Paralelní programování
|
|
- Jaromír Prokop
- před 9 lety
- Počet zobrazení:
Transkript
1 Paralelní programování přednášky Jan Outrata únor duben 2011 Jan Outrata (KI UP) Paralelní programování únor duben / 14
2 Atomické akce dále nedělitelná = neproložitelná jiným procesem izolovaná = dočasné stavy neviditelné výsledek současného vykonání = výsledek sekvenčního vykonání (v libovolném pořadí) podle potřeby různé úrovně abstrakce: hrubé (coarse-grained): např. volání funkcí jemné (fine-grained): např. příkaz, instrukce procesoru ale korektnost algoritmu závisí na zvolené úrovni, tj. specifikaci atom. akcí Jan Outrata (KI UP) Paralelní programování únor duben / 14
3 Atomická inkrementace Př. Atomická inkrementace int n 0 A B 1: n n + 1 1: n n + 1 A B n 1: n n + 1 1: n n konec 1: n n konec konec 2 A B n 1: n n + 1 1: n n : n n + 1 konec 1 konec konec 2 Obrázek: Atomická inkrementace na hrubé úrovni abstrakce a možné scénáře Jsou to všechny možné scénáře? Program je korektní (vzhledem k postkondici n = 2). Problém: Akce n = n + 1 (s glob. proměnnou n) na hardware nebývá atomická, instrukce jsou vykonávány na nižší (jemnější) úrovni abstrakce! Jan Outrata (KI UP) Paralelní programování únor duben / 14
4 Architektury (virtuálního) hardware registrové instrukce prováděny s registry v procesoru, data načítána z (load) a zapisována do (store) paměti, registry lokální proměnné (procesor má vlastní sadu nebo kontext) Př. Neatomická inkrementace int n 0 A B 1: load R, n 1: load R, n 2: add R, 1 2: add R, 1 3: store R, n 3: store R, n Obrázek: Inkrementace na registrovém stroji Jan Outrata (KI UP) Paralelní programování únor duben / 14
5 instrukce, včetně načítání z a zápisu do paměti, jsou atomické abstrakce registrů nebo vrcholu zásobníku pomocí lokálních proměnných Jan Outrata (KI UP) Paralelní programování únor duben / 14 Architektury (virtuálního) hardware zásobníkové instrukce prováděny s vrcholem zásobníku v procesoru, data načítána z (push) a zapisována do (pop) paměti, položky zásobníku lokální proměnné ( procesor má vlastní zásobník) Př. Neatomická inkrementace int n 0 A B 1: push n 2: push 1 3: add 4: pop n 1: push n 2: push 1 3: add 4: pop n Obrázek: Inkrementace na zásobníkovém stroji
6 Neatomická inkrementace Př. Neatomická inkrementace int n 0 A B int tmp 1: tmp n 2: n tmp + 1 int tmp 1: tmp n 2: n tmp + 1 A B n A.tmp B.tmp 1: tmp n 1: tmp n 0?? 2: n tmp + 1 1: tmp n 0 0? konec 1: tmp n 1? konec 2: n tmp konec konec 2 A B n A.tmp B.tmp 1: tmp n 1: tmp n 0?? 2: n tmp + 1 1: tmp n 0 0? 2: n tmp + 1 2: n tmp konec 2: n tmp konec konec 1 Obrázek: Neatomická inkrementace na jemnější úrovni abstrakce a možné scénáře Jan Outrata (KI UP) Paralelní programování únor duben / 14
7 Neatomická inkrementace Kolik je všech možných scénářů? Výsledek programu je 2, dokud akce 1 a 2 jsou ihned po sobě, neproložené. Program je nekorektní (vzhledem k postkondici n = 2). Př. race condition (chyba souběhu) = neplatný výsledek výpočru v důsledku (nevhodného) proložení akcí A int tmp 1: do 10 times 2: tmp n 3: n tmp + 1 Počítadlo int n 0 B int tmp 1: do 10 times 2: tmp n 3: n tmp + 1 Obrázek: Demonstrace konkurentního počítadla Jakých všech možných hodnot může n po výpočtu nabývat? Jan Outrata (KI UP) Paralelní programování únor duben / 14
