Pokroky matematiky, fyziky a astronomie
|
|
- Rudolf Kříž
- před 8 lety
- Počet zobrazení:
Transkript
1 Pokroky matematiky, fyziky a astronomie Antonín Svoboda Programované učení ve fyzice Pokroky matematiky, fyziky a astronomie, Vol. 14 (1969), No. 1, Persistent URL: Terms of use: Jednota českých matematiků a fyziků, 1969 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library
2 Ve všech třech případech ukázal, jak je třeba postupovat ve školním vyučování. Značnou důležitost přikládá provádění testování hypotéz na určité úrovni významnosti, na základě jistého počtu provedených zkoušek, přičemž se výhodně užívá nomogramů. Vyvrcholením tohoto kursu je seznámení žáků s normálním rozdělením četností a normální křivkou četností, k níž se dochází studiem a zobecněním histogramů opakovaných pokusů. Prof. A. ENGEL pak v posledním příspěvku sděluje zkušenosti z Německé spolkové republiky, které se týkají zavedení propedeutiky počtu pravděpodobnosti již pro žáky 5. 7, post. ročníku. Poněvadž žáci v 5. třídě dosud neprobírali zlomky, je tento úvod spíše seznámením s některými pojmy počtu pravděpodobnosti a využíváním základních pojmů teorie množin při určování počtu případů příznivých a počtu případů možných, prováděním náhodného výběru, seznámením se s vlastnostmi Pascalova trojúhelníku a řady úloh kombinatorického charakteru. Žáci při vyučování experimentují., házejí kostkou nebo mincí a výsledky svých pokusů pak využívají při probírání další látky. Jakmile se ve třídě 6. a 7. seznámí se zlomky a rovnicemi, vypočítávají pravděpodobnosti náhodných jevů, jejich střední hodnoty apod. Výsledky získané na základě provedených pokusů pak porovnávají s výsledky získanými výpočtem. Na řadě zajímavých úloh a her ukázal, jak se při výpočtech vhodně využívá orientovaných a neorientovaných grafů. Tím se žáci,,naivním způsobem" seznámí s řadou důležitých pojmů, poznávají i význam experimentování a dosažených výsledků na základě dostatečně velkého počtu provedených pokusů. Na tuto propedeutiku pak navazuje ve vyšších třídách exaktní teorie počtu pravděpodobnosti. Sborník má celkem 288 stran a obsahuje vedle zmíněných referátů množství literatury týkající se modernizace vyučování matematice na středních školách. PROGRAMOVANÉ UČENI VE FYZICE ANTONÍN SVOBODA, Praha Vyučování fyzice v celosvětovém měřítku stojí před závažným problémem, jak se vyrovnat s rostoucím rozsahem obsahu fyziky, který je způsoben rychlým tempem jejího rozvoje v poválečné době a mezi časovými možnostmi, které má škola i žák. Potřeba vyřešit tento rozpor se projevuje ve snahách po modernizaci fyzikálního vyučování. Jednou z cest vedoucích k modernizaci je zavedení nové metody vyučování, která by byla ekonomičtější a vydatnější. Uvažuje se o aplikaci programovaného učení jako jednoho z možných prostředků. O programovaném učení již byla uveřejněna řada studií všeobecného rázu [1, 2, 3]. 49
3 Úkolem tohoto pojednání je uvažovat o vhodnosti programovaného učení pro vyučování fyzice. K tomu účelu je především třeba formulovat cíl výuky fyzice na všeobecně vzdělávacích školách: Škola má seznámit žáka s přírodními jevy fyzikální povahy a s jejich zákonitostmi a připravit jej tak, aby byl schopen porozumět všem technickým zařízením, která jej v denním životě obklopují. Vypěstovat u žáka takovou schopnost myšlení, aby byl s to pochopit i objevy další, popřípadě sám se na nich aktivně podílet. Při rozboru takto formulovaného cíle vidíme, že jde o tři dílčí úkoly: poskytnout žáku určité teoretické znalosti, dát mu jisté praktické dovednosti, vypěstovat odborné myšlení. Protože chceme uvažovat o možnosti aplikace programovaného učení a s ním o zavedení programované učebnice, popřípadě v budoucnosti vyučovacího stroje, je třeba posoudit jejich účinnost i jejich přiměřenost k žákovu věku