Vliv prosklených ploch na vnitřní pohodu prostředí
|
|
- Ondřej Horák
- před 6 lety
- Počet zobrazení:
Transkript
1 Vliv prosklených ploch na vnitřní pohodu prostředí Jiří Ježek 1, Jan Schwarzer 2 1 Oknotherm spol. s r.o. 2 ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Abstrakt Obsahem příspěvku je určení vlivu přenosu tepla sáláním na vnitřní prostředí v místnosti při zasklení otvorových výplní izolačním dvojsklem a izolačním trojsklem. Vliv sálání otvorovými výplněmi a stavebními konstrukcemi je hodnocen na základě znalostí střední radiační teploty a operativní teploty v místnosti. Prezentován je průběh izoterm střední radiační teploty a operativní teploty při použití izolačních skel s různými součiniteli prostupu tepla. Klíčová slova: střední radiační teplota, operativní teplota, sálání, součinitel prostupu tepla, vnitřní prostředí, otvorové výplně Úvod Parametry vnitřního prostředí se v různých prostorách liší na základě charakteru provozu a využití. Parametry vnitřního prostředí jsou definovány například v Nařízení vlády č. 361/2007 Sb., kterým se stanoví podmínky ochrany zdraví při práci, ve znění Nařízení vlády č. 68/2010 Sb., 93/2012 Sb., ve Vyhlášce č. 137/2004 Sb. o hygienických požadavcích na stravovací služby a o zásadách osobní a provozní hygieny při činnostech epidemiologicky závažných, ve znění vyhlášky č. 602/2006 Sb., v Nařízení vlády č. 1/2008 Sb. o ochraně zdraví před neionizujícím zářením, ve znění 106/2010 Sb. a dále ve Vyhlášce č. 410/2005 Sb. o hygienických požadavcích na prostory a provoz zařízení a provozoven pro výchovu a vzdělávání dětí a mladistvých, ve znění vyhlášky č. 343/2009 Sb., ve Vyhlášce č. 135/2004 Sb. kterou se stanoví hygienické požadavky na koupaliště, sauny a hygienické limity písku v pískovištích, v Nařízení vlády č. 523/2002 Sb., kterým se mění nařízení vlády č. 178/2001 Sb., kterým se stanoví podmínky ochrany zdraví zaměstnanců při práci, ve Vyhlášce č. 268/2009 Sb. o technických požadavcích na stavby, ve znění Vyhlášky č. 20/2012 Sb. a ve Vyhlášce č. 194/2007 Sb.. Parametry vnitřního prostředí pro obytné budovy, resp. obytné místnosti, jsou určeny ve vyhlášce č. 268/2009 Sb. o technických požadavcích na stavby, ve znění Vyhlášky č. 20/2012 Sb. V 16 Úspora energie a tepelná ochrana, odstavci 2) je určeno, že budovy s požadovaným stavem vnitřního prostředí musí být navrženy a provedeny tak, aby byly dlouhodobě po dobu jejich užívání zaručeny požadavky na jejich tepelnou ochranu splňující: tepelnou pohodu uživatelů, požadované tepelně technické vlastnosti konstrukcí a budov, tepelně vlhkostní podmínky technologií podle různých účelů budov, nízkou energetickou náročnost budov.
2 Konkrétní parametry tepelné pohody uživatelů nejsou ve vyhlášce č. 268/2009 Sb. uvedeny. Oproti tomu ve vyhlášce č. 194/2007 Sb., kterou se stanoví pravidla pro vytápění a dodávku teplé vody, jsou uvedeny měrné ukazatele spotřeby tepelné energie pro vytápění a pro přípravu teplé vody a požadavky na vybavení vnitřních tepelných zařízení budov přístroji regulujícími dodávku tepelné energie konečným spotřebitelům. V 2, odstavci 7) je určeno, že výpočtová teplota vnitřního vzduchu stanovená projektem je výsledná teplota, která zohledňuje vedle teploty vnitřního vzduchu i vliv sálání okolních stěn. Kontrola dodržení výpočtové teploty vnitřního vzduchu se ověřuje kulovým teploměrem. Tepelný tok sáláním a vliv na vnitřní prostředí Hustota tepelného toku sáláním ovlivňuje vnitřní prostředí. Na základě výpočtů lze konstatovat, že čím je nižší součinitel prostupu tepla zasklení nebo stavební konstrukce, tím je nižší i tepelný tok sáláním a naopak. Uvedené výsledky průběhu střední radiační teploty a operativní teploty tuto platnost potvrzují. Základní okrajové podmínky Výpočet je proveden pro obývací pokoj s dvěma otvorovými výplněmi (okno a prosklená stěna) - viz obrázek 1. Obr. 1: Půdorys objektu s vyznačenou místností, pro kterou je výpočet proveden Zdroj: Autor 1 Parametry místnosti jsou:
3 šířka pokoje 5000 (mm), hloubka (délka) 5000 (mm), světlá výška 2600 (mm), na obrázku místnost vyznačena červeně, teplota vzduchu ti = 21,0 ( C), venkovní teplota te = -17,0 ( C), součinitel prostupu tepla stěny Us = 0,25 (W/m 2 K), součinitel prostupu tepla zasklení: a) dvojsklo Ug = 1,1 (W/m 2 K), b) trojsklo Ug = 0,5 (W/m 2 K). velikost okna: 1600 x 1600 (mm), výška parapetu 800 (mm), velikost prosklené stěny: 3000 x 2400 (mm), výška parapetu 0 (mm), rychlost proudění vzduchu v místnosti wa = 0 až 0,2 (m/s). Pozn.: Ve výpočtech není pro zjednodušení uvažován rám okna. Teploty vstupující do výpočtu Teplota vzduchu interiéru ta ( C) Teplota vzduchu bez vlivu sálání. Lze měřit jakýmkoliv teplotním čidlem zakrytým fólií (např. hliníková fólie). Teplota povrchu konstrukce t p ( C) Teplota povrchu konstrukce je závislá na teplotním gradientu a tepelně-technických parametrech Střední radiační teplota t r ( C) Střední radiační teplota v sobě zahrnuje teplotu vzduchu a povrchovou teplotu konstrukcí. Lze ji určit dle vztahu: t r 4 F t F t F t n n 4 (1) Veličina Fn je poměr osálání a tn ( C) je teplota povrchu Teplota kulového teploměru - t g ( C) Teplota zahrnující teplotu vzduchu, teplotu povrchů konstrukcí (radiací) a proudění vzduchu. Operativní teplota - t o ( C) Jedná se o výpočtovou veličinu sloužící pro hodnocení tepelné pohody v prostoru. t o A t a 1 A t r (2)
