Sledování účinnosti termické desorpce v závislosti na aplikovaných procesních podmínkách
|
|
- Antonie Horáková
- před 9 lety
- Počet zobrazení:
Transkript
1 Sledování účinnosti termické desorpce v závislosti na aplikovaných procesních podmínkách Daniel Randula, Jiří Hendrych, Jiří Kroužek Vysoká škola chemicko-technologická v Praze, Fakulta technologie ochrany prostředí, Technická 5, Praha 6, randulad@vscht.cz Abstrakt Práce je zaměřená na zjišťování účinnosti termické desorpce vybraných persistentních organických polutantů při aplikaci mikrovlnného způsobu ohřevu v laboratorním měřítku s ohledem na další provozní podmínky, jako jsou množství protékaného dusíku aparaturou nebo velikosti ploch vsádek při zachování konstantní hmotnosti vsádky. Výstupy najdou uplatnění při konstrukci poloprovozního termodesorpčního zařízení a optimalizaci provozních podmínek. Klíčová slova Termodesorpce, pesticidy, PCB, mikrovlnný ohřev, dekontaminace, kondenzát Úvod Metoda termické desorpce je jednou z nedestruktivních sanačních technologií, při které je kontaminovaný materiál vystaven vysokým teplotám (zpravidla do 600 C). Aplikací těchto teplot dojde k volatilizaci kontaminatů a jejich páry jsou následně vedeny nosným plynem přes systém chlazení a čištění. Takto upravené odplyny je možné následně, pokud však splňují např. legislativní či jiné limity, vypouštět do atmosféry. Dekontaminovaný materiál bývá natolik inertní, že je možné jej znovu využít, např. jako krajinotvorný prvek. Jako nosný plyn se nejčastěji používá dusík, který pro svou inertnost zabraňuje potenciálním rekombinacím desorbovaných kontaminantů na toxičtější produkty, např. dioxiny. Jako další možné nosné médium lze požít např. vodní páru jak v kombinaci s dusíkem, tak jako samostatné nosné médium. Tato technologie je aplikována především k odstraňování kontaminantů z pevných matric, jakými mohou být stavební materiály (vzniklé například demolicí kontaminovaných budov), zeminy, a také z polotuhých matric (kaly). Kontaminanty vhodné k termodesorpci bývají látky s teplotou varu menší než 600 C, zejména netěkavé organické látky a další hůře rozložitelné látky. Nejběžnějšími zástupci těchto látek jsou polychlorované organické látky, pesticidy, polyaromatické uhlovodíky, polychlorované bifenyly (PCB), polychlorované dibenzodioxiny (PCDD) nebo dibenzofurany (PCDF). (Matějů, 2006). I když je tato metoda využívána v mnoha případech, stále se jedná o velmi nákladnou sanační technologii. Na základě rozklíčování jednotlivých faktorů a zjištění jejich příspěvků k účinnosti a finanční náročnosti celého procesu bude možné tyto náklady snížit a celý proces optimalizovat. Způsoby, jak daný materiál zahřívat, jsou v podstatě dva, a) konvenční způsob, který lze rozdělit na přímý a nepřímý, b) mikrovlnný. Přímý způsob ohřevu spočívá ve spalování paliva, nejčastěji zemního plynu, přímo uvnitř desorbéru, nepřímý pak využívá konvekce tepla z pláště desorbéru, který je zahříván z vnější strany. Konvenční způsob ohřevu má však jisté nevýhody, především je to doba ohřevu vsádky, kdy se nejdříve zahřívá povrch vsádky
2 přestupem tepla z desorbéru a pak prostupem tepla vsádkou. Rychlost ohřevu je také závislá na teplotní vodivosti uvažovaných materiálů. Oba tyto faktory zvyšují náročnost celého procesu jak časově, tak i energeticky. Mikrovlnný ohřev však pracuje na zcela jiném principu, kdy je materiál zahříván rychleji a v celém svém objemu z důvodu interakcí mikrovlnného záření s materiálem vsádky. Jedná se, z časového i energetického pohledu, o efektivnější metodu ohřevu než v případě konvenčního způsobu ohřevu, další jeho výhodou je snadná nastavitelnost a kontrolovatelnost procesních podmínek a snadná obsluha celého zařízení. Předešlé studie (Kroužek a kol., 2012) prokázaly, že každý materiál interaguje s mikrovlnami jinak a je tedy nutné pro každý materiál nastavit procesní podmínky individuálně. Faktory jako výška vrstvy, průměr vzorku, způsob uložení vzorku, průtok dusíku nebo podtlak v celém systému do jisté míry ovlivňují rychlost ohřevu jedné dané matrice, stejně tak mají vliv na účinnost desorpce. Z důvodu nehomogenity mikrovlnného pole je nutné tyto i další faktory důkladně prověřit. Nelze tvořit předčasné závěry pouze na základě souvislosti teploty termické desorpce s její účinností. Experimentální část Laboratorní experimenty probíhaly ve speciálně upravené mikrovlnné troubě Panasonic NN- GD 566M a jako testovaná matrice byla použita zemina (zrnitostní frakce < 0,3 mm) jako typický zástupce kontaminovaných materiálů podrobovaných termické desorpci. Tato matrice byla uměle kontaminována hexachlorbenzenem (HCB), hexachlorcyklohexanem (HCH) a směsí PCB (analyzováno však bylo těchto 7 indikátorových kongenerů: PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153, a PCB 180). Po umělé kontaminaci byla matrice ponechána v digestoři zrát po dobu 5 dnů. Tento postup kontaminace materiálu byl ověřován a je v souladu s obdobnými procedurami (Sychra, 2010), které se provádí v komerčních institucích za účelem přípravy materiálů k ověřování správnosti analýz. Pro účely experimentu byly zhotoveny na míru ve sklářských dílnách VŠCHT dva typy skleněné vestavby (Obr. 1, Obr. 2), které umožňují při zachování vzduchotěsnosti celé aparatury uložení vsádky horizontálně či vertikálně tak, aby při zachování konstantní hmotnosti vsádky bylo možné měnit velikost plochy materiálu (19,6 cm 2 u vertikálního reaktoru, 45 cm 2 u horizontálního reaktoru) na rozhraní vsádka-vzduch. Ke změně došlo i v případě výšky vrstvy (ze 4 cm u vertikálního reaktoru na 1,5 cm u horizontálního reaktoru). Pro každý typ reaktoru byly provedeny 4 experimenty, každý při jiné cílové izotermě (130, 160, 190, 230 C), která byla udržována po dobu 10 minut. I když mají sledované kontaminanty teploty varu vyšší než 230 C, z důvodu použití teplotního čidla na optickém kabelu nebylo možné tuto teplotu přesáhnout, jelikož by mohlo dojít k poškození tohoto čidla. Dále byl zjišťován vliv průtoku dusíku na účinnost termické desorpce v jednotlivých typech reaktorů při teplotě 230 C, kdy byl pouze měněn tento průtok od 0,1 do 0,4 l/min. Celkově byly provedeny čtyři experimenty, vždy s krokem 0,1 l/min.