a k jeho rozumové připravenosti na saifíostatnou práci. Program vložený do učebnice, popř. do vyučovacího stroje, má žáka ekonomicky vést plánovaným učivem a absolvovat toto učivo samostatnou prací, přitom dosáhnout vpředu formulovaného cíle, což se má stát splněním uvedených tří cílových úkolů. Metodou programovaného učení lze bezpochyby splnit úkol první (poskytnout žáku jisté teoretické vědomosti). Úkol druhý (dát žáku určité praktické dovednosti) touto cestou plnit nelze. Plnění třetího úkolu (pěstovat odborné myšlení) není takto bezpečně zajištěno, neboť není jisto, zda lze programovat schopnost generalizace a abstrakce. Proto je třeba především uvažovat, jak dalece může žák sám opravdu porozumět cestou programovaného učení přírodním jevům, které dosud většinou ani nezná z vlastní zkušenosti. Je tu nebezpečí, aby takové učení nepřipomínalo křídovou fyziku. Vedle toho nutno uvažovat žáka jako individuum. Je známo, že mladší žáci se ještě nedovedou samostatně učit. Nelze tedy aplikovat programované učení dříve, dokud si žáci neosvojili techniku učení. Dále je třeba přihlédnout ke známé skutečnosti, že v tomtéž kolektivu jsou žáci svědomití, kteří se učí uvědoměle, ale i žáci opačné kvality. O nich není jisto, že by učivo zvládli samostatnou prací a takto by pravděpodobně vznikly i značné disproporce mezi žáky svědomitými a ostatními. Z toho vyplývá poznatek, že základní kurs fyziky je nutno provést klasickou formou provázenou demonstračními, popř. frontálními pokusy a samostatnou experimentální prací žáků. Metoda programovaného učení přichází v úvahu při řádných formách studia pro školy druhého cyklu a dále, a to jen pro školy výběrové. V mimořádných formách studia, kdy jde o studium dospělých, kteří studují uvědoměle, bude programované učení jistě formou vyhovující, neboť uvažované překážky odpadají. Posuďme dále, jak programované učení může vést k dosažení cílů, které byly vpředu formulovány a shrnuty do tří dílčích úkolů. Jeho zavedením se má dosáhnout časové úspory, což je hlavním důvodem jeho aplikace. Takto získaného času lze potom využít k seznámení s novými poznatky, k nimž fyzika zatím dospěla a pro něž v dosavadní situaci nezbývá času, ačkoliv se s nimi žák ve svém každodenním životě 50
4 setkává. Na dnešní ZDŠ je to např. Roentgenovo záření. Tím více času by se mohlo věnovat experimentální práci žáků, a to formou samostatných prací v laboratořích, při nichž by si pokusně ověřovali teoretické znalosti a prohlubovali je řešením jednoduchých problémů ve formě cvičení a měrného praktika. Nakonec by byly důležité konstrukce jednoduchých zařízení fyzikálního charakteru. To by byla hlavní složka přínosu nové metody učení. Nutným prostředkem k aplikaci této metody je programovaná učebnice. Musí studujícího ekonomicky vést učivem, poskytnout nejen teoretické znalosti, ale i možnost časté kontroly vlastní práce zodpovídáním vhodně volených otázek s poukazem, kde student nalezne poučení, neumí-li správně odpovědět nebo není-li vůbec schopen odpovědi. Učitel zase musí mít možnost časté a snadné kontroly studentovy práce, aby ji mohl regulovat. Tuto kontrolu by mohl usnadnit některý stroj. K pěstování a rozvíjení odborného myšlení by učebnice musela obsahovat jednak početní příklady řešené v textu, jednak úkoly k řešení na konci malých tematických celků kroků. Jejich vyřešení by podmiňovalo postup k dalšímu tématu. Jako příklad uvádím několik otázek z učebnice fyziky pro druhý ročník Liberal-Arts-College: 1. Zatlouká-li se hřebík do dřeva, je hloubka vniknutí hřebíku závislá na... a na odporu Proniknutí je přímo úměrné... a nepřímo úměrné Ohmův zákon stanoví, že proud je přímo úměrný... a nepřímo úměrný Vztah I = UJR je tedy matematický výraz... Je patrno, že tento způsob studia vyžaduje od žáka dostatek sebekritiky a svědomitost