Operační systémy. Přednáška 2: Procesy a vlákna
|
|
- Libor Navrátil
- před 8 lety
- Počet zobrazení:
Transkript
1 Operační systémy Přednáška 2: Procesy a vlákna 1
2 Procesy Všechen běžící software v systému je organizován jako množina sekvenčně běžících procesů. (Sekvenční) proces Abstrakce běžícího programu. Sekvence výpočetních kroků závisí pouze na výsledcích předchozích kroků a na vstupních datech. Paralelní sekvenční procesy (paralelní program) Množina sekvenčních procesů běžících současně. Procesy mohou běžet na jednoprocesorovém systému (pseudo parallelism) nebo na multiprocesorovém systému (real parallelism). Výsledek paralelního deterministického programu by neměl záviset na rychlosti provádění jednotlivých procesů. 2
3 Proč procesy? Jednoduchost Systém provádí spoustu různých věcí Jak to zjednodušit? Z každé jednotlivé věci udělat izolovaný proces. OS se zabývá v jednom okamžiku pouze jednou věcí. Univerzální trik pro správu složitých problémů: dekompozice problému. 3
4 Proč procesy? Rychlost V/V paralelismus Zatímco jeden proces čeká na dokončení V/V operace jiný proces může používat CPU. Překrývání zpracování: dělá z 1 CPU více CPU. Reálný paralelismus. 4
5 Program vs. Proces Program obsahují seznam instrukcí a data, je pasivní (uložený v souboru). Proces abstrakce běžícího programu, obsahuje aktuální hodnoty registrů a proměnných,... Např. spustíme dvakrát netscape: stejný program, ale rozdílné procesy. 5
6 Přepínání kontextu Pseudo paralelismus: procesy běží (pseudo) paralelně na jedno procesorovém systému díky přepínání kontextu, procesor střídavě provádí kód jednotlivých procesů (multiprogramming, timesharing, multiprocessing). Skutečný hardwarový paralelismus: každý proces běží na svém procesoru (multiprocesorový systém). 6
7 Příklad: přepínání kontextu Hodnota časového kvanta je kompromisem mezi potřebami uživatele (malý čas odezvy) a potřebami systému (efektivní přepínání kontextu, přepínání kontextu trvá zhruba 2-5 ms). Časové kvantum v OS je zhruba ms (parametr jádra time slice). 7
8 Stavy procesu Základní stavy procesu Running: v tomto okamžiku právě používá CPU. Ready: připraven použít CPU, dočasně je proces zastaven a čeká až mu bude přiřazeno CPU. Blocked: neschopný použít CPU v tomto okamžiku, čeká na nějakou externí událost (např. načtení dat z disku, ). 8
9 Implementace pomocí front 9
10 Stavy procesu (2) 10
11 Vytvoření procesu Nový proces se vytvoří když exitující proces zavolá příslušné systémové volání (např. fork() and exec()v Unix, nebo CreateProcess() v MS Windows). Vytvoření OS inicializuje v jádře datové struktury spojené s novým procesem. OS nahraje kód a data programu z disku do paměti a vytvoří prázdný systémový zásobník pro daný proces. Klonování OS zastaví aktuální proces a uloží jeho stav. OS inicializuje v jádře datové struktury spojené s novým procesem. OS udělá kopii aktuálního kódu, dat, zásobníku a stavu procesu. 11
12 Příklad: vytvoření procesu v Unixu 1. Systémové volání fork() vytvoří přesnou kopii volajícího procesu (rodič i potomek mají stejný obsah paměti, stejné nastavení prostředí, stejné otevřené soubory, 2. Systémové volání exec() nahraje do paměti volajícího procesu nový program.... pid=fork(); if(pid!= 0) { /* parent */ wait(pid); /* wait for child to finish */ else /* child process */ exec( ls ); /* exec does not return */ }... 12
13 Ukončení procesu Normal exit (dobrovolné) Když proces dokončí svou práci, použije systémové volání, aby řekl OS, že končí (např. exit() v Unixu nebo ExitProcess() v MS Windows). Error exit (dobrovolné) Například když proces zjistí fatální chybu (např. žádný vstupní soubor,...). Fatal error (nedobrovolné) Chyba způsobená procesem, často např. díky chybě v programu. OS proces násilně ukončí. Ukončení jiným procesem (nedobrovolné) Proces použije systémové volání, aby řekl OS o ukončení nějakého jiného procesu (např. kill() vunixu nebo TerminateProcess() v MS Windows). 13
14 Hierarchie procesů V některých systémech, když proces vytvoří další proces, rodičovský proces a potomek jsou jistým způsobem svázány (např. Unix: vztah parent process children process). Potomek může zdědit některé rysy od svého rodiče (např. kód procesu, globální data, ). Na druhé straně, každý nový proces má svůj vlastní zásobník, reakce na signály, lokální data. 14