8 Kritická reference Kdy je potřeba analýza na jemnější úrovni abstrakce? výskyt proměnné (v akci) je kritická reference (KR), jestliže (a) do proměnné je přiřazováno (zapisováno) a je referencována (čtena) v jiném procesu nebo (b) proměnná je referencována (čtena) a je do ní přiřazováno (zapisováno) v jiném procesu podmínka kritických referencí (KR) = každá akce programu obsahuje nejvýše jednu kritickou referenci nesplnění podmínky KR pro akci = interference akce s akcí (akcemi) v jiném procesu, může vést k chybám souběhu Př. Akce n = n + 1 v příkladu inkrementace nesplňuje podmínku kritických referencí, zatímco akce s lokální proměnnou tmp ano. Proč? Jan Outrata (KI UP) Paralelní programování únor duben / 14
9 Podmínka kritických referencí Atomičnost akcí programu Konkuretní program, který splňuje podmínku kritických referencí (KR), vykazuje stejná chování (dosahuje stejných výsledků), ať jsou jeho akce atomické nebo jsou složeny z jednodušších akcí s atomickým přiřazením a referencováním (globální) proměnné. akce splňující podmínku KR atomická akce na jemné abstraktní úrovni (stroje) při převodu hrubé atom. akce (programu), která (který) nesplňuje podmínku KR, na posloupnost jemnějších atom. akcí (program) splňujících (splňující) podmínku KR a tím vyloučení interferencí může být potřeba další sychronizace Jan Outrata (KI UP) Paralelní programování únor duben / 14
10 Neatomické a volatilní proměnné Neatomické proměnné = proměnné (větších) datových typů, ze kterých není čteno a/nebo do kterých není zapisováno strojem atomicky možnost chyb souběhu (v případě globální proměnné) potřeba synchronizace pro zajištění atomicity ostatní tzv. atomické proměnné = proměnné atomického datového typu, např. int (slovo stroje) Volatilní proměnné proměnná, do které je přiřazeno, nemusí být v rámci akce uložena do paměti, může být držena v registrech nebo na vrcholu zásobníku a do paměti uložena později, kvůli optimalizaci navíc, v rámci optimalizací, může být změněno pořadí akcí v procesu (které nemá vliv na chování procesu) v jiném procesu může být hodnota (globální) proměnné neaktuální možnost chyb souběhu = proměnná, která je načtena z paměti v rámci reference a uložena do paměti v rámci přiřazení Jan Outrata (KI UP) Paralelní programování únor duben / 14
11 Korektnost sekvenční program se při každém spuštění se stejnými daty na vstupu chová stejně (tzn. vrátí stejný výsledek), tj. má jediný scénář vykonávání má smysl ladit ( debugovat ) konkurentní program může mít více scénářů vykonávání s různými chováními (výsledky) nelze klasicky ladit při každém spuštění může být jiný scénář řešení problémů, které vznikají v důsledku proložení akcí (využívajících globální proměnné) (částečná) korektnost sekvenčního programu: (jestliže) skončí, a (pak) výstup je správný vzhledem k podmínkám na vstupu (prekondice) a výstupu (postkondice) konkurentní program nemusí skončit (může to být chyba!) a přitom může být korektní Jan Outrata (KI UP) Paralelní programování únor duben / 14
12 Korektnost = (korektnost konkuretního programu) definována pomocí vlastností výpočtů (scénářů): bezpečnosti (safety) = tvrzení (resp. negace tvrzení), které je vždy pravdivé (resp. nepravdivé), tzn. v každém stavu každého výpočtu, např. program nikdy nezatuhne živosti (liveness) = tvrzení, které je někdy pravdivé, tzn. v nějakém stavu každého výpočtu, např. program se někdy rozběhne bezpečnost jednoduché dosáhnout, např. triviálně, těžší splnit živost bez porušení bezpečnosti bezpečnost a živost jsou duální vlastnosti negace jedné je druhá definována pro každý výpočet (dle každého scénáře) nemožné ukázat testováním programu, analýza všech scénářů náročná formální metody ověření [ponecháno do předmětu navazujícího studia] Jan Outrata (KI UP) Paralelní programování únor duben / 14