při studiu. Protože tempo a výsledky samostatného studia podle programu záleží značně na schopnostech, zájmu a svědomitosti žáků, musí tato metoda nutně vést k diferenciaci uvnitř žákovského kolektivu. Takto se vytváří nová situace, kterou bude třeba řešit úpravou organizace vyučovacího procesu, neboť lze očekávat, že při individuálním postupu se žákovský kolektiv do jisté míry rozvrství. Někteří žáci budou postupovat rychleji než druzí a tak řídící úloholi učitele nutně bude vést první skupinu vhodně a ekonomicky a věnovat více pozornosti skupině druhé. O způsobu této diferenciace bude možno uvažovat teprve po získání určitých zkušeností. Pokusím se nyní odhadnout,, jaký by byl vyučovací postup při zavedení programovaného učení na Škole druhého cyklu: Žáci zpracují samostatně doma učivo jednoho kroku programu, písemně zodpoví kontrolní otázky a vyřeší kontrolní příklady. Učitel odpovědi přehlédne a opraví a podle výsledků vytřídí žáky slabší. Pro ně bude třeba zajistit konzultaci. Takto byl mimo školu splněn první cílový úkol získání teoretických znalostí. Ve škole v hodinách tomu určených bude přikročeno k plnění třetího cílového úkolu, totiž k pěstování odborného myšlení řešením početních a úvahových úloh ve dvou, popř. ve třech paralelních odděleních. Oddělení slabších žáků bude nutno přidělit více hodin. 51
5 Souběžně s tím bude možno plnit druhý cílový úkol, tj. pěstování praktických dovedností, a to experimentální prací v laboratoři na tutéž tématiku. To ovšem předpokládá přiměřené vybavení laboratorními pomůckami a pomocnými silami. Bylo by velmi účinné, kdyby tato fáze mohla být ukončena samostatnou konstrukcí jednoduchého výrobku, např. přijímače. Uvedený způsob naznačuje možnost, jak využít času, který je v učebních plánech přidělen fyzice, k aktivnější účasti žáků na zpracování učiva. Doba, kterou učitel dosud věnoval výkladu nové látky, by tak zůstala rezervována aktivnímu zapojení žáků a učitelův výklad by byl přenesen do samostatného studia podle programu. Jak se během předchozích úvah ukázalo, bude s největší pravděpodobností programové učení vyžadovat zvýšení počtu učitelských sil, neboť častá kontrola práce žáků a důsledky jejich diferenciace, dále práce žáků v laboratoři, popř. v dílně představují úkol, na který jeden učitel nebude při svědomitém plnění svého úkolu stačit. Ovšem efekt takové práce může být nesrovnatelně vyšší než dosud. V závěru uvedu některé kritické hlasy, které se ozvaly na adresu programovaného učení: Situace fyziky je obdobná situaci matematiky a právě z řad matematiků byla vznesena závažná připomínka. Při programování v USA je totiž matematika považována za pouhý souhrn dovedností [4]. Podobnou připomínku lze vznést i k programování učiva fyziky. Pozornosti dále zaslouží i stanovisko západoněmeckých pedagogů k tomuto směru. Teodor BARTMANN [5] ve svém pojednání píše:,,v německé psychologii nenalezl tento směr, s nadšením prosazovaný americkými zastánci a toho času v USA vášnivě diskutovaný, téměř žádný ohlas. Třebaže se o tomto tématu v tisku hodně psalo, dá se podle skromného ohlasu a podle výsledku pedagogické a psychologické diskuse usuzovat, že se v NSR zaujímá rezervované stanovisko. Rozhodně chybí hlasy optimismu PRESLEYOVA a SKINNEROVA, které by si od jejího zavedení slibovaly nějakou revoluci ve výchově." Literatura [1] LANDA L. N.: O kybernetickém přístupu k teorii vyučování. Pedagogika 13 č. 1. [2] TOLLINGEROVÁ D.: Programované učení. Sborník filosofické fakulty UKo, Bratislava. [3] SMITH D.: Speculations characteristics of successfull programs and programers. Willey, New York [4] Nové pohledy na teorii učení a jejich důsledek pro vyučování matematice. Matematika ve škole 73 č. 9. [5] BARTMANN TH.: Lehrautomaten im Schulunterricht? Pádagogische Umschau 1963, seš. 2. ^?