15 Procesy a prostředky OS spravuje procesy a systémové prostředky. Informaci o každé spravovanou entitě si udržuje v tabulce. 15
16 Systémové řídící struktury Tabulky paměti (memory table) informace o fyzické a virtuální paměti Tabulky V/V (I/O table) informace V/V zařízeních (alokace, stav, ) Tabulky souborů (file table) informace o otevřených souborech Tabulky procesů (process table) informace o existujících procesech 16
17 Systémové tabulky (2) 17
18 Implementace procesu OS zpravuje tabulku (pole struktur), která se nazývá tabulka procesů, s jednou položkou pro jeden proces, nazývanou process control block (PCB). PCB obsahuje informaci o procesu, která musí být uložena, když se proces přesouvá ze stavu running do stavu ready nebo blocked, tak aby mohl být restartován později. Například: V Unixu, maximální velikost tabulky procesů je definována parametrem jádra nproc. PCB má v Unix přibližně 35 položek. 18
19 Položky PCB Informace pro identifikaci procesu (process identification) jméno procesu, číslo procesu (PID), rodičovský proces (PPID), vlastník procesu (UID, EUID), skupiny do kterých proces patří, Stavové Informace procesoru (processor state information) hodnoty viditelných registrů CPU, hodnoty řídících a stavových registrů CPU (program counter, program status word (PSW), status information, ) ukazatelé na zásobníky, Informace pro správu procesu (process control information) stav procesu, priorita informace nutné pro plánování informace o událostech, na které proces čeká, informace pro meziprocesovou komunikaci, informace pro správu paměti (ukazatel na tabulku stránek, ) ukazatelé na kód, data a zásobník programu,... alokované a používané prostředky, 19
20 Položky PCB (2) 20
21 Proces vs. vlákno Proces model Každý proces alokuje příslušné prostředky (adresové prostor obsahující kód, data a zásobník procesu, otevřené soubory, potomky, reakce na signály,...) Jedno vlákno výpočtu. 21
22 Proces vs. vlákno (2) Vláknový model Odděluje alokaci prostředků a samotný výpočet. Proces slouží k alokaci společných prostředků. Vlákna jsou jednotky plánované pro spuštění na CPU. Vlákno má svůj vlastní program counter (pro uchování informace o výpočtu), registry (pro uchování aktuálních hodnot), zásobník (který obsahuje historii výpočtu), lokální proměnném, ale ostatní prostředky jsou sdílené. 22
23 Vláknový model Jednotlivá vlákna v daném procesu nejsou nezávislá tak jako jednotlivé procesy. Všechny vlákna v procesu sdílí stejný adresový prostor, stejné otevřené soubory, potomky, reakce na signály, Multithreading Procesy se spouští s jedním vláknem. Toto vlákno může vytvářet další vlákna pomocí knihovní funkce (např. thread_create(name_of_function)). Když chce vlákno skončit, může se opět ukončit pomocí knihovní funkce (např. thread_exit()). 23
24 Příklad: jednovláknový Web Server Klient pošle požadavek na konkrétní web. stránku Server ověří zda klient může přistupovat k dané stránce načte stránku a pošle obsah stránky klientovi Často používané stránky zůstávají uloženy v hlavní paměti, abychom minimalizovali čtení z disku. 24
25 Příklad: vícevláknový Web Server 25
26 Příklad: vícevláknový Web Server (2) Dispatcher thread: čte příchozí požadavky, zkoumá požadavek, vybere nevyužité pracovní vlákno a předá mu tento požadavek. Worked thread: načte požadovanou stránku z hlavní paměti nebo disku a pošle ji klirntovi. Dispatcher thread while (TRUE) { get_next_request(&buf); handoff_work(&buf); } Worked thread while(true) { wait_for_work(&buf); look_for_page_in_cache(&buf,&page); if (page_not_in_cache(&page)) read_page_from_disk(&buf,&page); return_page(&page); } 26
27 Implementace vláken v uživatelském prostoru Run-time system: množina funkcí, která spravuje vlákna. Vlákna jsou implementována pouze v uživatelském prostoru. Jádro o vláknech nemá žádné informace. 27
28 Implementace vláken v uživatelském prostoru (2) Výhody Vlákna mohou být implementována v OS, které nepodporuje vlákna. Rychlé plánování vláken. Každý proces může mít svůj vlastní plánovací algoritmus. Nevýhody Jak budou implementována blokující systémová volání? (změna systémových volání na neblokující nebo požití systémového volání select) Co se stane když dojde k výpadku stránky? Žádný clock interrupt uvnitř procesu. (jedno vlákno může okupovat CPU během celého časového kvanta procesu) 28