13 Férovost výjimka z požadavku na scénář výpočtu jako posloupnosti libovolně proložených atom. akcí procesů (a tedy výběru následující atom. akce z následujících atom akcí procesů bez omezení) = scénář zcela bez atom. akcí nějakého procesu scénář je (slabě) férový, jestliže každá akce procesu, která je neustále povolená (tj. může být vykonána), se někdy objeví ve scénáři (a bude vykonána) akce přiřazení a řídící akce jsou neustále povolené scénář je silně férový, jestliže každá akce procesu, která je opakovaně povolená, se někdy objeví ve scénáři povolení a zakázání akce viz dále omezení scénářů na férové závisí na férovosti plánovací politiky paralelní architektury, např. cyklická (round-robin) s časovými kvanty je slabě férová, cyklická s výběrem po každé atom. akci je silně férová korektnost programu závisí na férovosti Jan Outrata (KI UP) Paralelní programování únor duben / 14
14 Férovost Př. Přerušení cyklu int n 0 bool flag false A B 1: while flag = false 2: n 1 - n 1: flag true Obrázek: Demostrace (slabé) férovosti Zastaví algoritmus vždy (pro všechny scénáře)? Tj. je korektní vzhledem k podmínce (postkondici), že vždy zastaví? Jan Outrata (KI UP) Paralelní programování únor duben / 14
Paralelní programování
Paralelní programování přednášky Jan Outrata únor duben 2011 Jan Outrata (KI UP) Paralelní programování únor duben 2011 1 / 11 Literatura Ben-Ari M.: Principles of concurrent and distributed programming.
Paralelní programování
Paralelní programování přednášky Jan Outrata únor duben 2011 Jan Outrata (KI UP) Paralelní programování únor duben 2011 1 / 11 Literatura Ben-Ari M.: Principles of concurrent and distributed programming.
Paralelní programování
Paralelní programování přednášky Jan Outrata únor duben 2011 Jan Outrata (KI UP) Paralelní programování únor duben 2011 1 / 16 Semafory Await synchronizace používající await běží na železe = využívají
Paralelní programování
Paralelní programování přednášky Jan Outrata únor duben 2007 Jan Outrata (KI UP) Paralelní programování únor duben 2007 1 / 163 Úvod Paralelní (konkurentní) programování = konstrukce programu obsahujícího
Paralelní programování
Paralelní programování přednášky Jan Outrata únor duben 2011 Jan Outrata (KI UP) Paralelní programování únor duben 2011 1 / 17 Monitor Semafor vedle aktivní (čekací smyčka, busy-wait) i pasivní implementace
Procesy a vlákna - synchronizace
ÚVOD DO OPERAČNÍCH SYSTÉMŮ Ver.1.00 Procesy a vlákna - synchronizace České vysoké učení technické Fakulta elektrotechnická 2010 Studijní materiály a informace o předmětu http://measure.feld.cvut.cz/vyuka/predmety/bakalarske/navody
Paralelní programování
Paralelní programování přednášky Jan Outrata únor květen 2011 Jan Outrata (KI UP) Paralelní programování únor květen 2011 1 / 15 Simulátor konkurence abstrakce = libovolné proložení atom. akcí sekvenčních
Lekce 04 Řídící struktury
Počítačové laboratoře bez tajemství aneb naučme se učit algoritmizaci a programování s využitím robotů Lekce 04 Řídící struktury Tento projekt CZ.1.07/1.3.12/04.0006 je spolufinancován Evropským sociálním
Paralelní programování
Paralelní programování přednáška 5 Michal Krupka 15. března 2011 Michal Krupka (KI UP) Paralelní programování 15. března 2011 1 / 13 Ještě ke kritickým sekcím Použití v praxi obvykle pomocí zámků (locks)
Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.
Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou
Paralelní programování
Paralelní programování cvičení Jan Outrata únor duben 2011 Jan Outrata (KI UP) Paralelní programování únor duben 2011 1 / 13 Cvičení 1 Jazyk C POSIX Threads (UNIX) hlavičkový soubor pthread.h, knihovna
Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy
Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou
1/1 ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA PŘIJÍMACÍ ŘÍZENÍ 2017/2018
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA PŘIJÍMACÍ ŘÍZENÍ 2017/2018 Informační technologie 1 - Doporučená doba zpracování: 40 minut 1) Termín DCL v relačně databázové technologii
Kapitola 13: Transakce. Koncept transakce. ACID vlastnosti
- 13.1 - Kapitola 13: Transakce Koncept transakce Stavy transakce Implementace atomičnosti a trvanlivosti Souběžné spouštění Serializovatelnost Koncept transakce Transakce je posloupnost operací (část
Paralelní programování
Paralelní programování přednáška 3 Michal Krupka 1. března 2011 Michal Krupka (KI UP) Paralelní programování 1. března 2011 1 / 14 Ještě k atomickým proměnným Další neatomické proměnné Mohou to být proměnné,
Lineární datové struktury
Lineární datové struktury doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Lineární datové
Algoritmy. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 15. dubna / 39
Algoritmy Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 15. dubna 2018 1/ 39 Algoritmy Příklad: Popis algoritmu pomocí pseudokódu: Algoritmus 1: Algoritmus pro nalezení největšího prvku v poli 1 Find-Max(A,n):
Princip funkce počítače
Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování
Řídicí struktury. alg3 1
Řídicí struktury Řídicí struktura je programová konstrukce, která se skládá z dílčích příkazů a předepisuje pro ně způsob provedení Tři druhy řídicích struktur: posloupnost, předepisující postupné provedení
setup() { I = 0; } loop() { I = I + 1; }
PŘERUŠENÍ Procesor pracuje tak, že načítá z paměti jednotlivé instrukce a ty následně zpracovává. Instrukce se zpracovávají v pořadí v jakém jsou uloženy v paměti. Vezměme jednoduchý program, který v nekonečném
Principy operačních systémů. Lekce 6: Synchronizace procesů
Principy operačních systémů Lekce 6: Synchronizace procesů Kritická sekce Při multitaskingu (multithreadingu) různé procesy často pracují nad společnou datovou strukturou (např. zápis a čtení do/z fronty)
Procesy a vlákna (Processes and Threads)
ÚVOD DO OPERAČNÍCH SYSTÉMŮ Ver.1.00 Procesy a vlákna (Processes and Threads) Správa procesů a vláken České vysoké učení technické Fakulta elektrotechnická 2012 Použitá literatura [1] Stallings, W.: Operating
Algoritmizace a programování
Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu
Obsah přednášky. programovacího jazyka. Motivace. Princip denotační sémantiky Sémantické funkce Výrazy Příkazy Vstup a výstup Kontinuace Program
Denotační sémantika programovacího jazyka doc. Dr. Ing. Miroslav Beneš katedra informatiky, A-1007 59 732 4213 Obsah přednášky Princip denotační sémantiky Sémantické funkce Výrazy Příkazy Vstup a výstup
Konzistentnost. Přednášky z distribuovaných systémů
Konzistentnost Přednášky z distribuovaných systémů Pro a proti replikaci 1. Zvýšení spolehlivosti. 2. Zvýšení výkonnosti. 3. Nutnost zachování škálovatelnosti systému co do počtu komponent i geografické
1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:
1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.
Paralení programování pro vícejádrové stroje s použitím OpenMP. B4B36PDV Paralelní a distribuované výpočty
Paralení programování pro vícejádrové stroje s použitím OpenMP B4B36PDV Paralelní a distribuované výpočty Minulé cvičení: Vlákna a jejich synchronizace v C++ 11... 1 Minulé cvičení: Vlákna a jejich synchronizace
Výpočet v módu jádro. - přerušení (od zařízení asynchronně) - výjimky - softvérové přerušení. v důsledku událostí
Výpočet v módu jádro v důsledku událostí - přerušení (od zařízení asynchronně) - výjimky - softvérové přerušení řízení se předá na proceduru pro ošetření odpovídající události část stavu přerušeného procesu
Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false
Logické operace Datový typ bool může nabýt hodnot: o true o false Relační operátory pravda, 1, nepravda, 0, hodnoty všech primitivních datových typů (int, double ) jsou uspořádané lze je porovnávat binární
Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).