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vladimír Kořínek Poznámky k postgraduálnímu studiu matematiky učitelů škol 2. cyklu Pokroky matematiky, fyziky a astronomie, Vol. 12 (1967), No. 6, 363--366 Persistent
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Emil Calda; Oldřich Odvárko Speciální třídy na SVVŠ v Praze pro žáky nadané v matematice a fyzice Pokroky matematiky, fyziky a astronomie, Vol. 13 (1968), No. 5,
Kombinatorika. In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, pp. 3 [6].
Kombinatorika Předmluva In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, 1980. pp. 3 [6]. Persistent URL: http://dml.cz/dmlcz/403963 Terms of use: Antonín Vrba, 1080 Institute of
Malý výlet do moderní matematiky
Malý výlet do moderní matematiky Úvod [též symboly] In: Milan Koman (author); Jan Vyšín (author): Malý výlet do moderní matematiky. (Czech). Praha: Mladá fronta, 1972. pp. 3 6. Persistent URL: http://dml.cz/dmlcz/403755
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Josef B. Slavík; B. Klimeš Hluk jako methodická pomůcka při zjišťování příčin chvění v technické praxi Pokroky matematiky, fyziky a astronomie, Vol. 2 (957), No.
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987 Zdeněk Horský Písemnosti z pozůstalosti prof. dr. A. Seydlera In: Libor Pátý (editor): Jubilejní almanach Jednoty čs. matematiků a fyziků 1862
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Antonín Svoboda Některé speciální otázky dálkového studia fyziky na pedagogických fakultách Pokroky matematiky, fyziky a astronomie, Vol. 12 (1967), No. 5, 283--286
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Počítání se zlomky In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Jednota českých matematiků a fyziků ve 150. roce aktivního života
Jednota českých matematiků a fyziků ve 150. roce aktivního života Organizace JČMF In: Jiří Dolejší (editor); Jiří Rákosník (editor): Jednota českých matematiků a fyziků ve 150. roce aktivního života. (Czech).
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Antonín Bohun Elektronová emise, luminiscence a zbarvení iontových krystalů Pokroky matematiky, fyziky a astronomie, Vol. 6 (1961), No. 3, 150--153 Persistent URL:
PANM 16. List of participants. http://project.dml.cz. Terms of use:
PANM 16 List of participants In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
O dělitelnosti čísel celých
O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572
O nerovnostech a nerovnicích
O nerovnostech a nerovnicích Kapitola 3. Množiny In: František Veselý (author); Jan Vyšín (other); Jiří Veselý (other): O nerovnostech a nerovnicích. (Czech). Praha: Mladá fronta, 1982. pp. 19 22. Persistent
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.
Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869
Jan Sobotka (1862 1931)
Jan Sobotka (1862 1931) Martina Kašparová Vysokoškolská studia Jana Sobotky In: Martina Kašparová (author); Zbyněk Nádeník (author): Jan Sobotka (1862 1931). (Czech). Praha: Matfyzpress, 2010. pp. 231--234.
