LABORATORNÍ A PROVOZNÍ TESTOVÁNÍ SOLÁRNÍCH KOLEKTORŮ
|
|
- Ivo Musil
- před 8 lety
- Počet zobrazení:
Transkript
1 Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad LABORATORNÍ A PROVOZNÍ TESTOVÁNÍ SOLÁRNÍCH KOLEKTORŮ Nikola Pokorný 1), Tomáš Matuška 2), Bořivoj Šourek 1) 1) Energetické systémy budov, UCEEB, ČVUT, Buštěhrad 2) Ústav techniky prostředí, Fakulta strojní, ČVUT, Praha 6 ANOTACE Článek popisuje, jakým způsobem lze ověřovat kvalitu solárních tepelných kolektorů. Solární kolektory lze testovat nejen během laboratorních podmínek ve venkovním i vnitřním prostředí pro zjištění jejich základních parametrů potřebných pro návrh solárních soustav, ale také v provozu na konkrétní instalaci solárního soustavy. Zároveň lze aplikovat matematické modely pro ověření správné funkce kolektoru. SUMMARY The paper describes how to check the quality of solar thermal collectors. It is possible to test the solar collectors in outdoor or indoor environment to provide the basic performance parameters necessary for solar systems design, but it is also possible to test them in operation at real solar system installation. Alongside, it is possible to apply advanced mathematical models for verification of the proper function of the solar collector. ÚVOD V současné době je na trhu v České republice a v Evropě velké množství solárních tepelných kolektorů a dodavatel každého z nich zpravidla uvádí jeho parametry. Pro návrh solární soustavy jsou technické parametry nezbytné, objevují se však takové instalace, u kterých nebyl proveden ani zjednodušený měsíční bilanční výpočet. V takovém případě lze solární kolektor otestovat přímo na instalaci a zkontrolovat pomocí matematického modelu, zda vykazuje výkon odpovídající jeho technickým parametrům. Technické parametry solárních kolektorů se stanovují laboratorním testováním podle standardizovaných zkoušek, které určují tepelné a optické chování za definovaných podmínek. Zkoušky solárních kolektorů přinášejí potenciálnímu investorovi informaci, co vše je schopen kolektor vydržet a zda výkon uvedený na štítku odpovídá realitě. Následující text ukazuje způsoby ověřování kvality solárních kolektorů nejen v laboratorních podmínkách, ale i na konkrétní instalaci. ZKOUŠENÍ SOLÁRNÍCH KOLEKTORŮ V LABORATOŘI Každý projektant pro návrh solární tepelné soustavy potřebuje znát základní informace o použitém solárním kolektoru. Jako minimální informace pro návrh a zjednodušenou bilanci solární soustavy zpravidla postačují konstanty křivky účinnosti 0, a1 a a2 a vztažná plocha kolektoru A, ke které je křivka účinnosti vztažena. Křivka účinnosti je výsledkem zkoušky tepelného výkonu provedené v souladu s platnou zkušební normou. V loňském roce vstoupila v platnost nová norma ČSN EN ISO 9806 [1], která se z hlediska metod a podmínek pro zkoušení kapalinových solárních kolektorů příliš neliší od předcházející ČSN EN Významným posunem je především rozšíření předmětu normy i na koncentrační solární kolektory a zavedení metod zkoušení pro vzduchové solární kolektory. Významným posunem bylo vztažení účinnosti kolektoru k jeho hrubé ploše namísto apertury či absorbéru. 237
2 Laboratorní testování solárních kolektorů se provádí buď ve venkovním prostředí s přirozeným slunečním zářením, nebo ve vnitřním prostředí s umělým slunečním zářením. Obě možnosti zakotvené v normě mají své výhody a nevýhody. Zkoušení ve venkovním prostředí je závislé na počasí, neboť požadavek jasné oblohy se slunečním ozářením G > 700 W/m 2 při zkoušce ustáleného tepelného výkonu znamená omezenou dobu zkoušek během roku. Na druhé straně je možné ve venkovním prostředí provádět i zkoušku optické charakteristiky (modifikátoru úhlu dopadu), která v simulátoru je možná pouze za určitých podmínek (rovnoběžnost svazku paprsků). Oproti tomu zkoušení kolektorů s použitím simulátoru slunečního záření není závislé na počasí a může být plně automatizované. Obr. 1 Venkovní trať na FS ČVUT, vnitřní testovací zařízení v UCEEB ČVUT Solární laboratoř Univerzitního centra energeticky efektivních budov (UCEEB) v Buštěhradě ve spolupráci s Fakultou strojní ČVUT v Praze umožňuje zkoušení solárních kolektorů jak ve venkovním prostředí, tak ve vnitřním prostředí se simulátorem slunečního záření (viz obr. 1) jako jediná laboratoř v ČR. Vnitřní zkušební zařízení v solární laboratoři se skládá ze tří hlavních částí. Z lampového pole, termostatu a umělé oblohy. V simulátoru slunečního záření je uchyceno pole osmi metalhalidových obloukových lamp, které mají spektrum záření blížící se slunečnímu záření dopadajícímu na zemský povrch. Jedna metalhalidová lampa má elektrický příkon okolo 4,5 kw, celkový elektrický příkon lamp je okolo 37 kw. Dosahovaná maximální hustota zářivého toku slunečního záření je až 2000 W/m 2. Umělou oblohou se nazývá konstrukce tvořená dvojskly umístěnými pod lampovým polem pro odvedení infračerveného záření, které není součástí slunečního spektra. Větranou dutinou dvojskla se odvádí tepelná energie odfiltrovaného záření pomocí klimatizační jednotky. Termostat umístěný pod pohyblivou nosnou konstrukcí, kde je upevněn zkoušený solární kolektor, umožňuje udržovat přesně požadovanou teplotu v rozsahu 5 až 115 C v toleranci ± 0,03 K během zkoušky. Jak