3 Obr. 1: Vertikální reaktor Obr. 2: Horizontální reaktor s lodičkou Odplyny byly vedeny přes vymrazovák, kde docházelo ke kondenzaci a krystalizaci kontaminantů a zbytek odplynů byl veden odtahem do digestoře. Množství kontaminantu ve vstupu, resp. v materiálu po desorpci bylo stanoveno následovně. Po důkladném promíchání vsádky bylo vždy odebráno cca 2,5 g vzorku do prachovnice, přelito 10 ml hexanu a podrobeno sonikační extrakci po dobu 20 min. Tento extrakt byl převeden do vialky, popř. přeředěn pomocí Hamiltonovy injekční stříkačky a zanalyzován na plynovém chromatografu HP 5890, vybaveném detektorem elektronového záchytu (GC-ECD). Vznikající kondenzáty byly taktéž analyzovány na GC-ECD, kdy byla po každém experimentu aparatura vypláchnuta hexanem, a tento výplach byl spojen s kondenzátem a převeden do vialky, popř. přeředěn. Výsledky a diskuze Jelikož každý materiál vystavený mikrovlnnému záření vykazuje specifické odezvy ve formě zahřívání, bylo nutné otestovat chování zeminy v mikrovlnném poli. Vzhledem k rychlému zahřívání zeminy při vyšších výkonech ve vertikálním uložení a naopak pomalejšímu ohřevu v horizontálním uspořádání, byl zvolen výkon magnetronu pro každé uspořádání tak, aby alespoň částečně byly teplotní režimy stejné. Obr. 3 zachycuje teplotní křivky ohřevu vsádky. Pro vertikální reaktor byl zvolen výkon magnetronu 250 W, přičemž u horizontálního reaktoru byl výkon 440 W. Protože regulátor výkonu použité mikrovlnné trouby nedovolil jemnější nastavení výkonu, tato nastavení byla zvolena jako nejpřijatelnější. Z Obr. 3 je patrné, že rychlost ohřevu byla ovlivněna výškou vsádky. Z tohoto důvodu byly potřeba k dosažení cílových teplot u horizontálního uložení vsádky delší časové intervaly (přibližně o %). Tuto dobu je však možné zkrátit přídavkem vysoce absorpčních materiálů, které jsou mikrovlnami zahřívány rychleji než testovaná matrice. Otázkou však zůstává, zda je výhodnější materiál zahřívat delší dobu (čímž dojde ke zvýšení provozních nákladů) nebo investovat do aditiv. Toto rozhodnutí však bude vycházet vždy z konkrétních situací a také se rozhodne na základě toho, zda bude upřednostněno rychlejší nebo ekonomičtější řešení.
4 Obr. 3: Teplotní křivky ohřevu zeminy Dále byly zjištěny hodnoty účinnosti termické desorpce pro dané typy reaktorů v jednotlivých teplotních krocích. Hodnoty účinností byly vypočítány jako podíl obsahu kontaminantů ve výstupu k obsahu kontaminantů ve vstupu, vždy po aplikaci konkrétní izotermy (130, 160, 190, 230 C). Tyto účinnosti jsou zpracovány pro přehlednost ve formě grafů, na Obr. 4 pro směs indikátorových kongenerů PCB a HCB, na Obr. 5 pro alfa HCH a gama HCH. Obr. 4: Účinnost termické desorpce pro směs indikátorových kongenerů PCB a pro HCB
5 Obr. 5: Účinnost termické desorpce pro alfa HCH a gama HCH Jak je patrné z předešlých dvou grafů, účinnost desorpce kontaminantů z matrice je vyšší v případě horizontálního reaktoru. To může být způsobeno několika faktory. Jako první lze uvažovat difúzi kontaminantů z matrice, kdy při nižší vrstvě a větší ploše je zřejmě proces difúze snazší, nižší vrstva navíc klade kontaminantům méně bariér a míst, kam se tento kontaminant může zpětně resorbovat. Důležitým faktorem je také doba zdržení materiálu v pásmu vyšších teplot. V případě horizontálního uspořádání docházelo k pomalejšímu ohřevu, a tudíž se materiál nacházel delší dobu v pásmu zvýšené teploty. Tento jev by bylo vhodné ověřit pomocí srovnávacích experimentů prováděných v elektrické peci. Pokusy, které pomohou ověřit tento jev, jsou předmětem dalšího bádání. Stárnutí matrice také mohlo do jisté míry ovlivnit účinnosti desorpce kontaminantů. Ze zkušenosti je známo, že čím déle je matrice s umělou kontaminací ponechána zrát, tím více kontaminanty odolávají desorpci. Z důvodu časové náročnosti jednotlivých experimentů tak byly nejprve změřeny účinnosti za použití horizontálního uspořádání a s odstupem několika dnů pak byly provedeny pokusy s vertikálním uspořádáním. Jistý vliv na účinnost desorpce se mohl projevit, avšak do získaných výsledků se toto projevilo spíše marginálně. Vliv dlouhodobějšího stárnutí matrice je tak předmětem dalšího bádání. Se vzrůstající teplotou se rozdíly účinností zmenšují, což se děje v důsledku převahy faktoru teploty, který je spolu s dobou zdržení materiálu klíčovým parametrem při termické desorpci. Pokud je žádoucí věnovat pozornost vlivu dalších procesních podmínek a jejich optimalizaci, je nutné vést ohřev za mírnějších podmínek. Zjišťována byla také účinnost termické desorpce a schopnost kontaminantů kondenzovat v závislosti na velikosti průtoku dusíku jako nosného plynu. Průtoky se pohybovaly v rozmezí 0,1 0,4 l/min, teplota byla pro každý typ uspořádání 230 C. Celkem byly provedeny čtyři experimenty. Zvyšující se průtok neměl signifikantní vliv na hodnotu účinnosti termické desorpce, ovšem schopnost kontaminantů kondenzovat byla nepřímo úměrná velikosti průtoku dusíku. To si lze vysvětlit např. tím, že s větším průtokem inertního plynu dochází ke zkrácení doby zdržení odplynu v kondenzátoru. Dalším důvodem může být pomalejší ochlazování dusíku, kdy dochází k nedostatečnému sdílení a přestupu tepla v celém objemu plynného média.