7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené
Jako pomůcka jsou v pravém dolním rohu vypsány binární kódy čísel od 0 do 15 a binární kódy příkazů, které máme dispozici (obr.21). Obr.
Model procesoru Jedná se o blokové schéma složené z registrů, paměti RAM, programového čítače, instrukčního registru, sčítačky a řídicí jednotky, které jsou propojeny sběrnicemi. Tento model má dva stavy:
Operační systémy. Přednáška 4: Komunikace mezi procesy
Operační systémy Přednáška 4: Komunikace mezi procesy 1 Časově závislé chyby Dva nebo několik procesů používá (čte/zapisuje) společné sdílené prostředky (např. sdílená paměť, sdílení proměnné, sdílené
PODOBÁ SE JAZYKU C S NĚKTERÝMI OMEZENÍMI GLOBÁLNÍ PROMĚNNÉ. NSWI162: Sémantika programů 2
PI JE JEDNODUCHÝ IMPERATIVNÍ PROGRAMOVACÍ JAZYK OBSAHUJE PODPORU ANOTACÍ NEOBSAHUJE NĚKTERÉ TYPICKÉ KONSTRUKTY PROGRAMOVACÍCH JAZYKŮ JAKO JSOU REFERENCE, UKAZATELE, GLOBÁLNÍ PROMĚNNÉ PODOBÁ SE JAZYKU C
Maturitní otázky z předmětu PROGRAMOVÁNÍ
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu PROGRAMOVÁNÍ 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu ověřování správnosti
8 Třídy, objekty, metody, předávání argumentů metod
8 Třídy, objekty, metody, předávání argumentů metod Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost třídám a objektům, instančním
Synchronizace Mgr. Josef Horálek
Synchronizace Mgr. Josef Horálek Synchronizace procesu = Kooperující proces je proces, který může ovlivnit nebo být ovlivněn jiným procesem právě spuštěným v systému = Spolupracující procesy mohou sdílet:
Knihovna EpsnetLib TXV 003 73.01 první vydání září 2012 změny vyhrazeny
Knihovna EpsnetLib TXV 003 73.01 první vydání září 2012 změny vyhrazeny 1 TXV 003 73.01 Historie změn Datum Vydání Popis změn Září 2012 1 První vydání, popis odpovídá EpsnetLib_v11 OBSAH 1 Úvod...3 2 Datové
Algoritmy a datové struktury
Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá
6. Příkazy a řídící struktury v Javě
6. Příkazy a řídící struktury v Javě Příkazy v Javě Příkazy v Javě Řídicí příkazy (větvení, cykly) Přiřazovací příkaz = Řízení toku programu (větvení, cykly) Volání metody Návrat z metody - příkaz return
Ukázka zkouškové písemka OSY
Ukázka zkouškové písemka OSY Jméno a příjmení:.......................................... Odpovězte na otázky zaškrtnutím příslušného políčka. Otázky označené znakem mohou mít více než jednu správnou odpověď.