simulátor, tak vlastní zkušební konstrukci lze nastavit do samostatně definované polohy, od vodorovné do svislé. V počátcích využívání solárního simulátoru pro zkoušení tepelného výkonu solárních kolektorů ve vnitřním prostředí byla snaha ověřovat výsledky zkoušek porovnáváním se zkouškami ve venkovním prostředí. Srovnávací měření bylo provedeno ve spolupráci se Solární laboratoří na Fakultě strojní ČVUT v Praze. Jako příklad porovnání lze uvést zkoušení plochého solárního kolektoru se selektivním absorbérem. Na obr. 2 je uvedeno porovnání vyhodnocené křivky účinnosti daného kolektoru zkouškou za ustálených podmínek ve venkovním prostředí (Fakulta strojní) se simulátorem slunečního záření (UCEEB). Při uvažování celkové nejistoty stanovení účinnosti při zkoušce kolektoru okolo 3 % lze považovat obě zkušební metody za 238
3 η[-] zaměnitelné. Co je však nezaměnitelné, je čas potřebný ke zkoušce jednoho solárního kolektoru. Zatímco v případě plně automatizovaného zařízení se simulátorem je doba od nainstalování kolektoru do získání výsledků zkoušky cca 6 hodin, u venkovní zkoušky se zpravidla jedná v průměru o týdny kvůli čekání na jasnou oblohu (t m - t e ) /G [m 2 K/W] Obr. 2 Porovnání výsledků zkoušky ve venkovním (značka bez výplně) a vnitřním (plná značka) prostředí pro plochý solární kolektor MODELOVÁNÍ PROVOZU SOLÁRNÍCH KOLEKTORŮ Zatímco pro zjednodušené měsíční výpočty bilance solárních soustav postačuje informace o křivce účinnosti a ploše solárního kolektoru, pro podrobnější výpočty a analýzy použití solárních kolektorů jsou potřeba již detailnější modely. Kromě křivky účinnosti je potřeba znát i optickou charakteristiku (modifikátor úhlu dopadu K v příslušných rovinách) kolektoru, případně tepelnou kapacitu kolektoru C [J/K]. Výrobci, kteří mají solární kolektory zkoušené podle evropské normy, tyto parametry zpravidla mají uvedené v protokolu o zkoušce. V tomto ohledu je pro projektanta vynikající pomůckou databáze solárních kolektorů testovaných v rámci certifikačního systému Solar Keymark, kde jsou k dispozici zjednodušené tabelární protokoly s uvedením potřebných parametrů jak křivky účinnosti, tak optické charakteristiky či tepelné kapacity [2]. Popis matematického modelu, který je schopen pro obecné provozní podmínky stanovit výkon solárního kolektoru je uveden například v [3, 6]. Na obr. 3 je uvedeno názorné porovnání průběhu výkonu dvou odlišných typů solárních kolektorů během jasného a oblačného dne s využitím podrobného modelu. Trubkový solární kolektor s válcovým absorbérem má odlišnou optickou charakteristiku, proto v ranních a večerních hodinách vyprodukuje více tepelné energie oproti plochému kolektoru. Podrobným modelem lze potom relativně spolehlivě hodnotit produkci solárního kolektoru hodinu po hodině během roku při zadaných provozních a klimatických podmínkách. V případě, že se pro danou aplikaci a klimatické podmínky mají zodpovědně porovnat dva solární kolektory diametrálně odlišné konstrukce, např. plochý kolektor a trubkový kolektor, s odlišným průběhem výkonu během dne (viz obr. 3), pak nezbývá než takový podrobný model 239
4 použít. Existuje celá řada volně šiřitelných aplikací, které podrobné porovnání umožňují, např. nástroj VYKON_SK [4] nebo program ScenoCalc [5] jasný den sluneční ozáření 800 plochý atmosférický reálný trubkový vakuový W/m oblačný den :00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00 Obr. 3 Výkon solárního kolektoru v závislosti na čase během jasného a oblačného dne ZKOUŠENÍ SOLÁRNÍCH KOLEKTORŮ NA REÁLNÉ INSTALACI Při pochybnostech o výkonu solárních kolektorů instalovaných v konkrétním solárním systému je možné spojit matematické modelování výkonu solárního kolektoru a experimentální testování kolektoru v místě instalace. Na obr. 4 je uvedeno porovnání výsledků výkonu kolektoru stanoveného během daného dne podrobným matematickým modelem a výkonu stanoveného měřením za stejných podmínek. Ověřený podrobný matematický model odpovídá reálnému provozu solárního kolektoru. V praxi se tedy na jedné straně nasadí, alespoň na několik slunných dní, systém měření klimatických veličin (sluneční ozáření v rovině kolektoru - pyranometr, venkovní teplota v okolí kolektoru = stíněné teplotní čidlo), průtoku teplonosné kapaliny kolektorem (objemovým nebo hmotnostním průtokoměrem) a teplot na vstupu a výstupu kolektoru (ideálně umístěných v jímce v protékající kapalině). Měřený výkon solárního kolektoru je pro konkrétní klimatické podmínky porovnán s výkonem vypočteným podrobným modelem, a to v rozlišení velmi krátkého časového kroku (1 minuta). Pro ověření funkce kolektoru jsou vhodné měnící se podmínky jak teploty na vstupu do kolektoru (od nízkých do vysokých), tak dopadajícího slunečního záření (od difúzní oblohy po jasnou), viz obr
5 q k [W/m 2 ] Qk,teoretický Perézův model Qk,skutečný t[hod] Obr. 4 Výkon plochého solárního kolektoru v závislosti na čase za proměnlivých klimatických podmínek [6] Vstupem pro matematický model jsou deklarované parametry solárního kolektoru dodavatelem a identické provozní a klimatické podmínky s měřením. Často už z porovnání průběhů výkonu je možné odvodit nesoulad mezi modelem a měřením. Rozdíly v modelovaných a naměřených denních nebo týdenních úhrnech produkce solárních tepelných zisků kolektorem pak mohou ukázat na potenciální problém mezi deklarovanými parametry kolektory a skutečností. Při poměrné odchylce nad 20 % nezbývá než solární kolektor odmontovat a problém ověřit otestováním v laboratoři za normou definovaných podmínek, případně dále problém podrobněji analyzovat. Obr. 5 Denní úhrny dopadlé sluneční energie a tepelné energie produkované kolektorovým polem 241