6 Závěr V této práci byly prozkoumány určité faktory, které mohou ovlivnit účinnost termické desorpce a také její časovou a finanční náročnost. Jak již bylo dříve uvedeno: Velikost plochy vsádky ovlivňuje pozitivně účinnost termické desorpce, optimálním řešením tak může být míchání vsádky při termické desorpci Průtok dusíku nemá markantnější vliv na účinnost desorpce, negativně však ovlivňuje kondenzaci kontaminantů Tyto poznatky budou dále prozkoumávány a také využity při konstrukci poloprovozního zařízení a při jeho následné optimalizaci při pilotních a následně pak i poloprovozních pokusech. Poděkování Příspěvek byl připraven v rámci výzkumu realizovaného s podporou projektu Vývoj mobilní technologie pro sanaci pozemních staveb a povrchů (TAČR TA ). Literatura Kroužek J., Hendrych J., Randula D. Vývoj mobilní technologie pro sanaci pozemních staveb a povrchů č. TA Odborná zpráva o postupu prací a dosažených výsledcích za rok 2012, Praha, Matějů V. (ed.) Kompendium sanačních technologií. Vodní zdroje Ekomonitor, s.r.o., Chrudim. ISBN: Sychra V. Analytika s.r.o, ústní sdělení, 2010.
7 Measurement of thermal desorption efficiency depending on the applied process conditions Institute of Chemical Technology Prague, Faculty of Environmental Technology, Technická 5, Praha 6, Czech Republic, Abstract This particular work is focused on measuring thermal desorption efficiency of selected persistent organic pollutants removal with respect to application of the microwave heating method in a laboratory scale, while considering applied process conditions such as nitrogen flow and a surface area size, keeping constant batch weight. The observed outputs will be taken into account by the construction of a pilot-scale microwave thermal desorption device and for optimizing the process conditions. Keywords Thermal desorption, pesticides, PCBs, microwave heating, remediation, condensate
Vliv zvolených aditiv na proces termické desorpce
Vliv zvolených aditiv na proces termické desorpce Daniel Randula, Jiří Hendrych, Jiří Kroužek, Simona Kubíčková Vysoká škola chemicko-technologická v Praze, Fakulta technologie ochrany prostředí, Technická
Výzkum procesu záchytu kontaminantů uvolněných při mikrovlnném ohřevu znečištěných ploch
Výzkum procesu záchytu kontaminantů uvolněných při mikrovlnném ohřevu znečištěných ploch Jiří Kroužek, Pavel Mašín, Jiří Hendrych, Daniel Randula VŠCHT v Praze, Fakulta technologie ochrany prostředí, Technická
Výzkum použití aditiv při mikrovlnné termické desorpci a následné přenesení poznatků do praxe
Výzkum použití aditiv při mikrovlnné termické desorpci a následné přenesení poznatků do praxe Daniel Randula, Jiří Hendrych, Jiří Kroužek, Václav Durďák Vysoká škola chemicko-technologická v Praze, Fakulta
TRANSPORT OF POLLUTANTS DURING SOLID WASTE THERMAL DESORPTION USING MICROWAVE HEATING
TRANSPORT OF POLLUTANTS DURING SOLID WASTE THERMAL DESORPTION USING MICROWAVE HEATING TRANSPORT KONTAMINANTŮ PŘI TERMICKÉ DESORPCI TUHÝCH ODPADŮ S VYUŽITÍM MIKROVLNNÉHO OHŘEVU Jiří Kroužek, Pavel Mašín,
CONTAMINANTS SEPARATION FROM OFF-GASES GENERATED DURING THERMAL DESORPTION OF POPs POLLUTED WASTES
CONTAMINANTS SEPARATION FROM OFF-GASES GENERATED DURING THERMAL DESORPTION OF POPs POLLUTED WASTES SEPARACE KONTAMINUJÍCÍCH SLOŽEK ODPADNÍCH PLYNŮ VZNIKAJÍCÍCH PŘI TERMICKÉ DESORPCI ODPADŮ ZNEČIŠTĚNÝCH
Vysoká škola chemicko-technologická v Praze ÚCHOP Laboratorní ověřování mechanismů termické desorpce s mikrovlnným ohřevem Ing. Pavel Mašín Ing. Jiří Hendrych Doc.Dr.Ing. Martin Kubal Ing. Lucie Kochánková
Termická desorpce s užitím mikrovlnného ohřevu a různou vlhkostí materiálu
Termická desorpce s užitím mikrovlnného ohřevu a různou vlhkostí materiálu Ingrid Maňáková, Jiří Kroužek, Jiří Hendrych, Daniel Randula VŠCHT v Praze, Fakulta technologie ochrany prostředí, Technická 5,
THERMAL DESORPTION WITH USE OF STEAM CURING OF CONTAMINATED SOLID MATERIALS USING CONVENTIONAL AND MICROWAVE HEATING
THERMAL DESORPTION WITH USE OF STEAM CURING OF CONTAMINATED SOLID MATERIALS USING CONVENTIONAL AND MICROWAVE HEATING TERMICKÁ DESORPCE S PROPAŘOVÁNÍM TUHÝCH KONTAMINOVANÝCH MATERIÁLŮ VYUŽÍVAJÍCÍ KONVENČNÍ
THE INFLUENCE OF SELECTED PROCESS CONDITIONS ON THERMAL DESORPTION OF SOLID CONTAMINATED MATERIALS
THE INFLUENCE OF SELECTED PROCESS CONDITIONS ON THERMAL DESORPTION OF SOLID CONTAMINATED MATERIALS VLIV VYBRANÝCH PROCESNÍCH PODMÍNEK NA PRŮBĚH TERMICKÉ DESORPCE TUHÝCH KONTAMINOVANÝCH MATERIÁLŮ Jiří Hendrych,
TERMICKÁ DESORPCE. Zpracování odpadů. Sanační technologie XVI , Uherské Hradiště
TERMICKÁ DESORPCE Zpracování odpadů Sanační technologie XVI 23.5. 2013, Uherské Hradiště Termická desorpce - princip Princip Ohřev kontaminované matrice na teploty, při kterých dochází k uvolňování znečišťujících