29 Implementace vláken v prostoru jádra Jádro má tabulku vláken, která obsahuje informace o všech vláknech v systému. Výhody Žádný problém s blokujícími systémovými voláními. Nevýhody Vytváření, ukončování a plánování vláken je pomalejší. 29
30 Hybridní implementace vláken Jádro se stará pouze o kernel-level threads a plánuje je. Některé kernel-level threads mohou mít user-level threads. User-level threads jsou vytvářená, ukončovaná a plánovaná uvnitř procesu. Např. Solaris, Linux, MS Windows 30
31 Hybridní implementace vláken (2) Anderson et. al Kombinuje výhody uživatelských vláken (dobrá výkonnost) s výhodami kernel vláken (jednoduchá implementace). Princip: Jádro přidělí určitý počet virtuálních procesorů každému procesu. (Uživatelský) run-time system může alokovat vlákna na virtuální procesor, požádat o další nebo vrátit virtuální procesory jádru. 31
32 Hybridní implementace vláken (3) Problem: blokující systémová volání. Řešení: Když jádro ví, že bude vlákno zablokováno, jádro aktivuje run-time system a dá mu o tom vědět (tzv. upcall ). Aktivovaný run-time systém může naplánovat další ze svých vláknen. Kdyžpůvodní vlákno je opět ve stavu ready, jádro provede znova upcall, aby to oznámilo run-time systému. 32
33 Vlákna v Solarisu Process: normální Unixový proces. User-level threads (ULT): implementovaný pomocí knihovny vláken v adresovém prostoru procesu (neviditelný pro OS). Lightweight processes (LWP): mapování mezi ULT a kernel vlákny. Každý LWP podporuje jedno nebo více ULT a je mapováno na jedno kernel vlákno. Kernel threads: základní jednotky, které mohou být plánovány a spuštěny na jednom nebo více CPU. 33
34 Vlákna v Solarisu (2) 34
35 Vlákna ve Windows XP Job: množina procesů, které sdílejí kvóty a limity (maximální počet procesů, čas CPU, paměť, ). Process: jednotka, která alokuje zdroje. Každý proces má aspoň jedno vlákno (thread). Thread: jednotka plánována jádrem. Fiber: vlákno spravované celé v uživatelském prostoru. 35
Procesy a vlákna (Processes and Threads)
ÚVOD DO OPERAČNÍCH SYSTÉMŮ Ver.1.00 Procesy a vlákna (Processes and Threads) Správa procesů a vláken České vysoké učení technické Fakulta elektrotechnická 2012 Použitá literatura [1] Stallings, W.: Operating
Přednáška. Implementace procesů/vláken. Plánování vláken. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Implementace procesů/vláken. Plánování vláken. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována
Management procesu I Mgr. Josef Horálek
Management procesu I Mgr. Josef Horálek Procesy = Starší počítače umožňovaly spouštět pouze jeden program. Tento program plně využíval OS i všechny systémové zdroje. Současné počítače umožňují běh více
Principy operačních systémů. Lekce 5: Multiprogramming a multitasking, vlákna
Principy operačních systémů Lekce 5: Multiprogramming a multitasking, vlákna Multiprogramování předchůdce multitaskingu Vzájemné volání: Implementován procesem (nikoliv OS) Procesu je přidělen procesor,
MS WINDOWS II. Jádro. Správa objektů. Správa procesů. Zabezpečení. Správa paměti
MS WINDOWS II Jádro Správa objektů Správa procesů Zabezpečení Správa paměti JÁDRO I ntoskrnl.exe napsán v C (příp. assembler) základní mechanismy poskytované executivám trap dispečink synchronizace přístupů
Přednáška. Vstup/Výstup. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Vstup/Výstup. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
Operační systémy. Tomáš Vojnar IOS 2009/2010. Vysoké učení technické v Brně Fakulta informačních technologií Božetěchova 2, 612 66 Brno
Operační systémy IOS 2009/2010 Tomáš Vojnar Vysoké učení technické v Brně Fakulta informačních technologií Božetěchova 2, 612 66 Brno ÚÓ Ò Ö ØºÚÙØ ÖºÞ Úvod do UNIXu p.1/11 Unix úvod Úvod do UNIXu p.2/11
Výpočet v módu jádro. - přerušení (od zařízení asynchronně) - výjimky - softvérové přerušení. v důsledku událostí
Výpočet v módu jádro v důsledku událostí - přerušení (od zařízení asynchronně) - výjimky - softvérové přerušení řízení se předá na proceduru pro ošetření odpovídající události část stavu přerušeného procesu
Téma 3. Procesy a vlákna
Operační systémy a sítě Petr Štěpán, K13133 KN-E-129 stepan@fel.cvut.cz Téma 3. Procesy a vlákna Pojem Výpočetní proces Výpočetní proces (job, task) spuštěný program Proces je identifikovatelný jednoznačné
Vlákno (anglicky: thread) v informatice označuje vlákno výpočtu neboli samostatný výpočetní tok, tedy posloupnost po sobě jdoucích operací.