Vyučovací hodina. 1vyučovací hodina: 2vyučovací hodiny: Opakování z minulé hodiny. Procvičení nové látky
Vyučovací hodina 1vyučovací hodina: Opakování z minulé hodiny Nová látka Procvičení nové látky Shrnutí 5 min 20 min 15 min 5 min 2vyučovací hodiny: Opakování z minulé hodiny Nová látka Procvičení nové
ŘÍKÁME, ŽE FUNKCE JE ČÁSTEČNĚ SPRÁVNÁ (PARTIALLY CORRECT), POKUD KDYŽ JE SPLNĚNA PRECONDITION
ŘÍKÁME, ŽE FUNKCE JE ČÁSTEČNĚ SPRÁVNÁ (PARTIALLY CORRECT), POKUD KDYŽ JE SPLNĚNA PRECONDITION FUNKCE PŘI JEJÍM ZAVOLÁNÍ, JEJÍ POSTCONDITION JE SPLNĚNA PŘI NÁVRATU Z FUNKCE (POKUD NASTANE) OBECNĚ FUNKCE
VISUAL BASIC. Přehled témat
VISUAL BASIC Přehled témat 1 ÚVOD DO PROGRAMOVÁNÍ Co je to program? Kuchařský předpis, scénář k filmu,... Program posloupnost instrukcí Běh programu: postupné plnění instrukcí zpracovávání vstupních dat
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Návrh softwarových systémů - mobilita. Jiří Šebek (B6B36NSS)
Návrh softwarových systémů - mobilita Jiří Šebek Návrh softwarových systémů (B6B36NSS) Co to je mobilita a jak se projevuje v návrhu softwaru? 2 Mobilita Jedna z vlastností systému/ podsystému/ algoritmu
10. Složitost a výkon
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří
Algoritmizace, základy programování, VY_32_INOVACE_PRG_ALGO_01
Anotace sady: Algoritmizace, základy programování, VY_32_INOVACE_PRG_ALGO_01 Autor: Blanka Sadovská Klíčová slova: Algoritmus, proměnná, diagram Stupeň a typ vzdělávání: gymnaziální vzdělávání, 3. ročník
Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě
Metody přidělování paměti Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě Důležitá hlediska jazykových konstrukcí: Dynamické typy Dynamické
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Algoritmus Daniela Szturcová Tento
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová
5. STRUKTURA PLC PROGRAMU
5. STRUKTURA PLC PROGRAMU Struktura PLC programu je navržena s ohledem na co jefektivnější návrh programu při přizpůsobení CNC systému na stroj. 5.1 Moduly jazyka TECHNOL Moduly jazyka PLC836 byly vytvořeny
3. přednáška. Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti
Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti 3. přednáška nalezení největšího prvku, druhého nejvyššího prvku, algoritmus shozeného praporku. Algoritmizace
VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Algoritmus Daniela Szturcová Tento
Vlastnosti algoritmu. elementárnost. determinovanost. rezultativnost. konečnost. hromadnost. efektivnost
Programování Algoritmus návod na vykonání činnosti, který nás od (měnitelných) vstupních dat přivede v konečném čase k výsledku přesně definovaná konečná posloupnost činností vedoucích k výsledku (postup,
Pavel Procházka. 3. prosince 2014
Jazyk C# (seminář 11) Pavel Procházka KMI 3. prosince 2014 Motivace Dnes už se prakticky nedělají jednojádrové procesory pokud potřebujeme výkon, musíme zapojit všechna jádra Často potřebujeme dělat více
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
IV113 Validace a verifikace. Formální verifikace algoritmů. Jiří Barnat
IV113 Validace a verifikace Formální verifikace algoritmů Jiří Barnat Verifikace algoritmů IV113 Úvod do validace a verifikace: Formální verifikace str. 2/29 Validace a Verifikace Jeden z obecných cílů
Přerušovací systém s prioritním řetězem
Přerušovací systém s prioritním řetězem Doplňující text pro přednášky z POT Úvod Přerušovací systém mikropočítače může být koncipován několika způsoby. Jednou z možností je přerušovací systém s prioritním
Obsah. Kapitola 1 Hardware, procesory a vlákna Prohlídka útrob počítače...20 Motivace pro vícejádrové procesory...21
Stručný obsah 1. Hardware, procesory a vlákna... 19 2. Programování s ohledemna výkon... 45 3. Identifikování příležitostí pro paralelizmus... 93 4. Synchronizace a sdílení dat... 123 5. Vlákna v rozhraní
for (i = 0, j = 5; i < 10; i++) { // tělo cyklu }
5. Operátor čárka, - slouží k jistému určení pořadí vykonání dvou příkazů - oddělím-li čárkou dva příkazy, je jisté, že ten první bude vykonán dříve než příkaz druhý. Např.: i = 5; j = 8; - po překladu
6 Příkazy řízení toku
6 Příkazy řízení toku Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost příkazům pro řízení toku programu. Pro všechny tyto základní
Principy operačních systémů. Lekce 5: Multiprogramming a multitasking, vlákna
Principy operačních systémů Lekce 5: Multiprogramming a multitasking, vlákna Multiprogramování předchůdce multitaskingu Vzájemné volání: Implementován procesem (nikoliv OS) Procesu je přidělen procesor,
Architektury paralelních počítačů II.