Problematika využití mikrovlnného ohřevu v sanačních technologiích Ing. Jiří Kroužek
Problematika využití mikrovlnného ohřevu v sanačních technologiích Ing. Jiří Kroužek Ing. Jiří Hendrych Ph.D., Ing. Pavel Mašín, Ing. Jiří Sobek Ph.D. Tepelná energie v sanačních technologií Zvýšení mobility
polutantů s využitím klasického ohřevu v laboratorním a poloprovozním měřítku
Termická desorpce persistentních organických polutantů s využitím klasického ohřevu v laboratorním a poloprovozním měřítku Jiří Hendrych Martin Kubal Pavel Mašín Lucie Kochánková Jiří Kroužek VYSOKÁ ŠKOLA
STUDY OF THERMAL DESORPTION OF CONTAMINATED MATERIALS USING MICROWAVE HEATING
STUDY OF THERMAL DESORPTION OF CONTAMINATED MATERIALS USING MICROWAVE HEATING STUDIUM TERMICKÉ DESORPCE KONTAMINOVANÝCH MATERIÁLŮ S VYUŽITÍM MIKROVLNNÉHO OHŘEVU Daniel Randula, Jiří Hendrych, Jiří Kroužek,
Nepřímá termická desorpce s katalytickým spalováním - od vsázkového ke kontinuálnímu systému
Nepřímá termická desorpce s katalytickým spalováním - od vsázkového ke kontinuálnímu systému Ing. Helena Váňová, Ing. Robert Raschman, RNDr. Jan Kukačka Dekonta, a.s., Dřetovice 109, 273 42 Stehelčeves
Vysoká škola chemicko-technologická v Praze ÚCHOP
Vysoká škola chemicko-technologická v Praze ÚCHOP Termická desorpce s propařováním tuhých kontaminovaných materiálů využívající klasický a mikrovlnný ohřev Ing. Pavel Mašín Ing. Jiří Hendrych, PhD Ing.
Souhrn. Summary. Úvod
Použití molekulové spektrometrie při sledování účinnosti termické desorpce zemin kontaminovaných organickými polutanty Application of molecular spectroscopy on efficiency monitoring of thermal desorption
Použití molekulové spektrometrie při sledování účinnosti termické desorpce zemin kontaminovaných organickými polutanty
Použití molekulové spektrometrie při sledování účinnosti termické desorpce zemin kontaminovaných organickými polutanty Vysoká škola chemicko-technologická v Praze Fakulta technologie ochrany prostředí
VYUŽITÍ AKTIVÁTORŮ ABSORPCE MIKROVLNNÉHO ZÁŘENÍ PŘI TERMICKÉ DESORPCI
VYUŽITÍ AKTIVÁTORŮ ABSORPCE MIKROVLNNÉHO ZÁŘENÍ PŘI TERMICKÉ DESORPCI Pavel Mašín - Dekonta, a.s Jiří Hendrych, Jiří Kroužek, VŠCHT Praha Martin Kubal Jiří Sobek - ÚCHP AV ČR Inovativní sanační technologie
ČTVRTPROVOZNÍ OVĚŘENÍ MIKROVLNNÉ TERMICKÉ DESORPCE S REÁLNĚ KONTAMINOVANÝMI MATERIÁLY
ACTA ENVIRONMENTALICA UNIVERSITATIS COMENIANAE (BRATISLAVA) Vol. 20, Suppl. 1(2012): 78-83 ISSN 1335-0285 ČTVRTPROVOZNÍ OVĚŘENÍ MIKROVLNNÉ TERMICKÉ DESORPCE S REÁLNĚ KONTAMINOVANÝMI MATERIÁLY Pavel Mašín
STUDY OF THERMAL DESORPTION OF SOLID WASTES STUDIUM MECHANISMŮ UPLATŇUJÍCÍCH SE PŘI TERMICKÉ DESORPCI ODPADŮ
STUDY OF THERMAL DESORPTION OF SOLID WASTES STUDIUM MECHANISMŮ UPLATŇUJÍCÍCH SE PŘI TERMICKÉ DESORPCI ODPADŮ Jiří Kroužek, Jiří Hendrych, Lucie Kochánková, Martin Kubal, Pavel Mašín Vysoká škola chemicko-technologická
USE OF MICROWAVE ABSORBERS DURING THERMAL DESORPTION PROCESS UTILIZING MICROWAVE HEATING
USE OF MICROWAVE ABSORBERS DURING THERMAL DESORPTION PROCESS UTILIZING MICROWAVE HEATING VYUŽITÍ AKTIVÁTORŮ ABSORPCE MIKROVLNNÉHO ZÁŘENÍ PŘI TERMICKÉ DESORPCI Pavel Mašín 1), Jiří Hendrych 2), Jiří Kroužek
NOVÉ POSTUPY DEHALOGENACE PCB S VYUŽITÍM MIKROVLNNÉ TECHNIKY
NOVÉ POSTUPY DEHALOGENACE PCB S VYUŽITÍM MIKROVLNNÉ TECHNIKY Ing. Petr Kaštánek VŠCHT Praha, Ústav chemie ochrany prostředí, Technická 5, 16628, Praha 6 Konvenční metody zpracování PCB s klasickým ohřevem
LABORATORY VERIFICATION OF MECHANISMS OF THERMAL DESORPTION WITH MICROWAVE HEATING
LABORATORY VERIFICATION OF MECHANISMS OF THERMAL DESORPTION WITH MICROWAVE HEATING LABORATORNÍ OVĚŘOVÁNÍ MECHANISMŮ TERMICKÉ DESORPCE S MIKROVLNNÝM OHŘEVEM Pavel Mašín 1), Alena Vajdová 1), Jiří Hendrych
Vývoj inovativní in-situ sanační technologie uplatňující mikrovlnný ohřev
Vývoj inovativní in-situ sanační technologie uplatňující mikrovlnný ohřev Jiří Kroužek, Jiří Hendrych, Jiří Sobek, Daniel Randula, Václav Durďák Vysoká škola chemicko-technologická v Praze, jiri.krouzek@vscht.cz
Absorpce perzistentních kontaminantů po termické desorpci
Absorpce perzistentních kontaminantů po termické desorpci Václav Durďák, Jiří Kroužek, Jiří Hendrych, Daniel Randula VŠCHT v Praze, Fakulta technologie ochrany prostředí, Technická 5, 166 28 Praha 6. e-mail:
Absorpce par POPs vzniklých procesem termické desorpce do organického rozpouštědla
Absorpce par POPs vzniklých procesem termické desorpce do organického rozpouštědla Souhrn Václav Durďák, Jiří Kroužek, Jiří Hendrych, Daniel Randula VŠCHT v Praze, Fakulta technologie ochrany prostředí,
Vliv chemické aktivace na sorpční charakteristiky uhlíkatých materiálů