6 Na obr. 5 jsou pak zobrazeny úhrny denní dopadlé sluneční energie v porovnání s naměřenými zisky solárních kolektorů a teoretickým předpokladem. Jedná se o týdenní měření na konkrétní instalaci, za účelem ověření uváděných technických parametrů konkrétního kolektoru. Porovnáním týdenních úhrnů energie produkované kolektory a dopadlé sluneční energie lze stanovit provozní účinnost kolektorů (reálný stav z naměřených hodnot, teoretický předpoklad z vypočtených hodnot). Výsledky v tomto konkrétním případě ukázaly, že solární kolektory dosahuje pouze cca 65 % předpokládané produkce. To může poukazovat na dva druhy problémů, které se v praxi objevují: výrobce deklaruje nereálné parametry solárního kolektoru nebo je solární kolektor poškozen (zatečení vody, degradace povrchu absorbéru či vnitřního povrchu zasklení). ZÁVĚR Testování solárních kolektorů v laboratoři se provádí zejména za účelem vyhodnocení parametrů solárních kolektorů. Parametry solárních kolektorů pak nejenže slouží pro snadnější orientaci na trhu, ale i pro použití v projekčních výpočtech při navrhování solárních soustav. Zatímco pro zjednodušené výpočty v rámci projekce či hodnocení solárních soustav v programech podpory úspor postačuje základní charakteristika účinnosti, pro výpočty v případech sporů či s jinak požadovanou vyšší mírou spolehlivosti je nutné používat podrobné matematické modely. Testování kolektoru na konkrétní instalaci solární soustavy za proměnlivých klimatických a provozních podmínek pak může ověřit správnou funkci kolektoru i bez nutnosti demontáže a drahého laboratorního testu. LITERATURA [1] ČSN EN ISO Solární energie - Solární tepelné kolektory - Zkušební metody. Praha: ČESKÝ NORMALIZAČNÍ INSTITUT, [2] Solar Keymark Database, List of certified collectors, dostupné z [3] DUFFIE, J.A. a BECKMAN, W.A., Solar Engineering of Thermal Processes. 3rd ed. Hoboken: John Wiley&Sons, Inc., ISBN [4] MATUŠKA, T., VYKON_SK - Výpočtový nástroj pro hodnocení výkonnosti solárních tepelných kolektorů, dostupné z [5] ScenoCalc - a program for calculation of annual solar collector energy output, dostupné z [6] POKORNÝ N., MATUŠKA T., Modelování provozu solárního tepelného kolektoru, Sborník konference AZE Kroměříž, ISBN PODĚKOVÁNÍ Tento příspěvek vznikl za podpory Evropské unie, projektu OP VaVpI č. CZ.1.05/2.1.00/ Univerzitní centrum energeticky efektivních budov. 242
VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Bořivoj Šourek,
HODNOCENÍ VÝKONNOSTI SOLÁRNÍCH KOLEKTORŮ
Konference Alternativní zdroje energie 2010 13. až 15. července 2010 Kroměříž HODNOCENÍ VÝKONNOSTI SOLÁRNÍCH KOLEKTORŮ Tomáš Matuška Ústav techniky prostředí, Fakulta strojní, ČVUT v Praze tomas.matuska@fs.cvut.cz
Protokol. o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN ISO 9806
České vysoké učení technické v Praze Univerzitní centrum energeticky efektivních budov Třinecká 1024 273 43 Buštěhrad www.uceeb.cz Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,
1/64 Solární kolektory
1/64 Solární kolektory účinnost zkoušení optická charakteristika měrný zisk Solární kolektory - princip 2/64 Odraz na zasklení Odraz na absorbéru Tepelná ztráta zasklením Odvod tepla teplonosnou látkou
Univerzitní centrum energeticky efektivních budov, České vysoké učení technické, Buštěhrad
Zjednodušená měsíční bilance solární tepelné soustavy BILANCE 2015/v2 Tomáš Matuška, Bořivoj Šourek Univerzitní centrum energeticky efektivních budov, České vysoké učení technické, Buštěhrad Úvod Pro návrh
1/38. jejich měření. Tomáš Matuška Ústav techniky prostředí, Fakulta strojní
1/38 Provozní chování solárních soustav a jejich měření Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze 2/38 Proč měřit? Co měřit? Kde měřit? Jak měřit? 3/38 Proč měřit? měření pro
ENERGETICKO-EKONOMICKÁ ANALÝZA HYBRIDNÍCH FOTOVOLTAICKO-TEPELNÝCH KOLEKTORŮ
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad ENERGETICKO-EKONOMICKÁ ANALÝZA HYBRIDNÍCH FOTOVOLTAICKO-TEPELNÝCH KOLEKTORŮ Tomáš Matuška Energetické
TEORETICKÁ ANALÝZA VLIVU KONSTRUKČNÍCH PARAMETRŮ PLOCHÉHO SOLÁRNÍHO KOLEKTORU NA JEHO VÝKONNOST
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad TEORETICKÁ ANALÝZA VLIVU KONSTRUKČNÍCH PARAMETRŮ PLOCHÉHO SOLÁRNÍHO KOLEKTORU NA JEHO VÝKONNOST
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:
Porovnání solárního fototermického a fotovoltaického ohřevu vody
Porovnání solárního fototermického a fotovoltaického ohřevu vody Tomáš Matuška, Bořivoj Šourek RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze ÚPRAVA OPROTI
Efektivní využití OZE v budovách. Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze
Efektivní využití OZE v budovách Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze OBNOVITELNÉ ZDROJE TEPLA sluneční energie základ v podstatě veškerého
Jak vybrat solární kolektor?