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vítěslav Jozífek Poznámky k teorii vyučování matematice Pokroky matematiky, fyziky a astronomie, Vol. 14 (1969), No. 3, 148--151 Persistent URL: http://dml.cz/dmlcz/139905
Úvod do neeukleidovské geometrie
Úvod do neeukleidovské geometrie Obsah In: Václav Hlavatý (author): Úvod do neeukleidovské geometrie. (Czech). Praha: Jednota československých matematiků a fysiků, 1926. pp. 209 [212]. Persistent URL:
O náhodě a pravděpodobnosti
O náhodě a pravděpodobnosti 13. kapitola. Metoda maximální věrohodnosti neb o tom, jak odhadnout počet volně žijících divokých zvířat In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček
Funkcionální rovnice
Funkcionální rovnice Úlohy k procvičení In: Ljubomir Davidov (author); Zlata Kufnerová (translator); Alois Kufner (translator): Funkcionální rovnice. (Czech). Praha: Mladá fronta, 1984. pp. 88 92. Persistent
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Zdeněk Češpíro Výbojový vakuoměr bez magnetického pole Pokroky matematiky, fyziky a astronomie, Vol. 3 (1958), No. 3, 299--302 Persistent URL: http://dml.cz/dmlcz/137111
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Bílek Pythagorova věta ve třetí třídě středních škol Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D265--D268 Persistent URL: http://dml.cz/dmlcz/123381
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Ferdinand Pietsch Výpočet cívky pro demonstraci magnetoindukce s optimálním využitím mědi v daném prostoru Časopis pro pěstování matematiky a fysiky, Vol. 62 (1933),
O dynamickém programování
O dynamickém programování 9. kapitola. Cauchy-Lagrangeova nerovnost In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 65 70. Persistent URL: http://dml.cz/dmlcz/403801
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [V.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 2-3, 158--163 Persistent URL: http://dml.cz/dmlcz/122325
O dělitelnosti čísel celých
O dělitelnosti čísel celých 6. kapitola. Nejmenší společný násobek In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 73 79. Persistent URL: http://dml.cz/dmlcz/403569
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jan Novák Aritmetika v primě a sekundě Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D254--D257 Persistent URL: http://dml.cz/dmlcz/120798
Dějepis Jednoty českých mathematiků
Dějepis Jednoty českých mathematiků II. Změna stanov; studentský spolek se rozšiřuje na Jednotu českých mathematiků In: Václav Posejpal (author): Dějepis Jednoty českých mathematiků. K padesátému výročí
PANM 14. List of participants. http://dml.cz. Terms of use:
PANM 14 List of participants In: Jan Chleboun and Petr Přikryl and Karel Segeth and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Bohdan Klimeš Normalisace veličin, jednotek a značek ve fysice Pokroky matematiky, fyziky a astronomie, Vol. 3 (1958), No. 4, 437--441 Persistent URL: http://dml.cz/dmlcz/137041
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 13. Homomorfní zobrazení (deformace) grupoidů In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962.