Trochu teorie Vlákno (anglicky: thread) v informatice označuje vlákno výpočtu neboli samostatný výpočetní tok, tedy posloupnost po sobě jdoucích operací. Každá spuštěná aplikace má alespoň jeden proces
PB002 Základy informačních technologií
Operační systémy 25. září 2012 Struktura přednašky 1 Číselné soustavy 2 Reprezentace čísel 3 Operační systémy historie 4 OS - základní složky 5 Procesy Číselné soustavy 1 Dle základu: dvojková, osmičková,
Operační systémy. Přednáška 1: Úvod
Operační systémy Přednáška 1: Úvod 1 Organizace předmětu Přednášky každé úterý 18:00-19:30 v K1 Přednášející Jan Trdlička email: trdlicka@fel.cvut.z kancelář: K324 Cvičení pondělí, úterý, středa Informace
Architektura a koncepce OS OS a HW (archos_hw) Architektura a koncepce OS Jádro OS (archos_kernel) Architektura a koncepce OS Typy OS (archos_typy)
Architektura a koncepce OS OS a HW (archos_hw) Aby fungoval OS s preemptivním multitaskingem, musí HW obsahovat: 1. (+2) přerušovací systém (interrupt system) 2. (+2) časovač Při používání DMA: 1. (+1)
Operační systémy. Jednoduché stránkování. Virtuální paměť. Příklad: jednoduché stránkování. Virtuální paměť se stránkování. Memory Management Unit
Jednoduché stránkování Operační systémy Přednáška 8: Správa paměti II Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné velikosti
Vláknové programování část I
Vláknové programování část I Lukáš Hejmánek, Petr Holub {xhejtman,hopet}@ics.muni.cz Laboratoř pokročilých síťových technologií PV192 2015 04 07 1/27 Vláknové programování v C/C++ 1. Procesy, vlákna, přepínání
Procesy a vlákna Mgr. Josef Horálek
Procesy a vlákna Mgr. Josef Horálek Procesy a vlákna = Základním úkolem jádra je = Správa běžících procesů a vláken: = vytváření = plánování = nastavování = ukončování Proces, vlákno, úloha = Proces běžící
ZOS OPAKOVÁNÍ. L. Pešička
ZOS OPAKOVÁNÍ L. Pešička ZÁKLADNÍ PRAVIDLO Důležité je znát nejen fakta, ale porozumět jim a zasadit je do kontextu celého OS Př. algoritmus Second Chance využívá bitu Referenced tak, že (fakta) a kdy
Von Neumannovo schéma
Multitasking Von Neumannovo schéma RAM 3 ADD SUB ZA input 20 28 010 100 registr dat 2 registr instrukcí op. code adr 7 LOAD 28 mikroprogramy 30 32 LOAD 28 ADD 20 registr adres 1 4 6 R W 30 čítač instrukcí
Správa procesoru. Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. 11. březen, 2011
Operační systémy Správa procesoru Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci 11. březen, 2011 Petr Krajča (UP) KMI/XOSY: Přednáška III. 11. březen, 2011 1 / 18 Procesy (1/2) neformálně:
Real Time programování v LabView. Ing. Martin Bušek, Ph.D.
Real Time programování v LabView Ing. Martin Bušek, Ph.D. Úvod - související komponenty LabVIEW development Konkrétní RT hardware - cíl Použití LabVIEW RT module - Pharlap ETS, RTX, VxWorks Možnost užití
Přednáška 11. Historie MS Windows. Architektura Windows XP. Grafické a znakové rozhraní. Úlohy, procesy a vlákna.
Přednáška 11 Historie MS Windows. Architektura Windows XP. Grafické a znakové rozhraní. Úlohy, procesy a vlákna. 1 Historie MS Windows I 1980 1981 1983 1990 1995 1998 2000 8-bitový procesor Intel 8080
Operační systémy. Přednáška 3: Plánování procesů a vláken
Operační systémy Přednáška 3: Plánování procesů a vláken 1 Plánovací algoritmy Určují, který z čekajících procesů (vláken) bude pokračovat. Typy plánování dlouhodobé (long-term scheduling) určuje, které
a co je operační systém?
a co je operační systém? Funkce vylepšení HW sjednocení různosti zařízení ulehčení programování (např. časové závislosti) přiblížení k potřebám aplikací o soubory namísto diskových bloků o více procesorů
Principy operačních systémů. Lekce 4: Správa procesů
Principy operačních systémů Lekce 4: Správa procesů Základní pojmy Program = zápis algoritmu v programovacím jazyce Je statický (neměnný) Proces = instance programu běžícího v počítači Je tvořen nejen
Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je možné, že někde bude chyba.