Architektury paralelních počítačů II. Sekvenční konzistence paměti Implementace synchronizačních událostí Ing. Miloš Bečvář s použitím slajdů Prof. Ing. Pavla Tvrdíka, CSc. Osnova přednášky Opakování definice
Základy algoritmizace
Algoritmus Toto je sice na první pohled pravdivá, ale při bližším prozkoumání nepřesná definice. Například některé matematické postupy by této definici vyhovovaly, ale nejsou algoritmy. Přesné znění definice
Paměťový podsystém počítače
Paměťový podsystém počítače typy pamětových systémů počítače virtuální paměť stránkování segmentace rychlá vyrovnávací paměť 30.1.2013 O. Novák: CIE6 1 Organizace paměťového systému počítače Paměťová hierarchie...
ADT/ADS = abstraktní datové typy / struktury
DT = datové typy obor hodnot, které může proměnná nabývat, s operacemi na tomto oboru určen: obor hodnot + výpočetní operace např. INT = { 2 147 483 648 až +2 147 483 647} + {+,,*,/,} ADT/ADS = abstraktní
ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14
ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv
1 Strukturované programování
Projekt OP VK Inovace studijních oborů zajišťovaných katedrami PřF UHK Registrační číslo: CZ.1.07/2.2.00/28.0118 1 Cíl Seznámení s principy strukturovaného programování, s blokovou strukturou programů,
Název předmětu: Školní rok: Forma studia: Studijní obory: Ročník: Semestr: Typ předmětu: Rozsah a zakončení předmětu:
Plán předmětu Název předmětu: Algoritmizace a programování (PAAPK) Školní rok: 2007/2008 Forma studia: Kombinovaná Studijní obory: DP, DI, PSDPI, OŽPD Ročník: I Semestr: II. (letní) Typ předmětu: povinný
LabView jako programovací jazyk II
LabView jako programovací jazyk II - Popis jednotlivých funkcí palety Function I.část - Expresní funkce, struktury, Ing. Martin Bušek, Ph.D. Paleta Functions Základní prvky pro tvorbu programu blokového
Strojový kód. Instrukce počítače
Strojový kód Strojový kód (Machine code) je program vyjádřený v počítači jako posloupnost instrukcí procesoru (posloupnost bajtů, resp. bitů). Z hlediska uživatele je strojový kód nesrozumitelný, z hlediska
Služba ve Windows. Služba (service) je program
Služby Windows Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Libor Otáhalík. Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785. Provozuje Národní ústav pro vzdělávání, školské
Analýza toku dat. Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. 15. listopad, 2012
Překladače 2 Analýza toku dat Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci 15. listopad, 2012 Petr Krajča (UP) KMI/PRKL2: Přednáška I. 15. listopad, 2012 1 / 33 Lokální analýza: živost
Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb.
Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. 1. Informace o přijímacích zkouškách Studijní program: Informatika navazující magisterský
1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:
1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.
Sekvenční a podmíněné provádění
Programování v Bourne shellu Sekvenční a podmíněné provádění Sekvenční provádění znamená vykonávání jednoho příkazu za druhým bez ohledu na okolnosti. Pro oddělení příkazů při sekvenčním provádění se používá
Základy algoritmizace a programování
Základy algoritmizace a programování Příklady v MATLABu Přednáška 10 30. listopadu 2009 Řídící instrukce if else C Matlab if ( podmínka ) { } else { } Podmíněný příkaz if podmínka elseif podmínka2... else
Základní datové struktury
Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013
Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě
Metody přidělování paměti Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě Důležitá hlediska jazykových konstrukcí: Dynamické typy Dynamické
Přidělování paměti II Mgr. Josef Horálek
Přidělování paměti II Mgr. Josef Horálek Techniky přidělování paměti = Přidělování jediné souvislé oblasti paměti = Přidělování paměti po sekcích = Dynamické přemisťování sekcí = Stránkování = Stránkování
Pohled do nitra mikroprocesoru Josef Horálek
Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická
NP-úplnost problému SAT
Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x
Management procesu I Mgr. Josef Horálek
Management procesu I Mgr. Josef Horálek Procesy = Starší počítače umožňovaly spouštět pouze jeden program. Tento program plně využíval OS i všechny systémové zdroje. Současné počítače umožňují běh více
Principy komunikace s adaptéry periferních zařízení (PZ)
Principy komunikace s adaptéry periferních zařízení (PZ) Několik možností kategorizace principů komunikace s externími adaptéry, např.: 1. Podle způsobu adresace registrů, které jsou součástí adaptérů.