PANM 17. List of participants. http://project.dml.cz. Terms of use:
PANM 17 List of participants In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Marta Chytilová; Jiří Mikulčák Půl století časopisu Rozhledy matematicko-fyzikální Pokroky matematiky, fyziky a astronomie, Vol. 18 (1973), No. 3, 132--135 Persistent
Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918
Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918 Jednoroční učební kurs (JUK) In: Jiří Mikulčák (author): Nástin dějin vyučování v matematice (a také školy) v českých zemích
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 1, 25--31 Persistent URL: http://dml.cz/dmlcz/124004
O dynamickém programování
O dynamickém programování 7. kapitola. O jednom přiřazovacím problému In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 55 59. Persistent URL: http://dml.cz/dmlcz/403799
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Šafránek Některé fysikální pokusy s katodovou trubicí Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D285--D289 Persistent URL: http://dml.cz/dmlcz/123398
100 let Jednoty československých matematiků a fyziků
100 let Jednoty československých matematiků a fyziků Závěrečné slovo In: František Veselý (author): 100 let Jednoty československých matematiků a fyziků. (Czech). Praha: Státní pedagogické nakladatelství,
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Kliment Šoler Řízení vyučování fyziky na sovětských vysokých školách technických Pokroky matematiky, fyziky a astronomie, Vol. 12 (1967), No. 3, 154--157 Persistent
Základy teorie matic
Základy teorie matic 7. Vektory a lineární transformace In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 43--47. Persistent URL: http://dml.cz/dmlcz/401335 Terms of
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Jan Šlégr Předpověď a pozorování radiových emisí z planety Jupiter Pokroky matematiky, fyziky a astronomie, Vol. 55 (2010), No. 4, 297--301 Persistent URL: http://dml.cz/dmlcz/141973
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent
Jak vytváří statistika obrazy světa a života. II. díl
Jak vytváří statistika obrazy světa a života. II. díl Předmluva In: Jaroslav Janko (author): Jak vytváří statistika obrazy světa a života. II. díl. (Czech). Praha: Jednota českých matematiků a fysiků,
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Jan Vlachý Postavení fyziky, věd o Zemi a astronomie, v rozpočtech amerických federálních ministerstev a agentur Pokroky matematiky, fyziky a astronomie, Vol. 13
Nerovnosti v trojúhelníku
Nerovnosti v trojúhelníku Úvod In: Stanislav Horák (author): Nerovnosti v trojúhelníku. (Czech). Praha: Mladá fronta, 1986. pp. 5 12. Persistent URL: http://dml.cz/dmlcz/404130 Terms of use: Stanislav
Aritmetické hry a zábavy
Aritmetické hry a zábavy 1. Doplnění naznačených výkonů In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 5 9. Persistent URL: http://dml.cz/dmlcz/4329
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 10. Plochy šroubové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 99 106.
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Výpočet objemu tělesa In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti
Kongruence 1. kapitola. Opakování základních pojmů o dělitelnosti In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 3 9. Persistent URL: http://dml.cz/dmlcz/403653 Terms
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 27. Cyklické grupy In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 198--202. Persistent
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky F. Císař Kinematografie při vyučování matematice. [II.] Časopis pro pěstování matematiky a fysiky, Vol. 60 (1931), No. 3, D39--D43 Persistent URL: http://dml.cz/dmlcz/123948
Aplikace matematiky. Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní
Aplikace matematiky Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní (2m + 1) diagonální maticí Aplikace matematiky, Vol. 17 (1972), No. 4, 321--324 Persistent
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Cyril Dočkal Automatické elektromagnetické váhy Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Jan Vlachý Zaměstnání, kvalifikace a věková struktura pracovníků matematicko-fyzikálních věd Pokroky matematiky, fyziky a astronomie, Vol. 15 (1970), No. 5, 230--233
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Aleš Fořt Několik poznámek o dosavadním vývoji palivových článků Pokroky matematiky, fyziky a astronomie, Vol. 5 (1960), No. 6, 697--700 Persistent URL: http://dml.cz/dmlcz/138258
Co víme o přirozených číslech
Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent
PANM 12. List of participants. http://dml.cz. Terms of use:
PANM 12 List of participants In: Jan Chleboun and Petr Přikryl and Karel Segeth (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June 6-11, 2004. Institute
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Jan Sommer Pokus vysvětliti Machův klam optický Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 2, 101--105 Persistent URL: http://dml.cz/dmlcz/109224
Základy teorie matic
Základy teorie matic 23. Klasifikace regulárních párů matic In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 162--168. Persistent URL: http://dml.cz/dmlcz/401352 Terms
Úvod do filosofie matematiky
Úvod do filosofie matematiky Axiom nekonečna In: Otakar Zich (author): Úvod do filosofie matematiky. (Czech). Praha: Jednota československých matematiků a fysiků, 1947. pp. 114 117. Persistent URL: http://dml.cz/dmlcz/403163
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Josef Šeda Modernizace a vývoj učebních plánů za 20 let na FJFI Pokroky matematiky, fyziky a astronomie, Vol. 20 (1975), No. 4, 217--222 Persistent URL: http://dml.cz/dmlcz/139512
Co víme o přirozených číslech
Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Richard Pastorek ph-metrické stanovení disociačních konstant komplexů v kyselé oblasti systému Cr 3+ ---
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jindřich Procházka Pokusy o interferenci a odrazu zvuku Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D197--D200 Persistent URL: http://dml.cz/dmlcz/120811
Matematika v 19. století
Matematika v 19. století Martina Němcová František Josef Studnička a Americký klub dam In: Jindřich Bečvář (editor); Eduard Fuchs (editor): Matematika v 19. století. Sborník přednášek z 15. letní školy
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi Rejstřík In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp.