Odpovědi jsem hledala v prezentacích a na http://www.nuc.elf.stuba.sk/lit/ldp/index.htm Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je
Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
OPS Paralelní systémy, seznam pojmů, klasifikace
Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus
Přidělování paměti II Mgr. Josef Horálek
Přidělování paměti II Mgr. Josef Horálek Techniky přidělování paměti = Přidělování jediné souvislé oblasti paměti = Přidělování paměti po sekcích = Dynamické přemisťování sekcí = Stránkování = Stránkování
Paralelní programování
Paralelní programování přednášky Jan Outrata únor duben 2011 Jan Outrata (KI UP) Paralelní programování únor duben 2011 1 / 14 Atomické akce dále nedělitelná = neproložitelná jiným procesem izolovaná =
Procesy a vlákna - synchronizace
ÚVOD DO OPERAČNÍCH SYSTÉMŮ Ver.1.00 Procesy a vlákna - synchronizace České vysoké učení technické Fakulta elektrotechnická 2010 Studijní materiály a informace o předmětu http://measure.feld.cvut.cz/vyuka/predmety/bakalarske/navody
Přidělování CPU Mgr. Josef Horálek
Přidělování CPU Mgr. Josef Horálek Přidělování CPU = Přidělování CPU je základ multiprogramového OS = pomocí přidělování CPU různým procesům OS zvyšuje výkon výpočetního systému; = Základní myšlenka multiprogramování
Architektura rodiny operačních systémů Windows NT Mgr. Josef Horálek
Architektura rodiny operačních systémů Windows NT Mgr. Josef Horálek = Velmi malé jádro = implementuje jen vybrané základní mechanismy: = virtuální paměť; = plánování vláken; = obsluha výjimek; = zasílání
Přednáška 1. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška 1 Úvod do HW a OS. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
Principy operačních systémů. Lekce 1: Úvod
Principy operačních systémů Lekce 1: Úvod Sylabus Lekce 1: Úvod 2 Literatura Lekce 1: Úvod 3 Operační systém Základní programové vybavení počítače, které se zavádí do počítače při jeho startu a zůstává
Stavy procesů. Požadavky na OS při práci s procesy
Téma 3 Obsah 1. Výpočetní procesy a jejich stavy 2. Stavový diagram procesů 3. Plánovače a přepínání kontextu 4. Typy plánování 5. Vznik a zánik procesu 6. Způsoby kooperace procesů 7. Proces a vlákna
Procesy a vlákna. A3B33OSD (J. Lažanský) verze: Jaro 2014
Téma 3 Obsah 1. Výpočetní procesy a jejich stavy 2. Stavový diagram procesů 3. Plánovače a přepínání kontextu 4. Typy plánování 5. Vznik a zánik procesu 6. Způsoby kooperace procesů 7. Proces a vlákna
Obsah. Kapitola 1 Hardware, procesory a vlákna Prohlídka útrob počítače...20 Motivace pro vícejádrové procesory...21
Stručný obsah 1. Hardware, procesory a vlákna... 19 2. Programování s ohledemna výkon... 45 3. Identifikování příležitostí pro paralelizmus... 93 4. Synchronizace a sdílení dat... 123 5. Vlákna v rozhraní
Stavy procesů. Požadavky na OS při práci s procesy
Téma 3 Obsah 1. Výpočetní procesy a jejich stavy 2. Stavový diagram procesů 3. Plánovače a přepínání kontextu 4. Typy plánování 5. Vznik a zánik procesu 6. Způsoby kooperace procesů 7. Proces a vlákna
09. Memory management. ZOS 2006, L.Pešička
09. Memory management ZOS 2006, L.Pešička Správa paměti paměťová pyramida absolutní adresa relativní adresa počet bytů od absolutní adresy fyzický prostor adres fyzicky k dispozici výpočetnímu systému
Úvod do Linuxu. SŠSI Tábor 1
Úvod do Linuxu SŠSI Tábor 1 Trocha historie konec 60. let - AT&T vyvíjí MULTICS 1969 - AT&T Bell Labs - začátek OS Unix začátek 70.let - AT&T vývoj OS Unix kolem 1975 - University of California at Berkley
Distribuovaný systém je takový systém propojení množiny nezávislých počítačů, který poskytuje uživateli dojem jednotného systému.
1. B4. Počítačové sítě a decentralizované systémy Jakub MÍŠA (2006) Decentralizace a distribuovanost v architekturách počítačových sítí. Centralizovaná a distribuovaná správa prostředků, bezpečnostní politika
PRINCIPY OPERAČNÍCH SYSTÉMŮ
Metodický list č. 1 Název tématického celku: Přehled operačních systémů a jejich funkcí Základním cílem tohoto tematického celku je seznámení se s předmětem (vědním oborem) Operační systémy (OS) a se základními
VÝUKOVÝ MATERIÁL. 3. ročník učebního oboru Elektrikář Přílohy. bez příloh. Identifikační údaje školy
VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková
Vlákna Co je to vlákno?
Vlákna Co je to vlákno? Hierarchie z pohledu operačního systému: Proces o největší výpočetní entita plánovače o vlastní prostředky, paměť a další zdroje o v závislosti na OS možnost preemptivního multitaskingu
Stavba operačního systému
Stavba operačního systému Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Libor Otáhalík. Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785. Provozuje Národní ústav pro vzdělávání,
Téma 3 Procesy a vlákna
Téma 3 Procesy a vlákna Obsah 1. Výpočetní procesy a jejich stavy 2. Stavový diagram procesů 3. Plánovače a přepínání kontextu 4. Typy plánování 5. Vznik a zánik procesu 6. Způsoby kooperace procesů 7.