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA HORNICKO GEOLOGICKÁ FAKULTA Institut čistých technologií těžby a užití energetických surovin Vliv chemické aktivace na sorpční charakteristiky uhlíkatých
Autokláv reaktor pro promíchávané vícefázové reakce
Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.
WP13: Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A] [F] Vedoucí konsorcia podílející se na pracovním balíčku
Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A][F] WP13: Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A] [F] Vedoucí konsorcia podílející se na pracovním
Separační metody v analytické chemii. Plynová chromatografie (GC) - princip
Plynová chromatografie (GC) - princip Plynová chromatografie (Gas chromatography, zkratka GC) je typ separační metody, kdy se od sebe oddělují složky obsažené ve vzorku a které mohou být převedeny do plynné
Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum Zkušební laboratoř 17. listopadu 15/2172, Ostrava - Poruba
List 1 z 7 Laboratoř plní požadavky na periodická měření emisí dle ČSN P CEN/TS 15675:2009 u zkoušek a odběrů vzorků označených u pořadového čísla symbolem E. Zkoušky: Laboratoř je způsobilá poskytovat
Experiment C-15 DESTILACE 1
Experiment C-15 DESTILACE 1 CÍL EXPERIMENTU Získání informací o třech klasických skupenstvích látek, změnách skupenství (jedné z fázových změn), křivkách ohřevu a ochlazování a destilační křivce. Prozkoumání
6) Zátěž české populace POPs
6) Zátěž české populace POPs Polychlorované bifenyly (PCB) jsou směsí 209 kongenerů, z nichž u 36 byl popsán jejich výskyt v prostředí, asi 15 je detekováno v lidském organismu a 12 kongenerů odpovídá
Mikrobiální oživení zeminy po procesu termické desorpce
Mikrobiální oživení zeminy po procesu termické desorpce Petra Kubínová, Jiří Kroužek, Zuzana Honzajková VŠCHT v Praze, Fakulta technologie ochrany prostředí, Technická 5, 166 28 Praha 6, e-mail: petra.kubinova@vscht.cz
VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Bořivoj Šourek,
Využití faktorového plánování v oblasti chemických specialit
LABORATOŘ OBORU I T Využití faktorového plánování v oblasti chemických specialit Vedoucí práce: Ing. Eliška Vyskočilová, Ph.D. Umístění práce: FO7 1 ÚVOD Faktorové plánování je optimalizační metoda, hojně
OBSAH ČÁST IV.: KONTAMINACE VETERINÁRNÍCH KOMODIT, POTRAVIN A LIDSKÉ POPULACE V ČR
RECETOX TOCOEN & Associates OBSAH ČÁST IV.: KONTAMINACE VETERINÁRNÍCH KOMODIT, POTRAVIN A LIDSKÉ POPULACE V ČR 7. KONTAMINACE VETERINÁRNÍCH KOMODIT A POTRAVIN Jiří Drápal 7.1 Zhodnocení výskytu POPs ve
Výzkum vysokoteplotní sorpce CO 2 ze spalin s využitím karbonátové smyčky
Výzkum vysokoteplotní sorpce CO 2 ze spalin s využitím karbonátové smyčky NF-CZ08-OV-1-005-2015 Hitecarlo Partneři projektu Hlavní řešitel: Vysoká škola chemickotechnologická v Praze (VŠCHT) Fakulta technologie
VLIV TECHNOLOGICKÝCH PARAMETRŮ POST-AERACE NA KVALITU ANAEROBNĚ STABILIZOVANÉHO KALU
VLIV TECHNOLOGICKÝCH PARAMETRŮ POST-AERACE NA KVALITU ANAEROBNĚ STABILIZOVANÉHO KALU Vojtíšková M., Šátková B., Jeníček P. VŠCHT Praha, Ústav technologie vody a prostředí ÚVOD POST-AERACE čištění odpadních
Experiment C-16 DESTILACE 2
Experiment C-16 DESTILACE 2 CÍL EXPERIMENTU Získání informací o třech klasických skupenstvích látek, změnách skupenství (jedné z fázových změn), křivkách ohřevu a ochlazování a destilační křivce. Prozkoumání
Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy
Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy Jan HAVLÍK 1,*, Tomáš Dlouhý 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607
Projekt Spolana - Dioxiny
KONFERENCE SANAČNÍ TECHNOLOGIE XI Projekt Spolana - Dioxiny Představení projektu Obecná část Jaroslav Prokop obchodní ředitel, BCD CZ a.s. AREÁL SPOLANA A LOKALITA STAVENIŠTĚ ZÁKLADNÍ POŢADAVKY ZÁMĚRU
OBSAH. ČÁST VII.: TECHNOLOGIE A BIOTECHNOLOGIE PRO LIKVIDACI POPs
RECETOX TOCOEN & Associates OBSAH ČÁST VII.: TECHNOLOGIE A BIOTECHNOLOGIE PRO LIKVIDACI POPs 14. PŘEHLED TECHNOLOGIÍ POUŽITELNÝCH KE ZNEŠKODŇOVÁNÍ POPs Vladimír Pekárek, Miroslav Punčochář VII-1 14.1 Termické
LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce:
LABORATOŘ OBORU I F Testování katalyzátorů pro přípravu prekurzorů vonných látek Vedoucí práce: Umístění práce: Ing. Eva Vrbková F07, F08 1 ÚVOD Hydrogenace je uplatňována v nejrůznějších odvětvích chemických
HODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH. Klára Jacková, Ivo Štepánek
HODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH Klára Jacková, Ivo Štepánek Západoceská univerzita v Plzni, Univerzitní 22, 306 14 Plzen, CR, ivo.stepanek@volny.cz Abstrakt
Vzorkování pro analýzu životního prostředí 9/14. RNDr. Petr Kohout doc.ing. Josef Janků CSc.