1/25 Jak vybrat solární kolektor? Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Fakulta strojní, ČVUT v Praze 2/25 Druhy solárních tepelných kolektorů Nezasklený plochý kolektor bez
Solární tepelné soustavy. Ing. Stanislav Bock 3.května 2011
Solární tepelné soustavy Ing. Stanislav Bock 3.května 2011 Princip sluneční kolektory solární akumulační zásobník kotel pro dohřev čerpadlo Možnosti využití nízkoteplotní aplikace do 90 C ohřev bazénové
POČÍTAČOVÝ PROGRAM KOLEKTOR 2.1 PRO MODELOVÁNÍ SOLÁRNÍCH KOLEKTORŮ
Simulace budov a techniky prostředí 2006 4. konference IBPSA-CZ Praha, 7. listopadu 2006 POČÍTAČOVÝ PROGRAM KOLEKTOR 2.1 PRO MODELOVÁNÍ SOLÁRNÍCH KOLEKTORŮ Tomáš Matuška, Vladimír Zmrhal Ústav techniky
Možnosti využití solární energie pro zásobování teplem
TS ČR 22.9.2010 Teplárenství a jeho technologie VUT Brno Možnosti využití solární energie pro zásobování teplem Bořivoj Šourek, Tomáš Matuška Československá společnost pro sluneční energii - národní sekce
Solární soustavy v budovách
1/43 Solární soustavy v budovách Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Fakulta strojní, ČVUT v Praze 2/43 Jaký vybrat kolektor? druh a typ kolektoru odpovídá aplikaci... bazén:
Energetické hodnocení solárních soustav ve vztahu k programu Zelená úsporám (C.3) Tomáš Matuška
Energetické hodnocení solárních soustav ve vztahu k programu Zelená úsporám (C.3) Tomáš Matuška Anotace Článek je komentářem k postupu hodnocení solárních tepelných soustav podle TNI 73 0302 Energetické
Solární soustavy pro bytové domy
Využití solární energie pro bytové domy Solární soustavy pro bytové domy Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Původ sluneční energie, její šíření prostorem a dopad na Zemi
Technické normalizační informace TNI 73 0302 (revize 2014) solární soustavy TNI 73 0351 (nová 2014) tepelná čerpadla
Technické normalizační informace TNI 73 0302 (revize 2014) solární soustavy TNI 73 0351 (nová 2014) tepelná čerpadla Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních
Speciální aplikace FV systémů. Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze
Speciální aplikace FV systémů Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze Fotovoltaický ohřev vody (a jeho porovnání s fototermickým...) CÍL
Protokol o zkoušce výkonu pro zasklené kolektory podle EN 12975 2
Institut für Solarenergieforschung GmbH Hameln / Emmerthal Test Centre for Solar Thermal Components and Systems Zkušebna: Protokol o zkoušce výkonu pro zasklené kolektory podle EN 12975 2 Adresa: Kontaktní
Solární zařízení v budovách - otázky / odpovědi
Solární zařízení v budovách - otázky / odpovědi Ing. Bořivoj Šourek Ph.D. Československá společnost pro sluneční energii (ČSSE) Novotného lávka 5, 116 68 Praha 1 Česká republika info@solarnispolecnost.cz
Solární teplo pro rodinný dům - otázky / odpovědi
1/24 Solární teplo pro rodinný dům - otázky / odpovědi Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Novotného lávka 5, 116 68 Praha 1 Česká republika info@solarnispolecnost.cz 2/24
IDENTIFIKAČNÍ ÚDAJE ZAKÁZKY ZHOTOVITEL: Thákurova 7, Praha 6, IČO: , DIČ:
ČVUT v Praze, Fakulta stavební, Katedra technických zařízení budov 09/2013 IDENTIFIKAČNÍ ÚDAJE ZAKÁZKY ZHOTOVITEL: ČVUT v Praze, Fakulta stavební, Katedra technických zařízení budov, Thákurova 7,166 29
Jiří Kalina. rní soustavy. bytových domech
Jiří Kalina Solárn rní soustavy pro přípravu p pravu teplé vody v bytových domech Parametry solárn rních soustav pro přípravu p pravu teplé vody celkové tepelné zisky využité pro krytí potřeby tepla [kwh/rok]
Energetická bilance fotovoltaických instalací pro aktuální dotační tituly
Energetická bilance fotovoltaických instalací pro aktuální dotační tituly Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze CO HLEDÁME? produkce elektrické
Hybridní fotovoltaicko-tepelné kolektory a možnosti jejich využití. Tomáš Matuška Ústav techniky prostředí, Fakulta strojní, ČVUT v Praze
Hybridní fotovoltaicko-tepelné kolektory a možnosti jejich využití Tomáš Matuška Ústav techniky prostředí, Fakulta strojní, ČVUT v Praze Proč hybridní FVT kolektory? integrace fotovoltaických systémů do
Vliv prosklených ploch na vnitřní pohodu prostředí