Správa procesoru. Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. Petr Krajča (UP) KMI/YOS: Přednáška III. 7. listopad, / 23
Operační systémy Správa procesoru Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci Petr Krajča (UP) KMI/YOS: Přednáška III. 7. listopad, 2014 1 / 23 Procesy (1/2) neformálně: proces = běžící
Pojem Výpočetní proces. Požadavky na OS při práci s procesy. Stavy procesů
Téma 3 Procesy a vlákna Obsah 1 Výpočetní procesy a jejich stavy 2 Stavový diagram procesů 3 Plánovače a přepínání kontextu 4 Typy plánování 5 Vznik a zánik procesu 6 Způsoby kooperace procesů 7 Proces
Principy operačních systémů
Principy operačních systémů Struktura programového vybavení Uživatelské programy Jádro operačního systému Interpret příkazů Hardware BIOS Služby OS Služební programy Operační systém Operační systém je
Přednáška 6. Procesy a vlákna (vznik, stavy, atributy). Signály. Nástroje pro práci s procesy a vlákny. Úvod do Operačních Systémů Přednáška 6
Přednáška 6 Procesy a vlákna (vznik, stavy, atributy). Signály. Nástroje pro práci s procesy a vlákny. 1 Procesy I Proces je spuštěný program. Každý proces má v rámci systému přiřazeno jednoznačné číslo
ÚVOD DO OPERAČNÍCH SYSTÉMŮ
ÚVOD DO OPERAČNÍCH SYSTÉMŮ Ver.1.00 Procesy a vlákna Plánování procesů (Process Scheduling) České vysoké učení technické Fakulta elektrotechnická 2010 Studijní materiály a informace o předmětu http://measure.feld.cvut.cz/vyuka/predmety/bakalarske/navody
Operační systémy. Přednáška 4: Komunikace mezi procesy
Operační systémy Přednáška 4: Komunikace mezi procesy 1 Časově závislé chyby Dva nebo několik procesů používá (čte/zapisuje) společné sdílené prostředky (např. sdílená paměť, sdílení proměnné, sdílené
Principy operačních systémů. Lekce 7: Obrana proti deadlocku
Principy operačních systémů Lekce 7: Obrana proti deadlocku Deadlock Deadlock = uváznutí, zablokování Vznik problému: proces drží určité prostředky, požaduje přidělení dalších prostředků, tyto nedostane
Ovladače pro Windows. Ovladače Windows A4M38KRP. Str. 1
Ovladače Windows A4M38KRP Str. 1 Struktura OS Windows Str. 2 Typy ovladačů Str. 3 Typy ovladačů Virtual Device Driver User mode ovladač Virtualizace HW pro DOS aplikace Legacy Driver Pro zařízení nepodporující
Činnost počítače po zapnutí
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Činnost počítače po zapnutí Paměť RWM(Read Write Memory - paměť pro čtení a zápis, označovaná také jako RAM)
OS Plánování procesů
OS Plánování procesů Tomáš Hudec Tomas.Hudec@upce.cz http://asuei01.upceucebny.cz/usr/hudec/vyuka/os/ Plánování scheduling scheduler plánovač rozhoduje, který proces (vlákno) má CPU řídí se plánovacím
Paralelní programování
Paralelní programování přednášky Jan Outrata únor duben 2011 Jan Outrata (KI UP) Paralelní programování únor duben 2011 1 / 11 Literatura Ben-Ari M.: Principles of concurrent and distributed programming.
Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií
VY_32_INOVACE_31_15 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední
OPERAČNÍ SYSTÉMY. Operační systém je prostředník mezi hardwarem (technickým vybavením počítače) a určitým programem, který uživatel používá.
Operační systém je prostředník mezi hardwarem (technickým vybavením počítače) a určitým programem, který uživatel používá. Co vše provádí operační systém: Organizuje přístup a využívání zdrojů počítače
Operační systém. Logické prostředky výpoč etního systému jsou:
Operační systém Pojmy Výpoč etní systém (například počíta č) je stroj na zpracování dat provádějící samočinn ě př edem zadané operace. Instrukce nejkratší, již dále nedělitelný povel, těmto povelům rozumí
Služba ve Windows. Služba (service) je program
Služby Windows Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Libor Otáhalík. Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785. Provozuje Národní ústav pro vzdělávání, školské
Operační systémy. Tomáš Hudec. Tomas.Hudec@upce.cz. http://asuei01.upceucebny.cz/usr/hudec/vyuka/os/
Operační systémy Tomáš Hudec Tomas.Hudec@upce.cz http://asuei01.upceucebny.cz/usr/hudec/vyuka/os/ Osnova definice OS historie rozdělení dle určení koncepce systémová volání rozdělení dle struktury 2 Literatura
Pokročilé architektury počítačů
Pokročilé architektury počítačů Tutoriál 3 CUDA - GPU Martin Milata Výpočetní model CUDA Organizace kódu Sériově organizovaný kód určený pro CPU Paralelní kód prováděný na GPU Označuje se jako kernel GPU
SUPERPOČÍTAČE DANIEL LANGR ČVUT FIT / VZLÚ
SUPERPOČÍTAČE DANIEL LANGR ČVUT FIT / VZLÚ TITAN / HOPPER / NOTEBOOK TITAN HOPPER NOTEBOOK Počet CPU jader 299 008 153 216 2 Operační paměť [GB] 598 016 217 000 8 Počet GPU (CUDA) jader 50 233 344 0 8
Operační systémy. Přednáška 1: Úvod
Operační systémy Přednáška 1: Úvod 1 Organizace předmětu Přednášky každé úterý 18:00-19:30 v D209 Přednášející Jan Trdlička email: trdlicka@fel.cvut.cz kancelář: K324 Cvičení pondělí, úterý, středa, pátek
3. Počítačové systémy
3. Počítačové systémy 3.1. Spolupráce s počítačem a řešení úloh 1. přímý přístup uživatele - neekonomické. Interakce při odlaďování programů (spusť., zastav.,krok, diagnostika) 2. dávkové zpracování (batch
Operační systémy. Cvičení 5: Volání jádra, procesy, vlákna.