Aplikace matematiky. Terms of use: Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375. Persistent URL: http://dml.cz/dmlcz/102630
Aplikace matematiky František Šubart Odvození nejvýhodnějších dělících tlaků k-stupňové komprese, při ssacích teplotách lišících se v jednotlivých stupních Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Janoušek O nepravidelném rozkladu světla Časopis pro pěstování mathematiky a fysiky, Vol. 1 (1872), No. 5, 256--261 Persistent URL: http://dml.cz/dmlcz/122691
O rovnicích s parametry
O rovnicích s parametry 3. kapitola. Kvadratické rovnice In: Jiří Váňa (author): O rovnicích s parametry. (Czech). Praha: Mladá fronta, 1964. pp. 45 [63]. Persistent URL: http://dml.cz/dmlcz/403496 Terms
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079
PANM 18. List of participants. Terms of use:
PANM 18 List of participants In: Jan Chleboun and Pavel Kůs and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Pavel Chmela Matematické vyjádření barvy a problémy barevného vidění Pokroky matematiky, fyziky a astronomie, Vol. 9 (1964), No. 2, 65--[72a],73 Persistent URL:
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Tomáš Páv Integrační snahy ve vyučování přírodních věd Pokroky matematiky, fyziky a astronomie, Vol. 14 (1969), No. 6, 279--282 Persistent URL: http://dml.cz/dmlcz/139302
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Stanovení kvality piva a chleba In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 7. kapitola. Různé In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 72 81. Persistent URL: http://dml.cz/dmlcz/403522 Terms
Konvexní útvary. Kapitola 4. Opěrné roviny konvexního útvaru v prostoru
Konvexní útvary Kapitola 4. Opěrné roviny konvexního útvaru v prostoru In: Jan Vyšín (author): Konvexní útvary. (Czech). Praha: Mladá fronta, 1964. pp. 49 55. Persistent URL: http://dml.cz/dmlcz/403505
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Jiří Švestka Nobelova cena za fyziku za objev reliktního záření Pokroky matematiky, fyziky a astronomie, Vol. 24 (1979), No. 4, 202--205 Persistent URL: http://dml.cz/dmlcz/137797
Kongruence. 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly
Kongruence 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 55 66. Persistent URL: http://dml.cz/dmlcz/403657
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Václav Petržílka Demonstrační pokus měření rychlosti zvuku v plynech Časopis pro pěstování matematiky a fysiky, Vol. 61 (1932), No. 6, 254--258 Persistent URL:
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Kounovský O projektivnosti involutorní Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 3-4, 433--439 Persistent URL: http://dml.cz/dmlcz/109245
Jaká je logická výstavba matematiky?