Pole a Funkce. Úvod do programování 1 Tomáš Kühr
Pole a Funkce Úvod do programování 1 Tomáš Kühr (Jednorozměrné) pole u Datová struktura u Lineární u Homogenní = prvky stejného datového typu u Statická = předem určený počet prvků u Pole umožňuje pohodlně
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová
Semestrální práce z předmětu Speciální číslicové systémy X31SCS
Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší
Struktura a architektura počítačů (BI-SAP) 9
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 9 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Implementace dávkových operací
Implementace dávkových operací Petr Steckovič 12. 5. 2011 Hradec Králové 1 Dávkové zpracování dat Procesy běžící na pozadí Spouštěné Časem Stavem (např. dochází místo) Ručně Obvykle se jedná o podpůrné
Paralelní architektury se sdílenou pamětí typu NUMA. NUMA architektury
Paralelní architektury se sdílenou pamětí typu NUMA NUMA architektury Multiprocesorové systémy s distribuovanou pamětí I. úzkým hrdlem multiprocesorů se sdílenou pamětí je datová komunikace s rostoucím
10. Techniky formální verifikace a validace
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není
Operační systémy. Jednoduché stránkování. Virtuální paměť. Příklad: jednoduché stránkování. Virtuální paměť se stránkování. Memory Management Unit
Jednoduché stránkování Operační systémy Přednáška 8: Správa paměti II Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné velikosti
Úvod do programovacích jazyků (Java)
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2007/2008 c 2006 2008 Michal Krátký Úvod do programovacích
Kolekce, cyklus foreach
Kolekce, cyklus foreach Jen informativně Kolekce = seskupení prvků (objektů) Jednu již známe pole (Array) Kolekce v C# = třída, která implementuje IEnumerable (ICollection) Cyklus foreach ArrayList pro
PRINCIPY OPERAČNÍCH SYSTÉMŮ
Metodický list č. 1 Název tématického celku: Přehled operačních systémů a jejich funkcí Základním cílem tohoto tematického celku je seznámení se s předmětem (vědním oborem) Operační systémy (OS) a se základními
Správné vytvoření a otevření textového souboru pro čtení a zápis představuje
f1(&pole[4]); funkci f1 předáváme hodnotu 4. prvku adresu 4. prvku adresu 5. prvku hodnotu 5. prvku symbolická konstanta pro konec souboru je eof EOF FEOF feof Správné vytvoření a otevření textového souboru
Algoritmizace řazení Bubble Sort
Algoritmizace řazení Bubble Sort Cílem této kapitoly je seznámit studenta s třídícím algoritmem Bubble Sort, popíšeme zde tuto metodu a porovnáme s jinými algoritmy. Klíčové pojmy: Třídění, Bubble Sort,
Programovací jazyky. imperativní (procedurální) neimperativní (neprocedurální) assembler (jazyk symbolických instrukcí)
Programovací jazyky Programovací jazyky nižší assembler (jazyk symbolických instrukcí) vyšší imperativní (procedurální) Pascal, C/C++, Java, Basic, Python, php neimperativní (neprocedurální) Lisp, Prolog
PŘETĚŽOVÁNÍ OPERÁTORŮ
PŘETĚŽOVÁNÍ OPERÁTORŮ Jazyk C# podobně jako jazyk C++ umožňuje přetěžovat operátory, tj. rozšířit definice některých standardních operátorů na uživatelem definované typy (třídy a struktury). Stejně jako