4 Veličina A je součinitel závislý na relativní rychlosti proudění vzduchu, tr ( C) je střední radiační teplota a ta je teplota vzduchu interiéru. Při rychlostech proudění vzduchu pod wa < 0,2 (m/s) lze nahradit operativní teplotu výslednou teplotou tg ( C) měřenou kulovým teploměrem. t o t a t r t g (3) 2 Výpočet střední radiační teploty a operativní teploty v místnosti Pro výpočet střední radiační teploty a operativní teploty byl použit program MRT Analysis v37 Výsledky Výsledky výpočtu střední radiační teploty a operativní teploty pro obě varianty zasklení jsou prezentovány grafickou formou. Obr. 1a: střední radiační teplota; vodorovný řez místností ve výšce 1500 (mm) nad podlahou zasklení dvojsklem Ug = 1,1 (W/m 2 K) Obr. 1b: operativní teplota; vodorovný řez místností ve výšce 1500 (mm) nad podlahou zasklení dvojsklem Ug = 1,1 (W/m 2 K) Zdroj: Autor 2 Zdroj: Autor 2 Obr. 2a: střední radiační teplota; Obr. 2b: operativní teplota; vodorovný vodorovný řez místností ve výšce řez místností ve výšce 1500 (mm) nad 1500 (mm) nad podlahou zasklení podlahou zasklení dvojsklem dvojsklem Ug = 0,5 (W/m 2 K) Ug = 0,5 (W/m 2 K)
5 Zdroj: Autor 2 Zdroj: Autor 2 Obr. 1a znázorňuje průběh střední radiační teploty v místnosti při zasklení otvorových výplní izolačním dvojsklem Ug = 1,1 (W/m 2 K). Střední radiační teplota, např. ve vzdálenosti 500 (mm) od povrchu prosklené stěny, je 19,5 ( C). Na obrázku č. 2a je patrný průběh střední radiační teploty v místnosti při zasklení otvorových výplní izolačním trojsklem Ug = 0,5 (W/m 2 K). Střední radiační teplota, např. vzdálenosti 500 (mm) od povrchu prosklené stěny, je 20,5 ( C). Rozdíl středních radiačních teplot ve vzdálenosti 500 mm od prosklené stěny při zasklení izolačním dvojsklem a trojsklem je 1,0 ( C). Obr. 1b znázorňuje průběh operativní teploty v místnosti při zasklení otvorových výplní izolačním dvojsklem Ug = 1,1 (W/m 2 K). Operativní teplota ve vzdálenosti, např. 500 (mm) od povrchu prosklené stěny, je 20,5 ( C). Obrázek č. 2b znázorňuje průběh operativní teploty v místnosti při zasklení otvorových výplní izolačním dvojsklem Ug = 0,5 (W/m 2 K). Operativní teplota ve vzdálenosti, např. 500 (mm) od povrchu prosklené stěny, je 21,0 ( C). Rozdíl operativních teplot ve vzdálenosti 500 mm od prosklené stěny při zasklení izolačním dvojsklem a trojsklem je 0,5 ( C). Obr. 3a: střední radiační teplota: svislý řez Obr. 3b: operativní teplota: svislý řez prosklenou stěnou, viz obr. 1 zasklení prosklenou stěnou, viz obr. 1 dvojsklem Ug=1,1 (W/m2K) zasklení dvojsklem Ug=1,1 (W/m2K)
6 Zdroj: Autor 2 Zdroj: Autor 2 Obr. 4a: střední radiační teplota: svislý řez Obr. 4b: operativní teplota: svislý řez prosklenou stěnou, viz obr. 1 zasklení prosklenou stěnou, viz obr. 1 trojsklem Ug=0,5 (W/m2K) zasklení trojsklem Ug=0,5 (W/m2K) 2 2 Zdroj: Autor Zdroj: Autor Na obrázcích 3a, 3b, 4a, 4b jsou znázorněny průběhy střední radiační teploty a operativní teploty ve svislé rovině procházející prosklenou stěnou. Porovnání vnitřního prostředí z hlediska střední radiační teploty a operativní teploty Z porovnání výsledků průběhů teplot střední radiační teploty a operativní teploty při zasklení izolačním dvojsklem vyplývá, že tepelný tok sáláním výrazně ovlivňuje střední radiační teplotu, zatímco operativní teplota není tepelným tokem sálání téměř ovlivněna. Tepelný tok sáláním při zasklení izolačním trojsklem ovlivňuje střední radiační teplotu zcela nepatrně a operativní teplotu zanedbatelně. Rozdílnost vlivu tepelného toku sáláním při zasklení s izolačním trojsklem a dvojsklem na průběh střední radiační teploty je v rozdílnosti součinitelů prostupu tepla zasklení. Součinitel prostupu tepla izolačního trojskla je přibližně dvojnásobný než součinitel prostupu tepla izolačního dvojskla. Zásadní vliv na rozdíl ve vypočtených hodnotách operativní teploty má rychlost proudění vzduchu wa < 0,2 (m/s). Proudění vzduchu významně ovlivňuje průběh operativní teploty především u zasklení s vyšším součinitelem prostupu tepla dvojsklem.