Vzorkování pro analýzu životního prostředí 9/14 RNDr. Petr Kohout doc.ing. Josef Janků CSc. Letní semestr 2014 Vzorkování pro analýzu životního prostředí - N240003 1. Úvod do problematiky vzorkování 2.
Habart Jan, Tlustoš Pavel, Váňa Jaroslav, Plíva Petr
BIOLOGICKÁ STABILITA ORGANICKÝCH MATERIÁLŮ, JEJÍ STANOVENÍ A POUŽITÍ V PRAXI Biological Stability of organic materials its Determination and Practical Application Habart Jan, Tlustoš Pavel, Váňa Jaroslav,
Výzkum vysokoteplotní sorpce CO 2 ze spalin s využitím karbonátové smyčky
Výzkum vysokoteplotní sorpce CO 2 ze spalin s využitím karbonátové smyčky NF-CZ08-OV-1-005-2015 Hitecarlo Partneři projektu Hlavní řešitel: Vysoká škola chemickotechnologická v Praze (VŠCHT) Fakulta technologie
Redukční procesy a možnosti využití při termickém zpracování odpadů. Dr. Ing. Stanislav Bartusek VŠB Technická univerzita Ostrava
Redukční procesy a možnosti využití při termickém zpracování odpadů Dr. Ing. Stanislav Bartusek VŠB Technická univerzita Ostrava Historie Redukční-pyrolýzní proces v oblasti koksárenství Požadavky průmyslové
Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody.
Proces Biodestil Biodestil je nový pokrokový proces pro zpracování vysoce kontaminovaných nebo zasolených odpadních vod, které jsou obtížně likvidovatelné ostatními konvenčními metodami. Tento proces je
Dynamické vs. Statické Izotermy Které jsou lepší? Brady Carter Vědecký pracovník Decagon Devices, Inc.
Dynamické vs. Statické Izotermy Které jsou lepší? Brady Carter Vědecký pracovník Decagon Devices, Inc. Popis Úvod do sorpčních izoterm vlhkosti - Brady Carter Dynamické a statické izotermy - Shelly Schmidt
Elektrokinetická dekontaminace půd znečištěných kobaltem
Elektrokinetická dekontaminace půd znečištěných kobaltem Kamila Šťastná, Mojmír Němec, Jan John, Lukáš Kraus Centrum pro radiochemii a radiační chemii, Katedra jaderné chemie, Fakulta jaderná a fyzikálně
Computerized Measuring System for Analysis of Chosen Characteristics and Processes in Porous Environment by EIS Method E!4981, EIS method PEM
Computerized Measuring System for Analysis of Chosen Characteristics and Processes in Porous Environment by EIS Method E!4981, EIS method PEM Projekt č. E!4981 programu EUREKA Automatizovaný systém pro
Sorpce oxidu uhličitého na vápence pocházejících z různých lokalit České republiky
Sorpce oxidu uhličitého na vápence pocházejících z různých lokalit České republiky Lenka JÍLKOVÁ *, Veronika VRBOVÁ, Karel CIAHOTNÝ Vysoká škola chemicko-technologická Praha, Fakulta technologie ochrany
Negativní vliv energetického využití biomasy Ing. Marek Baláš, Ph.D.