Operační systémy Cvičení 5: Volání jádra, procesy, vlákna. 1 Obsah cvičení Systémová volání Knihovní funkce jazyka C Procesy informace o procesech vytváření, ukončování procesů, signály POSIX vlákna vytváření,
Základy programování Operační systémy (UNIX) doc. RNDr. Petr Šaloun, Ph.D. VŠB-TUO, FEI (přednáška připravena z podkladů Ing. Michala Radeckého)
Základy programování Operační systémy (UNIX) doc. RNDr. Petr Šaloun, Ph.D. VŠB-TUO, FEI (přednáška připravena z podkladů Ing. Michala Radeckého) Historický základ Jednoduché a málo výkonné počítače Uživatel
Matematika v programovacích
Matematika v programovacích jazycích Pavla Kabelíková am.vsb.cz/kabelikova pavla.kabelikova@vsb.cz Úvodní diskuze Otázky: Jaké programovací jazyky znáte? S jakými programovacími jazyky jste již pracovali?
Disková pole (RAID) 1
Disková pole (RAID) 1 Architektury RAID Důvod zavedení RAID: reakce na zvyšující se rychlost procesoru. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem.
Management procesu II Mgr. Josef Horálek
Management procesu II Mgr. Josef Horálek Vlákna = Vlákna (Threads) = proces je definován množinou zdrojů výpočetního systému, které používá a umístěním, kde je spuštěn; = vlákno (thread) nazýváme lehký
Maturitní otázky z předmětu PROGRAMOVÁNÍ
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu PROGRAMOVÁNÍ 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu ověřování správnosti
Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2
Základy informatiky 2. Přednáška HW Lenka Carr Motyčková February 22, 2011 Základy informatiky 1 February 22, 2011 Základy informatiky 2 February 22, 2011 Základy informatiky 3 February 22, 2011 Základy
Systém adresace paměti
Systém adresace paměti Základní pojmy Adresa fyzická - adresa, která je přenesena na adresní sběrnici a fyzicky adresuje hlavní paměť logická - adresa, kterou má k dispozici proces k adresaci přiděleného
Operační systém (Operating System)
ÚVOD DO OPERAČNÍCH SYSTÉMŮ Ver.1.00 Operační systém (Operating System) Definice, komponenty OS, vývoj a typy OS, služby OS, systémová volání, systémové programy, architektura České vysoké učení technické
Přerušovací systém s prioritním řetězem
Přerušovací systém s prioritním řetězem Doplňující text pro přednášky z POT Úvod Přerušovací systém mikropočítače může být koncipován několika způsoby. Jednou z možností je přerušovací systém s prioritním
Struktura pamětí a procesů v DB Oracle. Radek Strnad
Struktura pamětí a procesů v DB Oracle Radek Strnad radek.strnad@gmail.com 1 Základní rozdělení paměti Software codes area Chráněná část spustitelného kódu samotné DB. System global area (SGA) Sdílená
Metody připojování periferií BI-MPP Přednáška 2
Metody připojování periferií BI-MPP Přednáška 2 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011
SÁM O SOBĚ DOKÁŽE POČÍTAČ DĚLAT JEN O MÁLO VÍC NEŽ TO, ŽE PO ZAPNUTÍ, PODOBNĚ JAKO KOJENEC PO PROBUZENÍ, CHCE
OPERAČNÍ SYSTÉMY SÁM O SOBĚ DOKÁŽE POČÍTAČ DĚLAT JEN O MÁLO VÍC NEŽ TO, ŽE PO ZAPNUTÍ, PODOBNĚ JAKO KOJENEC PO PROBUZENÍ, CHCE JÍST. OPERAČNÍ SYSTÉMY PŮVODNĚ VYVINUTY K ŘÍZENÍ SLOŽITÝCH VSTUPNÍCH A VÝSTUPNÍCH
MetaCentrum - Virtualizace a její použití
MetaCentrum - Virtualizace a její použití Miroslav Ruda,... Cesnet Brno, 2009 M. Ruda (Cesnet) Virtualizace Brno, 2009 1 / 18 Obsah Motivace co je virtualizace kde ji lze využít Stávající využití na výpočetních
2010/2011 ZS. Operační systém. úvod základní architektury
Principy počítačů a operačních systémů Operační systém úvod základní architektury Historický vývoj 1. generace počítačů (40.-50. léta 20. stol.) technologie relé, elektronky programování strojový kód propojovací
Operační systémy. Přednáška 7: Správa paměti I
Operační systémy Přednáška 7: Správa paměti I 1 Správa paměti (SP) Memory Management Unit (MMU) hardware umístěný na CPU čipu např. překládá logické adresy na fyzické adresy, Memory Manager software, který
Ukázka zkouškové písemka OSY
Ukázka zkouškové písemka OSY Jméno a příjmení:.......................................... Odpovězte na otázky zaškrtnutím příslušného políčka. Otázky označené znakem mohou mít více než jednu správnou odpověď.