7 Pozn.: Proudění vzduchu se ve výpočtu střední radiační teploty neuvažuje, kdežto operativní teplota již s prouděním vzduchu počítá. Závěr Hodnoty operativní teploty nejsou výrazně ovlivněny použitým zasklením (izolační dvojsklo, trojsklo). U výpočtu střední radiační teploty byl vliv použitého zasklení prokázán. Dle Vyhlášky č. 194/2007 Sb. je pro hodnocení vnitřního prostředí závazná operativní teplota. Přes uvedené závěry je instalace izolačních trojskel opodstatněná, a to z následujících důvodů: snížení energetické náročnosti objektu, eliminace chladných proudů vyvolaných nízkou povrchovou teplotou zasklení: - povrchová teplota izolačního trojskla: 18,6 ( C), - povrchová teplota izolačního dvojskla: 15,8 ( C). Pozn. Do výpočtu tepelné pohody nebyly započítány padající chladné proudy podél zasklení. Effect of glass surfaces on the inner wellbeing environment The paper is too determine the influence of radiative heat transfer on the internal environment of the room when opening filling glazing double glazing unit and insulating triple. Effect of radiation aperture panels and building structures is evaluated on the basis of knowledge mean radiant temperature and operative temperature in the room. Isotherm is presented course mean radiant temperature and operative temperature using insulating glass with different coefficients of thermal transmission. Keywords: mean radiant temperature, operative temperature, radiation, heat transfer coefficient, internal environment, hole filling Kontaktní adresa Ing. Jiří Ježek, Oknotherm spol. s r.o., Linecká 377, Kaplice, jezek@oknotherm.cz Ing. Jan Schwarzer, Ph.D., ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí, Technická 4, Praha 6
OPERATIVNÍ TEPLOTA V PROSTORU S CHLADICÍM STROPEM
ANOTACE OPERATIVNÍ TEPLOTA V PROSTORU S CHLADICÍM STROPEM Ing. Vladimír Zmrhal, Ph.D. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Technická 4, 66 7 Praha 6 Vladimir.Zmrhal@fs.cvut.cz Pro hodnocení
Laboratoře TZB Cvičení Měření kvality vnitřního prostředí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ VPRAZE Fakulta stavební Laboratoře TZB Cvičení Měření kvality vnitřního prostředí doc. Ing. Michal Kabrhel, Ph.D. Katedra TZB, fakulta stavební, ČVUT v Praze 1 Zadání úlohy
MRT Analysis. Copyright 2005 by VZTech. Ing. Vladimír Zmrhal, Ph.D. Organizace:
MRT Analysis Autor: Organizace: E-mail: Web: České vysoké učení tecnické v Praze Fakulta strojní Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.cz http://www.fs.cvut.cz/cz/u216/people.html Copyright
VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Bořivoj Šourek,
IDENTIFIKAČNÍ ÚDAJE ZAKÁZKY ZHOTOVITEL: Thákurova 7, Praha 6, IČO: , DIČ:
ČVUT v Praze, Fakulta stavební, Katedra technických zařízení budov 09/2013 IDENTIFIKAČNÍ ÚDAJE ZAKÁZKY ZHOTOVITEL: ČVUT v Praze, Fakulta stavební, Katedra technických zařízení budov, Thákurova 7,166 29
ČESKÁ TECHNICKÁ NORMA
ČESKÁ TECHNICKÁ NORMA ICS 91.120.10 Říjen 2011 ČSN 73 0540-2 Tepelná ochrana budov Část 2: Požadavky Thermal protection of buildings Part 2: Requirements Nahrazení předchozích norem Touto normou se nahrazuje
Simulace letního a zimního provozu dvojité fasády
Simulace letního a zimního provozu dvojité fasády Miloš Kalousek, Jiří Kala Anotace česky: Příspěvek se snaží srovnat vliv dvojité a jednoduché fasády na energetickou náročnost a vnitřní prostředí budovy.