Negativní vliv energetického využití biomasy Ing. Marek Baláš, Ph.D. Osnova 2 Legislativa Biomasa druhy složení Emise vznik, množství, vlastnosti, dopad na ŽP a zdraví, opatření CO SO 2 NO x Chlor TZL
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury
Sledování mobility kovů v zemině během klasického a mikrovlnného ohřevu
Sledování mobility kovů v zemině během klasického a mikrovlnného ohřevu Andrea Sýkorová, Karolína Keprtová Vysoká škola chemicko-technologická v Praze, Fakulta technologie ochrany prostředí, Technická
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav
CHLOROVANÉ BIFENYLY A MOŽNOSTI JEJICH DESTRUKCE CHEMICKÝMI METODAMI ZA BĚŽNÝCH REAKČNÍCH PODMÍNEK
CHLOROVANÉ BIFENYLY A MOŽNOSTI JEJICH DESTRUKCE CHEMICKÝMI METODAMI ZA BĚŽNÝCH REAKČNÍCH PODMÍNEK Tomáš Weidlich 1, Petr Lacina 2 1) Univerzita Pardubice, Ústav environmentálního a chemického inženýrství,
TENSION RESISTANCE MEASURING DEVICE FOR MEANS OF MECHANIZATION ZAŘÍZENÍ PRO MĚŘENÍ TAHOVÉHO ODPORU MECHANIZAČNÍCH PROSTŘEDKŮ
TENSION RESISTANCE MEASURING DEVICE FOR MEANS OF MECHANIZATION ZAŘÍZENÍ PRO MĚŘENÍ TAHOVÉHO ODPORU MECHANIZAČNÍCH PROSTŘEDKŮ Musil J., Červinka J. Ústav zemědělské, potravinářské a environmentální techniky,
OBSAH ČÁST III.: VÝSKYT POPS VE SLOŽKÁCH ŽIVOTNÍHO PROSTŘEDÍ ČR
RECETOX TOCOEN & Associates OBSAH ČÁST III.: VÝSKYT POPS VE SLOŽKÁCH ŽIVOTNÍHO PROSTŘEDÍ ČR 6. VÝSKYT POPs VE SLOŽKÁCH PROSTŘEDÍ Ivan Holoubek, Libor Jech, Tomáš Ocelka, Jiří Novák, Jiří Kohoutek, Vladimír
Vysokoteplotní karbonátová smyčka moderní metoda odstraňování CO 2 ze spalin
Vysokoteplotní karbonátová smyčka moderní metoda odstraňování CO 2 ze spalin Karel Ciahotný Marek Staf Tomáš Hlinčík Veronika Vrbová Viktor Tekáč Ivo Jiříček ICCT Mikulov 2015 shrnutí doposud získaných
Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013
Omezování plynných emisí Ochrana ovzduší ZS 2012/2013 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační
STANOVENÍ EMISÍ LÁTEK ZNEČIŠŤUJÍCÍCH OVZDUŠÍ Z DOPRAVY
STANOVENÍ EMISÍ LÁTEK ZNEČIŠŤUJÍCÍCH OVZDUŠÍ Z DOPRAVY Původní Metodika stanovení emisí látek znečišťujících ovzduší z dopravy, která je schválená pro výpočty emisí z dopravy na celostátní a regionální
Nakládání s RAO v ÚJV Řež a.s.
Nakládání s RAO v ÚJV Řež a.s. Ing. Jan Krmela Radiologické metody v hydrosféře 11 4. - 5. 5. 2011, hotel Zlatá hvězda Třeboň 6.5.2011 1 1 Osnova prezentace ÚJV Řež a.s. v datech Centrum nakládání s RAO
Stanovení PBB a PBDE v elektroodpadech
Stanovení PBB a PBDE v elektroodpadech Ing. Kristýna Jursíková Ph.D., Ing. Danica Pospíchalová, Ing. Věra Hudáková, Ing.Věra Očenášková VÚV TGM v.v.i, Praha Osnova Zpomalovače hoření PBDE a PBB vlastnosti
Volba vhodného typu mísiče může být ovlivněna následujícími podmínkami
MÍSENÍ ZRNITÝCH LÁTEK Mísení zrnitých látek je zvláštním případem míchání. Zrnité látky mohou být konglomerátem několika chemických látek. Z tohoto důvodu obvykle bývá za složku směsí považován soubor
Výsledky monitorování vybraných POPs v letech na základě Odborné zprávy Subsystému 5 MZSO za roky
6) Zátěž české populace POPs Státní zdravotní ústav Praha http://www.szu.cz/ Projekt: Zdravotní důsledky expozice lidského organismu toxickým látkám ze zevního prostředí (biologický monitoring) kontaktní
LANDFILL LEACHATE PURIFICATION USING MEMBRANE SEPARATION METHODS ČIŠTĚNÍ PRŮSAKOVÝCH VOD ZE SKLÁDEK METODAMI MEMBRÁNOVÉ SEPARACE
LANDFILL LEACHATE PURIFICATION USING MEMBRANE SEPARATION METHODS ČIŠTĚNÍ PRŮSAKOVÝCH VOD ZE SKLÁDEK METODAMI MEMBRÁNOVÉ SEPARACE Pavel Kocurek, Martin Kubal Vysoká škola chemicko-technologická v Praze,
Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu
Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Aby bylo možno provést porovnání energetické náročnosti pasivního domu (PD), nízkoenergetického domu
Posouzení použitelnosti metody in situ solidifikace/stabilizace při řešení ekologické zátěže lokalit Lojane Mine v Makedonii a Izmit v Turecku
Posouzení použitelnosti metody in situ solidifikace/stabilizace při řešení ekologické zátěže lokalit Lojane Mine v Makedonii a Izmit v Turecku Ondřej Urban (DEKONTA), Alena Rodová (VUANCH) Žďár nad Sázavou,
Výsledky z testovacích měření na technologiích Ostravské LTS
TVIP 2015, 18. 20. 3. 2015, HUSTOPEČE - HOTEL CENTRO Výsledky z testovacích měření na technologiích Ostravské LTS Ing. Libor Baraňák, Ostravská LTS a.s. libor.baranak@ovalts.cz Abstrakt The paper describes
Omezování plynných emisí. Ochrana ovzduší ZS 2010/2011
Omezování plynných emisí Ochrana ovzduší ZS 2010/2011 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační
Zkušenosti s oxy-fuel spalováním ve stacionární fluidní vrstvě
Zkušenosti s oxy-fuel spalováním ve stacionární fluidní vrstvě Pavel SKOPEC 1*, Jan HRDLIČKA 1, Matěj VODIČKA 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, Praha
BIOANALYTIKA CZ, s.r.o. Píšťovy Chrudim III. Ing. Markéta Dvořáčková
BIOANALYTIKA CZ, s.r.o. Píšťovy 820 537 01 Chrudim III Ing. Markéta Dvořáčková 725 730 646 marketa.dvorackova@bioanalytika.cz BIOANALYTIKA CZ, s.r.o. Chrudim Provozuje zkušební laboratoř č. 1012 akreditovanou
Kondenzace brýdové páry ze sušení biomasy
Kondenzace brýdové páry ze sušení biomasy Jan HAVLÍK 1,*, Tomáš DLOUHÝ 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607 Praha 6, Česká republika * Email:
Postup praktického testování
Testování vzorků škváry odebraných v rámci Doškolovacího semináře Manažerů vzorkování odpadů 17. 9. 2013 v zařízení na energetické využití odpadů společnosti SAKO Brno a.s. Úvod Společnost Forsapi, s.r.o.
energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí.
