, Ph.D. Ostrava 2013 Ing. Pavel Smutný, Ph.D. Vysoká škola báňská
VíceOptika nauka o světle
Optika nauka o světle 50_Světelný zdroj, šíření světla... 2 51_Stín, fáze Měsíce... 3 52_Zatmění Měsíce, zatmění Slunce... 3 53_Odraz světla... 4 54_Zobrazení předmětu rovinným zrcadlem... 4 55_Zobrazení
VíceOSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného
VíceAplikace třetího rozměru v archeologii. Úvod a 3D prostředí
Aplikace třetího rozměru v archeologii Úvod a 3D prostředí Prezentace 3D Modely a jejich prostředí 3D Scannery Fotogrammetrie Aplikace Závěr 3D Model Virtuální trojrozměrný objekt nesoucí fyzickou i grafickou
VíceSBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
VíceZákladní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 5 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/21.2759 Název DUM: Opakování - optika
VícePOSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL
POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL Autor: Dr. Ing. Milan SCHUSTER, ŠKODA VÝZKUM s.r.o., Tylova 1/57, 316 00 Plzeň, e-mail: milan.schuster@skodavyzkum.cz Anotace: V příspěvku
VíceIVT. 8. ročník. listopad, prosinec 2013. Autor: Mgr. Dana Kaprálová
IVT Počítačová grafika - úvod 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443
Vícepro začátečníky pro pokročilé na místě (dle požadavků zákazníka)
Semináře pro začátečníky pro pokročilé na místě (dle požadavků zákazníka) Hotline telefonická podpora +420 571 894 335 vzdálená správa informační email carat@technodat.cz Váš Tým Obsah Obsah... -2- Úvod...
VíceMateriály. Otevřete model Three Plugs.3dm.
22 Hloubka ostrosti Pomocí samotného renderingu někdy není možné v dosáhnout požadovaných efektů v rozumě krátkém čase. Většina profesionálních grafiků vyrenderované obrázky následně upravuje v kreslicích
VíceDUM č. 2 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník
projekt GML Brno Docens DUM č. 2 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 19.06.2014 Ročník: 4B Anotace DUMu: Prezentace je souhrnem probírané tématiky. Ve stručném
VíceDigitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová
Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu
VíceS v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla
S v ě telné jevy Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla Světelný zdroj - těleso v kterém světlo vzniká a vysílá je do okolí
VíceSvětlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.
1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením
VícePři demonstraci lomu bílého světla pozorujeme jev, kdy se při lomu bílé světlo rozloží na barevné složky. Tento jev se nazývá disperze světla.
4. Disperze světla Při demonstraci lomu bílého světla pozorujeme jev, kdy se při lomu bílé světlo rozloží na barevné složky. Tento jev se nazývá disperze světla. Vzniká v důsledku závislosti rychlosti
VíceOptika. Zápisy do sešitu
Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá
VíceTypy světelných mikroskopů
Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský
VíceOPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí
VíceVYUŽITÍ GRAPHICAL USER INTERFACE PROGRAMU MATLAB PŘI VÝUCE OPTIKY
VYUŽITÍ GRAPHICAL USER INTERFACE PROGRAMU MATLAB PŘI VÝUCE OPTIKY Jiří Tesař, Petr Bartoš Jihočeská univerzita v Českých Budějovicích, Katedra fyziky Jeronýmova 10, 371 15 České Budějovice Abstrakt Program
VíceGEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.
Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková
Vícemateriál č. šablony/č. sady/č. materiálu: Autor: Karel Dvořák Vzdělávací oblast předmět: Informatika Ročník, cílová skupina: 7.
Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; Internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_IN7DV_05_01_10
VíceGymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Autor Mgr. Petr Štorek,Ph. D.
Více