( ) , w, w EXPERIMENTÁLNÍ A SIMULAČNÍ STANOVENÍ TEPLOT URČUJÍCÍCH TEPELNÝ KOMFORT
EXPERIMENTÁLNÍ A SIMULAČNÍ STANOVENÍ TEPLOT URČUJÍCÍCH TEPELNÝ KOMFORT Ľubomír Hargaš, František Drkal, Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Technická 4, 166 07 Praha
Vyhláška 78/2013 Sb. o energetické náročnosti budov. Ing. Jan Schwarzer, Ph.D. 1
Vyhláška 78/2013 Sb. o energetické náročnosti budov Ing. Jan Schwarzer, Ph.D. 1 Zařazení budovy do kategorie (A, B,, G) Pojem referenční budova Referenční budova je výpočtově definovaná budova: - téhož
Porovnání tepelných ztrát prostupem a větráním
Porovnání tepelných ztrát prostupem a větráním u bytů s parame try PD, NED, EUD, ST D o v ytápě né ploše 45 m 2 4,95 0,15 1,51 0,15 1,05 0,15 0,66 0,15 4,95 1,26 1,51 0,62 1,05 0,62 0,66 0,62 0,00 1,00
Výpočty součinitele prostupu tepla jednotlivých variant
Výpočty součinitele prostupu tepla jednotlivých variant HODNOTY PRO VÝPOČET VARIANTY Č. 1 U g Izolační dvojsklo nepokovené 4-6-4, plněné vzduchem 3,3 U w Vypočítaný součinitel prostupu tepla [W/(m2.K)]
Výpočet potřeby tepla na vytápění
Výpočet potřeby tepla na vytápění Výpočty a posouzení byly provedeny při respektování zásad CSN 73 05 40-2:2011, CSN EN ISO 13789, CSN EN ISO 13790 a okrajových podmínek dle TNI 73 029, TNI 73 030. Vytvořeno
148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov
148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov Ministerstvo průmyslu a obchodu (dále jen "ministerstvo") stanoví podle 14 odst. 5 zákona č. 406/2000 Sb., o hospodaření energií, ve znění
Lineární činitel prostupu tepla
Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel
SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům
Klasický rodinný dům pro tři až čtyři obyvatele se sedlovou střechou a obytným podkrovím. Obvodové stěny vystavěny ze škvárobetonových tvárnic tl. 300 mm, šikmá střecha zateplena mezi krokvemi. V rámci
HLINÍKOVÁ OKNA A DVEŘE
HLINÍKOVÁ OKNA A DVEŘE 25let NA TRHU heroal W 65 T Izolovaný okenní hliníkový systém s přerušeným tepelným mostem T Stavební hloubka: 65 mm T Max. tloušťka skla/výplně v křídle 58 mm, v rámu 48 mm T Tepelná
Posudek k určení vzniku kondenzátu na izolačním zasklení oken
Posudek k určení vzniku kondenzátu na izolačním zasklení oken Firma StaniOn s.r.o. Kamenec 1685 Bystřice pod Hostýnem Zkušební technik: Stanislav Ondroušek Telefon: 773690977 EMail: stanion@stanion.cz
Pohled na energetickou bilanci rodinného domu
Pohled na energetickou bilanci rodinného domu Miroslav Urban Katedra technických zařízení budov Stavební fakulta, ČVUT v Praze Univerzitní centrum energeticky efektivních budov UCEEB 2 Obsah prezentace
POSOUZENÍ KCÍ A OBJEKTU
PROTOKOL TEPELNĚ TECHNICKÉ POSOUZENÍ KCÍ A OBJEKTU dle ČSN 73 0540 Studentská cena ENVIROS Nízkoenergetická výstavba 2006 Kateřina BAŽANTOVÁ studentka 5.ročníku VUT Brno - fakulta stavební obor NAVRHOVÁNÍ
Komplexní vzdělávací program pro podporu environmentálně šetrných technologií ve výstavbě a provozování budov
Komplexní vzdělávací program pro podporu environmentálně šetrných technologií ve výstavbě a provozování budov Ing. Jan Schwarzer, Ph.D. ČVUT v Praze Ústav techniky prostředí Technická 4 166 07 Praha 6
Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu
Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Aby bylo možno provést porovnání energetické náročnosti pasivního domu (PD), nízkoenergetického domu
TECHNICKÁ PŘÍPRAVA FASÁD WWW.TPF.CZ TECHNICKÁ PŘÍPRAVA FASÁD KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY SOFTWARE. ing.
TECHNICKÁ Odborná inženýrská, projekční a poradenská kancelář v oblasti oken/dveří, lehkých obvodových plášťů (LOP) a jiných fasádních konstrukcí. KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II.