Přednáška. Správa paměti I. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Správa paměti I. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
vjj 1. Priority. Dispatcher
13.06.18 vjj 1 Priority Dispatcher 13.06.18 vjj 2 round-robin cyklická fronta připravených vláken 13.06.18 vjj 3 round-robin cyklická fronta připravených vláken čekající vlákna 13.06.18 vjj 4 Priority
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Správa paměti v zos 1 2 3 4 5 6 7 Data se ukládají do: REAL STORAGE = "rychlá" pamět např. RAM AUXILIARY
Virtualizace. Lukáš Krahulec, KRA556
Virtualizace Lukáš Krahulec, KRA556 Co je vitualizace Způsob jak přistupovat ke zdrojům systému jako k univerzálnímu výkonu a nezajímat se o železo Způsob jak využít silný HW a rozložit ho mezi uživatele,
Úloha OS, prostředky počítače, představa virtuálního počítače
Úloha OS, prostředky počítače, představa virtuálního počítače OS softwarová nadstavba HW společně s HW představuje virtuální počítač rozhraní mezi uživatelem a systémem prostředí pro provádění programů
OPERAČNÍ SYSTÉMY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ PŘIDĚLOVÁNÍ PROCESORU. doc. Dr. Ing. Oldřich Kodym.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ OPERAČNÍ SYSTÉMY PŘIDĚLOVÁNÍ PROCESORU doc. Dr. Ing. Oldřich Kodym Ostrava 2013 doc. Dr. Ing. Oldřich Kodym Vysoká škola báňská Technická
Hardware - komponenty počítačů Von Neumannova koncepce počítače. Von Neumannova koncepce počítače
V roce 1945 vystoupil na přednášce v USA matematik John von Neumann a představil architekturu samočinného univerzálního počítače (von Neumannova koncepce/schéma/architektura). Základy této koncepce se
Operační systémy. Přednáška 8: Správa paměti II
Operační systémy Přednáška 8: Správa paměti II 1 Jednoduché stránkování Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné
Operační systémy 1. Přednáška číslo 10 26. 4. 2010. Struktura odkládacích zařízení
Operační systémy 1 Přednáška číslo 10 26. 4. 2010 Struktura odkládacích zařízení Základní pojmy Paměťové médium periferní zařízení nejvyšší důležitosti samotný OS je obvykle uložen na paměťovém zařízení.
Téma 2 Architektury OS a jejich služby
Téma 2 Obsah 1. Úkoly a skladba OS 2. Složky OS a jejich určení 3. Systémové programy 4. Standardy pro služby OS a typické služby JOS 5. Mechanismus volání služeb 6. Monolitické OS 7. OS s mikrojádrem
Operační systémy 2. Struktura odkládacích zařízení Přednáška číslo 10
Operační systémy 2 Struktura odkládacích zařízení Přednáška číslo 10 Základní pojmy Paměťové médium periferní zařízení nejvyšší důležitosti samotný OS je obvykle uložen na paměťovém zařízení. Proto je
Paralelní architektury se sdílenou pamětí typu NUMA. NUMA architektury
Paralelní architektury se sdílenou pamětí typu NUMA NUMA architektury Multiprocesorové systémy s distribuovanou pamětí I. úzkým hrdlem multiprocesorů se sdílenou pamětí je datová komunikace s rostoucím
Přednáška 2. Procesy a vlákna. Časově závislé chyby. Kritické sekce.
Přednáška 2 Procesy a vlákna. Časově závislé chyby. Kritické sekce. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je
PROGRAMOVÁNÍ ŘÍDÍCÍCH SYSTÉMŮ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ PROGRAMOVÁNÍ ŘÍDÍCÍCH SYSTÉMŮ Procesy, paralelní procesy, souběžné zpracování Ing. Ivo Špička, Ph.D. Ostrava 2013 Ing. Ivo Špička, Ph.D.
Pokročilé architektury počítačů
Pokročilé architektury počítačů Tutoriál 2 Virtualizace a její dopady Martin Milata Obsah Virtualizace Jak virtualizace funguje Typy HW podpora virtualizace Dopady virtualizace Jak virtualizace funguje?
Logická organizace paměti Josef Horálek
Logická organizace paměti Josef Horálek Logická organizace paměti = Paměť využívají = uživatelské aplikace = operační systém = bios HW zařízení = uloženy adresy I/O zařízení atd. = Logická organizace paměti