Příjemce projektu: Partner projektu: Místo realizace: Ředitel výzkumného institutu: Celkové způsobilé výdaje projektu: Dotace poskytnutá EU: Dotace ze státního rozpočtu ČR: VŠB Technická univerzita Ostrava
Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu
Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Aby bylo možno provést porovnání energetické náročnosti pasivního domu (PD), nízkoenergetického domu
ÚSTAV CHEMIE A ANALÝZY POTRAVIN
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMIE A ANALÝZY POTRAVIN Technická 5, 166 28 Praha 6 tel./fax.: + 420 220 443 185; jana.hajslova@vscht.cz LABORATOŘ Z ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ
www.decoen.cz VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE
VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE Influence Perforations thermal Insulation Composite System onto Humidity behavior of Structures Ing. Petr Jaroš, Ph.D.,
C5060 Metody chemického výzkumu
C5060 Metody chemického výzkumu Audio test: Start P01 Termická analýza Přednášející: Doc. Jiří Sopoušek Moderátor: Doc. Pavel Brož Operátor STA: Bc.Ondřej Zobač Brno, prosinec 2011 1 Organizace přednášky
TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)
TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) 5. část TĚKAVÉ ORGANICKÉ SLOUČENINY A PACHOVÉ LÁTKY Zpracoval: Tým autorů EVECO Brno, s.r.o. TĚKAVÉ ORGANICKÉ SLOUČENINY Těkavé organické
ZATÍŽENÍ SEDIMENTU HOSTIVAŘSKÉ NÁDRŽE PRIORITNÍMI POLUTANTY 40 LET AKUMULACE ZNEČIŠTĚNÍ
ZATÍŽENÍ SEDIMENTU HOSTIVAŘSKÉ NÁDRŽE PRIORITNÍMI POLUTANTY 4 LET AKUMULACE ZNEČIŠTĚNÍ ČVUT v Praze, Fakulta stavební Katedra zdravotního a ekologického inženýrství Thákurova 7, Praha 6, 16629, Česká republika
RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS
RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS Trávníček P., Vítěz T., Dundálková P., Karafiát Z. Department of Agriculture, Food and Environmental Engineering, Faculty
Radioimunologická analýza
Radioimunologická analýza Reakce antigenu (nefyziologické látky kterou stanovujeme, AG) v biologickém materiálu s protilátkou (antibody, AB), kterou vytváří organismus. AB + AG AB-AG Imunochemická specifita
Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO
Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv
ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU
2. Konference Klimatizace a větrání 212 OS 1 Klimatizace a větrání STP 212 ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.cz
Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování
Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,
Reaktory pro systém plyn kapalina
FCHT Reaktory pro systém plyn kapalina Lubomír Krabáč 1 Probublávané reaktory: příklady procesů oxidace organických látek kyslíkem, resp. vzduchem chlorace hydrogenace org. látek s homogenním katal. vyšších
Krajský úřad Ústeckého kraje Odbor životního prostředí a zemědělství Velká Hradební 3118/ , Ústí nad Labem Praha, 28.
Arnika program Toxické látky a odpady Chlumova 17, 130 00 Praha 3 e-mail: toxik@arnika.org www.arnika.org/o-programu tel/fax: +420 222 781 471 Krajský úřad Ústeckého kraje Odbor životního prostředí a zemědělství
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SELENU METODOU ICP-OES
Strana 1 STANOVENÍ OBSAHU SELENU METODOU ICP-OES 1 Rozsah a účel Postup specifikuje podmínky pro stanovení celkového obsahu selenu v minerálních krmivech a premixech metodou optické emisní spektrometrie
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení vinylthiooxazolidonu (dále VOT) v krmivech.
Vermikompostování perspektivní metoda pro zpracování bioodpadů. Vermikompostování
Vermikompostování perspektivní metoda pro zpracování bioodpadů Aleš Hanč a, Petr Plíva b a Česká zemědělská univerzita v Praze b Výzkumný ústav zemědělské techniky, Praha Vermikompostování je považováno
VLIV MECHANICKÉHO PORUŠENÍ NA CHOVÁNÍ POVRCHU S TIN VRSTVOU PŘI TEPELNÉM A KOROZNÍM NAMÁHÁNÍ. Roman Reindl, Ivo Štěpánek, Martin Hrdý, Klára Jačková
VLIV MECHANICKÉHO PORUŠENÍ NA CHOVÁNÍ POVRCHU S TIN VRSTVOU PŘI TEPELNÉM A KOROZNÍM NAMÁHÁNÍ Roman Reindl, Ivo Štěpánek, Martin Hrdý, Klára Jačková Západočeská univerzita v Plzni, Univerzitní 22, 306 14
Příloha k průběžné zprávě za rok 2015
Příloha k průběžné zprávě za rok 2015 Číslo projektu: TE02000077 Název projektu: Smart Regions Buildings and Settlements Information Modelling, Technology and Infrastructure for Sustainable Development
Metody termické analýzy. 3. Termické metody všeobecně. Uspořádání experimentů.
3. ermické metody všeobecně. Uspořádání experimentů. 3.1. vhodné pro polymery a vlákna ermická analýza je širší pojem pro metody, při nichž se měří fyzikální a chemické vlastnosti látky nebo směsi látek
1 m PATENTOVÝ SPIS 283 198 00 0) 00 CSI (19) (13) Druh dokumentu: B6 (51) Int. Cl. e A 62 D 3/00
PATENTOVÝ SPIS 283 198 (19) ČESKÁ REPUBLIKA 1 m {21} Číslo přihlášky: 2106-96 (22) Přihlášeno: 17. 07. 96 (40) Zveřejněno: 14. 01. 98 {Věstník č. 1/98) (47) Uděleno: 25. 11. 97 (24) Oznámeno udělení ve
02 Termogravimetrická analýza Thermogravimetric Analysis (TGA)
Audio test: Termická analýza 02 Termogravimetrická analýza Thermogravimetric Analysis (TGA) Přednášející: Doc. Jiří Sopoušek Brno, prosinec 2011 1 Princip Měření změn hmotnosti vzorku vystaveného změnám