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II. (DIMENZOVÁNÍ VĚTRACÍHO ZAŘÍZENÍ BAZÉNU) Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší
ICS Listopad 2005
ČESKÁ TECHNICKÁ NORMA ICS 91. 120. 10 Listopad 2005 Tepelná ochrana budov - Část 3: Návrhové hodnoty veličin ČSN 73 0540-3 Thermal protection of buildings - Part 3: Design value quantities La protection
Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z keramických tvarovek CDm tl. 375 mm, střecha je sedlová s obytným podkrovím. Střecha je sedlová a zateplena
VYHLÁŠKA. Předmět úpravy. Tato vyhláška zapracovává příslušný předpis Evropských společenství 1) a stanoví
VYHLÁŠKA kterou se stanoví pravidla pro vytápění a dodávku teplé vody, měrné ukazatele spotřeby tepelné energie pro vytápění a pro přípravu teplé vody a požadavky na vybavení vnitřních tepelných zařízení
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
Součinitel prostupu tepla oken, střešních oken, světlíků a LOP absurdity
Součinitel prostupu tepla oken, střešních oken, světlíků a LOP absurdity Pro citování: Petr Slanina Slanina, P. (2016). Součinitel prostupu tepla oken, střešních oken, světlíků a LOP absurdity. In Otvorové
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva Ing. Daniel Adamovský, Ph.D. Ing. Martin Kny, Ph.D. 20. 8. 2018 OBSAH 1 PŘEDMĚT ZAKÁZKY... 3 1.1 Základní údaje zakázky... 3 1.2 Specifikace
Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu
Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Aby bylo možno provést porovnání energetické náročnosti pasivního domu (PD), nízkoenergetického domu
TZB Městské stavitelsví
Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního
Předmět VYT ,
Předmět VYT 216 1085, 216 2114 Podmínky získání zápočtu: 75 % docházka na cvičení (7 cvičení = minimálně 5 účastí) Konzultační hodiny: po dohodě Roman.Vavricka@fs.cvut.cz Místnost č. 215 Fakulta strojní,
SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z pórobetonových tvárnic tl. 250mm. Střecha je sedlová se m nad krokvemi. Je provedeno fasády kontaktním zateplovacím
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Zakládání staveb Legislativní požadavky Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt je spolufinancován Evropskou Unií prostřednictvím
LTZB TEPELNÝ KOMFORT I
LTZB Měření parametrů vnitřního prostředí TEPELNÝ KOMFORT I Ing.Zuzana Veverková, PhD. Ing. Lucie Dobiášová Tepelný komfort Tepelná pohoda je stav mysli, který vyjadřuje spokojenost s tepelným prostředím.
Obr. 3: Řez rodinným domem
Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis.
SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU
Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z pórobetonových tvárnic tl. 250 mm, konstrukce stropů provedena z železobetonových dutinových
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Nízkoenergetické budovy
Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům. Obvodové stěny jsou vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis. Střecha je pultová bez. Je provedeno
Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů. Oblast podpory C.2 Efektivní využití zdrojů energie, výměna zdrojů tepla
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 2. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti
Katalog konstrukčních detailů oken SONG
Katalog konstrukčních detailů oken SONG Květen 2018 Ing. Vítězslav Calta Ing. Michal Bureš, Ph.D. Stránka 1 z 4 Úvod Tento katalog je vznikl za podpory programu TAČR TH01021120 ve spolupráci ČVUT UCEEB
GLASS IN PERIPHERAL CLOAK BUILDINGS CONCERNING TENABLE BUILDING - UP
GLASS IN PERIPHERAL CLOAK BUILDINGS CONCERNING TENABLE BUILDING - UP SKLO V OBVODOVÉM PLÁŠŤI BUDOV VE VZTAHU K UDRŽITELNÉ VÝSTAVBĚ Jiří Adámek 1 Abstract Glass makes it possible to visual connection interior
ECLAZ ZDROJ SVĚTLA A POHODY BUILDING GLASS EUROPE
ZDROJ SVĚTLA A POHODY BUILDING GLASS EUROPE SAINT-GOBAIN BUILDING GLASS EUROPE ZDROJ SVĚTLA A POHODY je nová generace nízkoemisních povlaků společnosti Saint-Gobain určená pro vysoce vyspělá řešení v oblasti
Měření tepelně vlhkostního mikroklimatu v budovách
Měření tepelně vlhkostního mikroklimatu v budovách Veličiny k hodnocení tepelně vlhkostní složky mikroklimatu budov Teplota vzduchu Výsledná teplota Teplota mokrého teploměru Operativní teplota Střední
152/2001 Sb. - Vyhláška Ministerstva průmyslu a obchodu, kterou se stanoví prav...
Stránka č. 1 z 6 SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY Profil předpisu: Titul předpisu: Vyhláška Ministerstva průmyslu a obchodu, kterou se stanoví pravidla pro vytápění a dodávku teplé užitkové vody, měrné
EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY ECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu Parametry pasivní výstavby Investice do Vaší
Oblast podpory A Snižování energetické náročnosti stávajících bytových domů
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - BYTOVÉ DOMY v rámci 1. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti
termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou
Michal Kovařík, 3.S termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou současně základem pro téměř nulové
Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost
Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.