Jaká je logická výstavba matematiky? 2. Výrokové vzorce In: Miroslav Katětov (author): Jaká je logická výstavba matematiky?. (Czech). Praha: Jednota československých mathematiků a fysiků, 1946. pp. 15
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Matyáš Lerch K didaktice veličin komplexních. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 5, 265--269 Persistent URL: http://dml.cz/dmlcz/108855
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky M. Jahoda; Ivan Šimon Užití sodíkového světla pro Ramanův zjev Časopis pro pěstování matematiky a fysiky, Vol. 69 (1940), No. 3-4, 187--190 Persistent URL: http://dml.cz/dmlcz/123324
O náhodě a pravděpodobnosti
O náhodě a pravděpodobnosti 2. kapitola. Stromy neboli grafické znázornění průběhů a výsledků náhodného pokusu In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček (illustrator): O
Polynomy v moderní algebře
Polynomy v moderní algebře 2. kapitola. Neutrální a inverzní prvek. Grupa In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 15 28. Persistent URL: http://dml.cz/dmlcz/403713
Booleova algebra. 1. kapitola. Množiny a Vennovy diagramy
Booleova algebra 1. kapitola. Množiny a Vennovy diagramy In: Oldřich Odvárko (author): Booleova algebra. (Czech). Praha: Mladá fronta, 1973. pp. 5 14. Persistent URL: http://dml.cz/dmlcz/403767 Terms of
DIDAKTIKA FYZIKY Organizační formy výuky
DIDAKTIKA FYZIKY Organizační formy výuky Prof. RNDr. Emanuel Svoboda, CSc. Organizační uspořádání podmínek k realizaci obsahu výuky při použití různých metod výuky a výukových prostředků Klasifikace org.
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Evžen Říman Vyučování matematice bez tabule Časopis pro pěstování matematiky a fysiky, Vol. 70 (1941), No. Suppl., D289--D292 Persistent URL: http://dml.cz/dmlcz/121810
Kongruence. 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence
Kongruence 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 43 54. Persistent URL: http://dml.cz/dmlcz/403656
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Ladislav Klír Příspěvek ke geometrii trojúhelníku Časopis pro pěstování mathematiky a fysiky, Vol. 44 (1915), No. 1, 89--93 Persistent URL: http://dml.cz/dmlcz/122380
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Jaroslav Vachek K otázce koordinace výuky matematiky a fyziky na střední škole Pokroky matematiky, fyziky a astronomie, Vol. 14 (1969), No. 3, 144--148 Persistent
Komplexní čísla a funkce
Komplexní čísla a funkce 3. kapitola. Geometrické znázornění množin komplexních čísel In: Jiří Jarník (author): Komplexní čísla a funkce. (Czech). Praha: Mladá fronta, 1967. pp. 35 43. Persistent URL:
Historický vývoj geometrických transformací
Historický vývoj geometrických transformací Věcný rejstřík In: Dana Trkovská (author): Historický vývoj geometrických transformací. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2015. pp. 171 174.
Matematicko-fyzikálny časopis
Matematicko-fyzikálny časopis Zdeněk Jiskra Jednoduché integrační zařízení pro rentgenové komůrky Matematicko-fyzikálny časopis, Vol. 8 (1958), No. 4, 236--240 Persistent URL: http://dml.cz/dmlcz/126695
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Ivo Volf Současný stav a některé problémy fyzikální olympiády Pokroky matematiky, fyziky a astronomie, Vol. 41 (1996), No. 3, 162--166 Persistent URL: http://dml.cz/dmlcz/137762
Rozhledy matematicko-fyzikální
Rozhledy matematicko-fyzikální Pavel Töpfer Ústřední kolo 65. ročníku Matematické olympiády kategorie P Rozhledy matematicko-fyzikální, Vol. 91 (2016), No. 2, 43 46 Persistent URL: http://dml.cz/dmlcz/146668
Rozhledy matematicko-fyzikální
ozhledy matematicko-fyzikální Naše soutěž ozhledy matematicko-fyzikální, Vol. 89 (204), No., 54 60 Persistent UL: http://dml.cz/dmlcz/46568 Terms of use: Jednota českých matematiků a fyziků, 204 Institute
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Václav Simandl Poznámka ke kombinacím daného součtu z čísel přirozené řady číselné Časopis pro pěstování mathematiky a fysiky, Vol. 46 (1917), No. 2-3, 155--159