Vliv prosklených ploch na vnitřní pohodu prostředí Jiří Ježek 1, Jan Schwarzer 2 1 Oknotherm spol. s r.o. 2 ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Abstrakt Obsahem příspěvku je určení
Solární energie. Vzduchová solární soustava
Solární energie M.Kabrhel 1 Vzduchová solární soustava teplonosná látka vzduch, technicky nejjednodušší solární systémy pro ohřev větracího vzduchu, vysoušení,možné i temperování pohon ventilátorem nebo
Pohled na energetickou bilanci rodinného domu
Pohled na energetickou bilanci rodinného domu Miroslav Urban Katedra technických zařízení budov Stavební fakulta, ČVUT v Praze Univerzitní centrum energeticky efektivních budov UCEEB 2 Obsah prezentace
TECHNICKÁ ZAŘÍZENÍ BUDOV
Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Přednášky pro bakalářské studium studijního oboru Příprava a realizace staveb Přednáška č. 9 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly
Výpočet potřeby tepla na vytápění
Výpočet potřeby tepla na vytápění Výpočty a posouzení byly provedeny při respektování zásad CSN 73 05 40-2:2011, CSN EN ISO 13789, CSN EN ISO 13790 a okrajových podmínek dle TNI 73 029, TNI 73 030. Vytvořeno
BYTOVÉ DOMY v rámci 2. výzvy k podávání žádostí
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram NZÚ BYTOVÉ DOMY v rámci 2. výzvy k podávání žádostí Podoblast podpory C.3 Instalace solárních termických a fotovoltaických
rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva
rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva Jiří Novák činnost technických poradců v oblasti stavebnictví květen 2006 Obsah Obsah...1 Zadavatel...2
Office Centre Fenix. Porovnání spotřeby energie na vytápění v otopných obdobích říjen 2016 únor Miroslav Urban
Office Centre Fenix Porovnání spotřeby energie na vytápění v otopných obdobích říjen 2016 únor 2019 Miroslav Urban 22.3.2019 POROVNÁNÍ OTOPNÉHO OBDOBÍ 1 OBSAH 1 POROVNÁNÍ OTOPNÉHO OBDOBÍ... 3 2 KLIMATICKÉ
Zdroje tepla pro vytápění
UNIVERZITNÍ CENTRUM ENERGETICKY EFEKTIVNÍCH BUDOV Zdroje tepla pro vytápění Tomáš Matuška RP2 Energetické systémy budov, UCEEB Ústav techniky prostředí, FS ČVUT v Praze Stavíme rodinný pasivní dům, 24.1.2014,
Bilance fotovoltaických instalací pro aktuální dotační tituly
Bilance fotovoltaických instalací pro aktuální dotační tituly Tomáš Matuška Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze PODPORA FV INSTALACÍ Operační program
ŠTÍTKY ENERGETICKÉ ÚČINNOSTI KOMBINOVANÝCH SOUPRAV PRO VYTÁPĚNÍ A PŘÍPRAVU TEPLÉ VODY
ŠTÍTKY ENERGETICKÉ ÚČINNOSTI KOMBINOVANÝCH SOUPRAV PRO VYTÁPĚNÍ A PŘÍPRAVU TEPLÉ VODY Ing. Jan Sedlář, UCEEB, ČVUT v Praze ÚVOD CO JE ENERGETICKÝ ŠTÍTEK Grafický přehled základních údajů o daném zařízení
Spolupráce hybridního FVT kolektoru a tepelného čerpadla
Spolupráce hybridního FVT kolektoru a tepelného čerpadla Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Hybridní FVT kolektor CO JSOU HYBRIDNÍ FVT
Plochý solární kolektor ZELIOS XP 2.5-1 V / H
Plochý solární kolektor ZELIOS XP 2.5-1 V / H Inovovaný, vysoce výkonný solární kolektor (XP=extra power) s celkovou plochou 2,5 m 2 pro celoroční použití v uzavřených systémech. Pro nucený oběh teplonosné
Obnovitelné zdroje energie Solární energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Solární energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. M.Kabrhel 1 Druhy energií
Metodika výpočtu kritérií solárních fotovoltaických systémů pro veřejné budovy
Metodika výpočtu kritérií solárních fotovoltaických systémů pro veřejné budovy Ing. Petr Wolf, Ph.D. Ing. Jan Včelák, Ph.D. doc. Ing. Tomáš Matuška, Ph.D. Univerzitní centrum energeticky efektivních budov
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 21 Fototermické solární
STÍNĚNÍ FASÁDNÍCH SOLÁRNÍCH KOLEKTORŮ BUDOVAMI
Simulace budov a techniky prostředí 2006 4. konference IBPSA-CZ Praha, 7. listopadu 2006 STÍNĚNÍ FASÁDNÍCH SOLÁRNÍCH KOLEKTORŮ BUDOVAMI Tomáš Matuška, Vladimír Zmrhal Ústav techniky prostředí, Fakulta
Instalatér solárních termických soustav (kód: 23-099-M)
Instalatér solárních termických soustav (kód: 23-099-M) Autorizující orgán: Ministerstvo průmyslu a obchodu Skupina oborů: Strojírenství a strojírenská výroba (kód: 23) Týká se povolání: Kvalifikační úroveň
Návrh kvalifikace. Instalatér solárních termických soustav (kód: ) Odborná způsobilost. Platnost standardu
Instalatér solárních termických soustav (kód: ) Autorizující orgán: Ministerstvo průmyslu a obchodu Skupina oborů: Strojírenství a strojírenská výroba (kód: 23) Povolání: Doklady potvrzující úplnou profesní
= [-] (1) Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Kde: I 0
Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Z ln I ln I ln I ln I 0 n = [-] (1) 0 n, č Kde: I 0 sluneční konstanta 1 360 [W.m -2 ]; I n intenzita
Energetická náročnost budov
HODNOCENÍ ENERGETICKÉ NÁROČNOSTI BUDOVY 111 Teplá voda Umělé osvětlení Energetická náročnost budov Vytápění Energetická náročnost budov Větrání Chlazení Úprava vlhkosti vzduchu energetickou náročností
ICS Listopad 2005
ČESKÁ TECHNICKÁ NORMA ICS 91. 120. 10 Listopad 2005 Tepelná ochrana budov - Část 3: Návrhové hodnoty veličin ČSN 73 0540-3 Thermal protection of buildings - Part 3: Design value quantities La protection
POTŘEBA TEPLA NA VĚTRÁNÍ PASIVNÍHO DOMU
Simulace budov a techniky prostředí 214 8. konference IBPSA-CZ Praha, 6. a 7. 11. 214 POTŘEBA TEPLA NA VĚTRÁNÍ PASIVNÍHO DOMU Jiří Procházka 1,2, Vladimír Zmrhal 2, Viktor Zbořil 3 1 Sokra s.r.o. 2 ČVUT
Přesnost měření. Obsah. Energetické hodnoty a stupeň účinnosti pro FV-střídač Sunny Boy a Sunny Mini Central
Přesnost měření Energetické hodnoty a stupeň účinnosti pro FV-střídač Sunny Boy a Sunny Mini Central Obsah Každý provozovatel fotovoltaického zařízení chce být co nejlépe informován o výkonu a výnosu svého
Ověřovací nástroj PENB MANUÁL
Ověřovací nástroj PENB MANUÁL Průkaz energetické náročnosti budovy má umožnit majiteli a uživateli jednoduché a jasné porovnání kvality budov z pohledu spotřeb energií Ověřovací nástroj kvality zpracování
Obrázek 8.1: Základní části slunečního kolektoru
49 Kapitola 8 Měření účinnosti slunečního kolektoru 8.1 Úvod Sluneční kolektor je zařízení, které přeměňuje elektromagnetické sluneční záření na jiný druh energie. Většinou jde o přeměnu na elektrickou
Zjednodušená měsíční bilance tepelné soustavy s tepelným čerpadlem BilanceTC 2017/v2
Zjednodušená měsíční bilance tepelné soustavy s tepelným čerpadlem BilanceTC 2017/v2 Tomáš Matuška Fakulta strojní, České vysoké učení technické v Praze Univerzitní centrum energeticky efektivních budov,
KOMBINACE FVSYSTÉMU A TEPELNÉHO ČERPADLA (PRO TÉMĚŘ NULOVOU BUDOVU)
KOMBINACE FVSYSTÉMU A TEPELNÉHO ČERPADLA (PRO TÉMĚŘ NULOVOU BUDOVU) Tomáš Matuška, Bořivoj Šourek, Jan Sedlář, Yauheni Kachalouski Energetické systémy budov Univerzitní centrum energeticky efektivních
KVALITA VNITŘNÍHO PROSTŘEDÍ A HODNOCENÍ PROVOZU ENERGETICKY ÚSPORNÝCH STAVEB Miroslav Urban
KVALITA VNITŘNÍHO PROSTŘEDÍ A HODNOCENÍ PROVOZU ENERGETICKY ÚSPORNÝCH STAVEB 2016 2017 Miroslav Urban Katedra technických zařízení budov ČVUT v Praze Dřevostavba RD shrnutí ročního provozu (2.pol 2016
ZÁVISLOSTI DOPADAJÍCÍ ENERGIE SLUNEČNÍHO ZÁŘENÍ NA PLOCHU
ZÁVISLOSTI DOPADAJÍCÍ ENERGIE SLUNEČNÍHO ZÁŘENÍ NA PLOCHU Jaroslav Peterka Fakulta umění a architektury TU v Liberci jaroslav.peterka@tul.cz Konference enef Banská Bystrica 16. 18. 10. 2012 ALTERNATIVNÍ
Technické systémy pro pasivní domy. Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Technické systémy pro pasivní domy Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze PASIVNÍ DŮM - VYTÁPĚNÍ snížení potřeby tepla na vytápění na minimum
6/6. NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne XXX,
EVROPSKÁ KOMISE V Bruselu dne 18.2.2013 C(2013) 818 final 6/6 NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne XXX, kterým se doplňuje směrnice Evropského parlamentu a Rady 2010/30/EU, pokud jde
OPTICKÉ RASTRY ZE SKLA STŘEŠNÍ ZASKLÍVACÍ PRVEK
OPTICKÉ RASTRY ZE SKLA STŘEŠNÍ ZASKLÍVACÍ PRVEK Ing. Vladimír Jirka, CSc., Ing. Bořivoj Šourek ENKI, o.p.s. Třeboň jirka@enki.cz RASTROVÉ ZASTŘEŠENÍ exteriér interiér POUŽITÍ Krytina ve formě izolačního
02 Výpočet potřeby tepla a paliva
02 Výpočet potřeby tepla a paliva Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/29 http://utp.fs.cvut.cz Roman.Vavricka@fs.cvut.cz kde t d tis tes Q, 24 3600 e e e t VYT teor
Solární tepelné kolektory a jejich integrace do střech. Bořivoj Šourek, Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Solární tepelné kolektory a jejich integrace do střech Bořivoj Šourek, Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Využití sluneční energie v budovách Potenciál využití sluneční
FOTOVOLTAICKÉ SYSTÉMY S VÝCHODO-ZÁPADNÍ ORIENTACÍ A POUZE JEDNÍM MPP TRACKEREM
FOTOVOLTAICKÉ SYSTÉMY S VÝCHODO-ZÁPADNÍ ORIENTACÍ A POUZE JEDNÍM MPP TRACKEREM V minulosti panovala určitá neochota instalovat fotovoltaické (FV) systémy orientované východo-západním směrem. Postupem času
solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz
solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz Proč zvolit vakuové solární kolektory Sunpur? Vakuové kolektory SUNPUR jsou při srovnání s tradičními plochými kolektory mnohem účinnější,
Analýza sálavé charakteristiky elektrických topných
České vysoké učení technické v Praze Univerzitní centrum energeticky efektivních budov Třinecká 1024 273 43 Buštěhrad www.uceeb.cz Analýza sálavé charakteristiky elektrických topných panelů FENIX závěrečná
Návod k výpočtovému nástroji pro hodnocení soustav s tepelnými čerpadly
Návod k výpočtovému nástroji pro hodnocení soustav s tepelnými čerpadly Úvod Výpočtový nástroj má sloužit jako pomůcka pro posuzovatele soustav s tepelnými čerpadly. List 1/2 slouží pro zadání vstupních
Průměrný součinitel prostupu tepla budovy
Průměrný součinitel prostupu tepla budovy Zbyněk Svoboda, FSv ČVUT Praha Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
Realizace solární soustavy od A do Z
1/22 Realizace solární soustavy od A do Z Marie Hrádková Československá společnost pro sluneční energii (ČSSE) JH Solar s.r.o., Plavsko 88 2/22 Vstupní předpoklady typ soustavy ohřev TV, přitápění, ohřev
Porovnání tepelných ztrát prostupem a větráním
Porovnání tepelných ztrát prostupem a větráním u bytů s parame try PD, NED, EUD, ST D o v ytápě né ploše 45 m 2 4,95 0,15 1,51 0,15 1,05 0,15 0,66 0,15 4,95 1,26 1,51 0,62 1,05 0,62 0,66 0,62 0,00 1,00
Nezávislost na dodavatelích tepla možnosti, příklady. Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze
Nezávislost na dodavatelích tepla možnosti, příklady Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze Volně dostupné zdroje tepla sluneční energie základ v podstatě veškerého přírodního
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva Ing. Daniel Adamovský, Ph.D. Ing. Martin Kny, Ph.D. 20. 8. 2018 OBSAH 1 PŘEDMĚT ZAKÁZKY... 3 1.1 Základní údaje zakázky... 3 1.2 Specifikace
Snížení energetické náročnosti ZŠ Dolní Újezd (okr. Svitavy)
Snížení energetické náročnosti ZŠ Dolní Újezd (okr. Svitavy) Trochu historie První žáci vstoupili do ZŠ v září 1910. Škola měla 7 tříd vytápělo se v kamnech na uhlí. V roce 1985 byl zahájen provoz nových
BYTOVÝ DŮM MINSKÁ 190/62, BRNO zpracovaný podle vyhlášky 148/2007 Sb.
ZPRACOVATEL : PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY BYTOVÝ DŮM MINSKÁ 190/62, BRNO zpracovaný podle vyhlášky 148/2007 Sb. PROJEKTOVANÝ STAV KRAJSKÁ ENERGETICKÁ AGENTURA, S.R.O. VRÁNOVA 1002/131, BRNO TERMÍN
OPERATIVNÍ TEPLOTA V PROSTORU S CHLADICÍM STROPEM
ANOTACE OPERATIVNÍ TEPLOTA V PROSTORU S CHLADICÍM STROPEM Ing. Vladimír Zmrhal, Ph.D. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Technická 4, 66 7 Praha 6 Vladimir.Zmrhal@fs.cvut.cz Pro hodnocení
POROVNÁNÍ ADSORPČNÍHO SOLÁRNÍHO CHLAZENÍ S FOTOVOLTAICKÝM CHLAZENÍM Z HLEDISKA SPOTŘEBY PRIMÁRNÍ NEOBNOVITELNÉ ENERGIE
GSEducationalVersion B-B 0,30 7,40 0,30 7,85 0,15 2,00 0,30 6,30 0,30 SIMULATION ROOM 3 41,34 m 2 SIMULATION ROOM 2 41,34 m 2 SIMULATION ROOM 1 41,34 m 2 0,30 7,40 0,30 10,00 0,30 6,30 0,30 24,90 TOILETTES
4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU
Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU (KAPILÁRNÍ VISKOZIMETR UBBELOHDE) 1. TEORIE: Ve všech kapalných látkách
VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU
VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU potrubí průtokoměr průtok teplota tlak Přepočítávač množství plynu 4. ročník mezinárodní konference 10. a 11. listopadu
Tepelná čerpadla + solární soustavy = konkurence nebo spolupráce?