HLINÍKOVÁ OKNA A DVEŘE
HLINÍKOVÁ OKNA A DVEŘE heroal W 65 heroal W 72 T Izolovaný okenní hliníkový systém s přerušeným tepelným mostem T Stavební hloubka: 65 mm T Max. tloušťka skla/výplně v křídle 58 mm, v rámu 48 mm Ug 0,5
VÝPIS VÝPLNÍ OTVORŮ NA AKCI - DUBÍ ZELENÝ DŮM Datum: 12.1.2015
Stránka č. 1 z 5 VÝPIS VÝPLNÍ OTVORŮ NA AKCI - DUBÍ ZELENÝ DŮM Datum: 12.1.2015 PVC systém :Okna budou vyrobena z vysoce kvalitního 5-tikomorového a 6-tikomorového plastového profilu ( třídy A dle ČSN
Bytový dům REAL, Kyjov. Novostavba bytového domu REAL v Kyjově, ulice U Sklepů nadstandardní řešení vašeho bydlení
Bytový dům REAL, Kyjov Novostavba bytového domu REAL v Kyjově, ulice U Sklepů nadstandardní řešení vašeho bydlení Charakteristickým rysem stavby jsou kontrastní vnější výplně otvorů, zábradlí a stavební
POTŘEBA TEPLA NA VĚTRÁNÍ PASIVNÍHO DOMU
Simulace budov a techniky prostředí 214 8. konference IBPSA-CZ Praha, 6. a 7. 11. 214 POTŘEBA TEPLA NA VĚTRÁNÍ PASIVNÍHO DOMU Jiří Procházka 1,2, Vladimír Zmrhal 2, Viktor Zbořil 3 1 Sokra s.r.o. 2 ČVUT
Analýza sálavé charakteristiky elektrických topných
České vysoké učení technické v Praze Univerzitní centrum energeticky efektivních budov Třinecká 1024 273 43 Buštěhrad www.uceeb.cz Analýza sálavé charakteristiky elektrických topných panelů FENIX závěrečná
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO. Vybrané souvislosti a sledované hodnoty
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Větrání škol Vybrané souvislosti a sledované hodnoty Ing. Zdeněk Zikán tel. +420 608 644660 e-mail poradenstvi@atrea.cz Investice do Vaší budoucnosti
rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva
rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva Jiří Novák činnost technických poradců v oblasti stavebnictví květen 2006 Obsah Obsah...1 Zadavatel...2
EFEKTIVNÍ ENERGETICKÝ REGION DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu OTOPNÁ SOUSTAVA Investice do Vaší budoucnosti Projekt
1. Hodnocení budov z hlediska energetické náročnosti
H O D N O C E N Í B U D O V Z H L E D I S K A E N E R G E T I C K É N Á R O Č N O S T I K A P I T O L A. Hodnocení budov z hlediska energetické náročnosti Hodnocení stavebně energetické vlastnosti budov
194/2007 Sb. Vyhláška. ze dne 17. července 2007, kterou se stanoví pravidla pro vytápění a dodávku teplé vody, měrné
194/2007 Sb. Vyhláška ze dne 17. července 2007, kterou se stanoví pravidla pro vytápění a dodávku teplé vody, měrné ukazatele spotřeby tepelné energie pro vytápění a pro přípravu teplé vody a požadavky
Problematika dodržení normy ČSN 730540 při výrobě oken
Problematika dodržení normy ČSN 730540 při výrobě oken Tato norma platná od 1.12.2002 stanovuje z hlediska výroby oken určených pro nepřerušovaně vytápěné prostory 2 zásadní hodnoty: 1.součinitel prostupu
Minimální rozsah dokumentace přikládané k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory B
Minimální rozsah dokumentace přikládané k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory B K žádosti o poskytnutí dotace se přikládá z níž je patrný rozsah a způsob provedení podporovaných
Průměrný součinitel prostupu tepla budovy
Průměrný součinitel prostupu tepla budovy Zbyněk Svoboda, FSv ČVUT Praha Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
Posudek budovy - ZŠ Varnsdorf
Posudek budovy - ZŠ Varnsdorf Varnsdorf - Muster Gebäudebeurteilung 1. Základní popis typ výstavby: pavilónový typ montovaný skelet technologie MS 71 rok výstavby: 1989 počet podlaží: o 7 budov: 1x 4 podlažní
TEPELNÁ STABILITA MÍSTNOSTI V LETNÍM OBDOBÍ (odezva místnosti na tepelnou zátěž)
TEPELNÁ STABILITA MÍSTNOSTI V LETNÍM OBDOBÍ (odezva místnosti na tepelnou zátěž) podle EN ISO 13792 Simulace 2017 Roubenka Název úlohy : Zpracovatel : Michael Pokorný Zakázka : Datum : 29.5.2018 ZADANÉ
KAPILÁRNÍ SYSTÉM PRO VYTÁPĚNÍ A CHLAZENÍ Ing. Vladimír Zmrhal, Ph.D. 1), Ing. Daniel Veselý 2) 1) ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí, Technická 4, 166 07 Praha 6 2) Instaplast AISEO
lavé halových objektů Tepelná pohoda-po iny požadavky č.178/2001 z 18.4.2001,ve znění 523/2002, kterým se stanoví Prostor operativní teploty
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Stropní sálav lavé a teplovzdušné vytápění halových objektů Tepelná pohoda - veličiny iny Prostor Operativní teplota teplota účinná teplota
194/2007 Sb. Vyhláška ze dne 17. července 2007,
194/2007 Sb. Vyhláška ze dne 17. července 2007, kterou se stanoví pravidla pro vytápění a dodávku teplé vody, měrné ukazatele spotřeby tepelné energie pro vytápění a pro přípravu teplé vody a požadavky
194/2007 Sb. Vyhláška ze dne 17. července 2007,
- stav k 28.1.2010 do částky 8/2010 Sb. a 2/2010 Sb.m.s. Obsah a text 194/2007 Sb. - poslední stav textu 194/2007 Sb. Vyhláška ze dne 17. července 2007, kterou se stanoví pravidla pro vytápění a dodávku
BH059 Tepelná technika budov
BH059 Tepelná technika budov Ing. Danuše Čuprová, CSc. Ing. Sylva Bantová, Ph.D. Výpočet součinitele prostupu okna Lineární a bodový činitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce
Energetické hodnocení objektu
nergetické hodnocení objektu Povinná příloha k ţádosti o státní dotaci pro Program na podporu úspor energie a vyuţití obnovitelných zdrojů energie elená úsporám vyhlášený FŢP ČR. ARIANTA Oblast podpory:
Tepelnětechnický výpočet kondenzace vodní páry v konstrukci
Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově
ˇ prostupu tepla profilu VEKA
Hodnota U jak dobre okno izoluje Rozhodujícím faktorem pro tepelně izolační vlastnosti okna je hodnota Uw (w = window). Popisuje ztrátu tepla oknem zevnitř směrem ven, měřenou ve wattech na čtvereční metr
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1203_základní_pojmy_3_pwp Název školy: Číslo a název projektu: Číslo a název šablony
VYHLÁŠKA ze dne 22. března 2013 o energetické náročnosti budov
Strana 738 Sbírka zákonů č. 78 / 2013 78 VYHLÁŠKA ze dne 22. března 2013 o energetické náročnosti budov Ministerstvo průmyslu a obchodu stanoví podle 14 odst. 4 zákona č. 406/2000 Sb., o hospodaření energií,
Měření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
Příloha List Revize. Tabulka oken (O) 1. Uváděné rozměry oken jsou čistý stavební otvor v obvodovém plášti resp. ve vnitřních dělících stěnách.
Tabulka oken () BYTVÝ DŮM ŘECHVKA-HRMĚŘICE 1 (15) X Poznámky : 1. Uváděné rozměry oken jsou čistý stavební otvor v obvodovém plášti resp. ve vnitřních dělících stěnách. Před zahájením výroby oken je nutné
POČÍTAČOVÝ PROGRAM KOLEKTOR 2.1 PRO MODELOVÁNÍ SOLÁRNÍCH KOLEKTORŮ
Simulace budov a techniky prostředí 2006 4. konference IBPSA-CZ Praha, 7. listopadu 2006 POČÍTAČOVÝ PROGRAM KOLEKTOR 2.1 PRO MODELOVÁNÍ SOLÁRNÍCH KOLEKTORŮ Tomáš Matuška, Vladimír Zmrhal Ústav techniky
Tepelně technické vlastnosti zdiva
Obsah 1. Úvod 2 2. Tepelná ochrana budov 3-4 2.1 Závaznost požadavků 3 2.2 Budovy které musí splňovat normové požadavky 4 ČSN 73 0540-2(2007) 5 2.3 Ověřování požadavků 4 5 3. Vlastnosti použitých materiálů
[PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)
[] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy) Objekt: Adresa: Majitel: Bytový dům Raichlova 2610, 155 00, Praha 5, Stodůlky kraj Hlavní město Praha
REZIDENCE PASEKY, ČELADNÁ RODINNÝ DŮM (TYP A) ARCHITEKTONICKÁ STUDIE KAMIL MRVA ARCHITECTS ŘÍJEN 2012
REZIDENCE PASEKY, ČELADNÁ RODINNÝ DŮM (TYP A) ARCHITEKTONICKÁ STUDIE KAMIL MRVA ARCHITECTS ŘÍJEN 2012 OBSAH IDENTIFIKAČNÍ ÚDAJE PRŮVODNÍ ZPRÁVA NÁZEV STAVBY' ' REZIDENCE PASEKY, ČELADNÁ RODINNÝ DŮM (TYP
Energetická studie varianty zateplení bytového domu
Zakázka číslo: 2015-1102-ES Energetická studie varianty zateplení bytového domu Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově Kozlovská
Energetická efektivita
Energetická efektivita / jak ji vnímáme, co nám přináší, jak ji dosáhnout / Saint-Gobain Construction Products CZ a.s. Divize ISOVER Počernická 272/96 108 03 Praha 10 Ing. Libor Urbášek Energetická efektivita
Vliv střešních oken VELUX na potřebu energie na vytápění
Vliv střešních oken VELUX na potřebu energie na vytápění Následující studie ukazuje jaký je vliv počtu střešních oken, jejich orientace ke světovým stranám a typ zasklení na potřebu energie na vytápění.