Tepelná čerpadla + solární soustavy = konkurence nebo spolupráce? Tomáš Matuška, Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Zdroje tepla pro tepelná čerpadla energie pocházející
EFEKTIVNÍ ENERGETICKÝ REGION DOLNÍ BAVORSKO
ECČB, 19.9.2011 Základní vzdělávací kurz pro energetické poradce EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Solární tepelné soustavy pro přípravu teplé vody a vytápění Investice do Vaší budoucnosti
ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU
2. Konference Klimatizace a větrání 212 OS 1 Klimatizace a větrání STP 212 ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.cz
Novinky v oblasti vytápění a přípravy teplé vody. Roman Vavřička. Teplá voda vs. Vytápění
Novinky v oblasti vytápění a přípravy teplé vody Roman Vavřička 1/15 http://utp.fs.cvut.cz Roman.Vavricka@fs.cvut.cz Teplá voda vs. Vytápění PŘÍKLAD: Rodinný dům 4 osoby VYTÁPĚNÍ Celková tepelná ztráta
Systémy pro využití sluneční energie
Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie
Technická zpráva akce:
Technická zpráva akce: Využití OZE v Městském bazénu Hlinsko solární systém projekt pro výběrové řízení Obec Hlinsko Městský plavecký bazén Vypracoval: REGULUS spol. s r.o. Projekt: zakázka NV/2011/1957
PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ
PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ Ing. Jindřich Mrlík O netěsnosti a průvzdušnosti stavebních výrobků ze zkušební laboratoře; klasifikační kriteria průvzdušnosti oken a dveří, vrat a lehkých obvodových plášťů;
ČESKÁ TECHNICKÁ NORMA
ČESKÁ TECHNICKÁ NORMA ICS 91.120.10 Říjen 2011 ČSN 73 0540-2 Tepelná ochrana budov Část 2: Požadavky Thermal protection of buildings Part 2: Requirements Nahrazení předchozích norem Touto normou se nahrazuje
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Solární energie 2 1
EKONOMICKY EFEKTIVNÍ VYUŽITÍ ODPADNÍHO TEPLA TECHNOLOGIÍ ORC
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad EKONOMICKY EFEKTIVNÍ VYUŽITÍ ODPADNÍHO TEPLA TECHNOLOGIÍ ORC Jakub Maščuch, Jakub Dytrich Energetické
KOMBINACE TEPELNÝCH ČERPADEL A FOTOVOLTAICKO TEPELNÝCH KOLEKTORŮ
Konference Vytápění Třeboň 2013 14. až 16. května 2013 KOMBINACE TEPELNÝCH ČERPADEL A FOTOVOLTAICKO TEPELNÝCH KOLEKTORŮ Tomáš Matuška, Bořivoj Šourek ANOTACE V příspěvku je představena energetická analýza
PROGRAM "TEPLO SLUNCEM"
PROGRAM "TEPLO SLUNCEM" Obsah 1 Jak můžeme využít energii slunečního záření?... Varianty řešení...5 3 Kritéria pro výběr projektů... Přínosy...7.1. Přínosy energetické...7. Přínosy environmentální...8
1/89 Solární kolektory
1/89 Solární kolektory typy účinnost použití 2/89 Fototermální přeměna jímací plocha (obecně kolektor) plocha, na které se sluneční záření pohlcuje a mění na teplo (kolektor zasklení, absorbér) akumulátor
Instalace solárního systému
Instalace solárního systému jako opatření ve všech podoblastech podpory NZÚ Kombinace solární soustavy a různých opatření v rámci programu NZÚ výzva RD 2 Podoblast A Úspory nejen na obálce budovy, ale
Solární systém pro ohřev vody s vakuovými trubicovými kolektory VIA SOLIS DOMOV 160-300 HODNOCENÍ
Solární systém pro ohřev vody s vakuovými trubicovými kolektory VIA SOLIS DOMOV 160-300 1. Sestava systému DOMOV 160-300 HODNOCENÍ Solární systém sestává ze 3 kolektorů VIA SOLIS VK6 ve spojení se zásobníkem
JAK FUNGUJE SLUNEČNÍ ZAŘÍZENÍ PRO OHŘEV UŽITKOVÉ VODY A PRO PŘITÁPĚNÍ?
Sluneční zařízení Energie slunce patří mezi obnovitelné zdroje energie (OZE) a můžeme ji využívat různými způsoby a pro rozdílné účely. Jedním ze způsobů využití energie slunce je výroba tepla na ohřev
(Text s významem pro EHP) (Úř. věst. L 191, , s. 35)
02009R0641 CS 09.01.2017 002.001 1 Tento dokument slouží výhradně k informačním účelům a nemá žádný právní účinek. Orgány a instituce Evropské unie nenesou za jeho obsah žádnou odpovědnost. Závazná znění
Budovy a energie Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Solární energie Kolektory
Katalog konstrukčních detailů oken SONG
Katalog konstrukčních detailů oken SONG Květen 2018 Ing. Vítězslav Calta Ing. Michal Bureš, Ph.D. Stránka 1 z 4 Úvod Tento katalog je vznikl za podpory programu TAČR TH01021120 ve spolupráci ČVUT UCEEB
Jednoduché pokusy pro stanovení úspor v domácnosti
Jednoduché pokusy pro stanovení úspor v domácnosti Petr Sládek Pedagogická fakulta MU Úvod Jednoduché pokusy zahrnují 4 tématické oblasti: - Úspory energie při vaření - Úsporné spotřebiče v domácnosti