Nejnižší vnitřní povrchová teplota a teplotní faktor
Nejnižší vnitřní povrchová teplota a teplotní faktor Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
ENERGETICKÁ NÁROČNOST BUDOV - ZMĚNY LEGISLATIVY
ENERGETICKÁ NÁROČNOST BUDOV - ZMĚNY LEGISLATIVY Tereza Šulcová tech.poradce@uralita.com 602 439 813 www.ursa.cz Směrnice o energetické náročnosti budov 2010/31/EU Směrnice ze dne 19.května 2010 o energetické
Vzorový příklad 005b* aplikace Energetika Rodinný dům (typ RD 2)
Vzorový příklad 005b* aplikace Energetika Rodinný dům (typ RD 2) (novostavba výpočet návrhových tepelných ztrát, příklad s výběrem OT) MODUL TEPELNÉ ZTRÁTY ZADÁNÍ SE ZÓNOVÁNÍM, S BILANČNÍM VÝPOČTEM NEVYTÁPĚNÝCH
kde U součinitel prostupu tepla stavební konstrukce [W/m2 K] Rsi vnitřní tepelný odpor při přestupu tepla (internal) [W/m2 K] Rse vnější tepelný
VYTÁPĚNÍ - cvičení č. Výpočet tepelných ztrát Ing. Roman Vavřička Vavřička,, Ph.D Ph.D.. ČVUT v Praze, Fakulta strojní Ústav techniky prostředí Roman.Vavricka@ Roman.Vavricka @fs.cvut.cz neprůsvitné části
Prezentace: Martin Varga SEMINÁŘE DEKSOFT 2016 ČINITELÉ TEPLOTNÍ REDUKCE
Prezentace: Martin Varga www.stavebni-fyzika.cz SEMINÁŘE DEKSOFT 2016 ČINITELÉ TEPLOTNÍ REDUKCE Co to je činitel teplotní redukce b? Činitel teplotní redukce b je bezrozměrná hodnota, pomocí které se zohledňuje
2. Tepelné ztráty dle ČSN EN
Základy vytápění (2161596) 2. Tepelné ztráty dle ČSN EN 12 831-1 19. 10. 2018 Ing. Jindřich Boháč ČSN EN 12 831-1 ČSN EN 12 831-1 Energetická náročnost budov Výpočet tepelného výkonu Část 1: Tepelný výkon
Rekonstrukce základní školy s instalací řízeného větrání
Rekonstrukce základní školy s instalací řízeného větrání 1. Historie a současnost Martin Jindrák V roce 1879 byla za cca ½ roku v obci Kostelní Lhota postavena a předána do užívání škola, kterou prošlo
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
TECHNICKÁ ZPRÁVA MATEŘSKÁ ŠKOLA
1 TECHNICKÁ ZPRÁVA MATEŘSKÁ ŠKOLA Stavba: STAVEBNÍ ÚPRAVY MATEŘSKÉ ŠKOLY TŘEBÍČ, ul. CYRILOMETODĚJSKÁ 754/6 VÝMĚNA VÝPLNÍ OTVORŮ Místo: Třebíč Investor: Město Třebíč Vypracoval: Staprom CZ, spol. s r.o,
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
194/2007 Sb. - Vyhláška, kterou se stanoví pravidla pro vytápění a dodávku teplé...
Stránka č. 1 z 8 194/2007 Sb. VYHLÁŠKA ze dne 17. července 2007, (platí od 7. 11. 2014) kterou se stanoví pravidla pro vytápění a dodávku teplé vody, měrné ukazatele spotřeby tepelné energie pro vytápění
PROTON, společnost s ručením omezeným Švermova 899 398 11 Protivín IČ: 00512079
Křídlo: 2511,2514,2518,0511,0514,0518,0113 Ug=1,1 W/m2K Součinitel prostupu tepla - Uw (W/m2K): 1,2 Křídlo: 0113 Ug=1,0 W/m2K Součinitel prostupu tepla - Uw (W/m2K): 1,1 Křídlo: 0113 Ug=0,7 W/m2K Součinitel
Vzorový příklad 005b aplikace Energetika Rodinný dům (typ RD 2)
Vzorový příklad 005b aplikace Energetika Rodinný dům (typ RD 2) (novostavba výpočet návrhových tepelných ztrát, příklad s výběrem OT) MODUL TEPELNÉ ZTRÁTY ZADÁNÍ SE ZÓNOVÁNÍM, S BILANČNÍM VÝPOČTEM NEVYTÁPĚNÝCH
194/2007 Sb. Vyhláška. ze dne 17. července 2007,
194/2007 Sb. Vyhláška ze dne 17. července 2007, kterou se stanoví pravidla pro vytápění a dodávku teplé vody, měrné ukazatele spotřeby tepelné energie pro vytápění a pro přípravu teplé vody a požadavky
Studie oslunění a denního osvětlení. půdní vestavba objektu Tusarova 32, Praha 7
Studie oslunění a denního osvětlení půdní vestavba objektu Tusarova 3, Praha 7 Vypracovali : Petr Polanecký, Martin Stárka Datum:. května 014 1 předmět studie Předmětem této studie je posouzení oslunění
POROVNÁNÍ TÉMĚŘ NULOVÉ BUDOVY
POROVNÁNÍ TÉMĚŘ NULOVÉ BUDOVY A BUDOVY V PASIVNÍM STANDARDU Pracovní materiál iniciativy Šance pro budovy Jan Antonín, prosinec 2012 1. ÚVOD Studie porovnává řešení téměř nulové budovy podle připravované
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH