Adresování paměti. Adresní prostor. Adresní módy (v instrukcích) T.Mainzer
|
|
- Patrik Novotný
- před 6 lety
- Počet zobrazení:
Transkript
1 Adresování paměti T.Mainzer Adresní prostor Logický adresní prostor - Adresní prostor se kterým může pracovat/může adresovat daný procesor. Pracuje li procesor s 16-bitovou adresou má log.adresní prostor velikost 2^16 (64kB), pracuje li s 32-bitovou adresou je log.adresní prostor 2^32 (4GB) Fyzický adresní prostor Velikost skutečně osazené (fyzicky přítomné a adresovatelné) paměti. Pozn: Kromě paměťového adresního prostoru může být ješte I/O (V/V) adresový prostor příp. prostor pro další specifické fce Velikost logického (L) a fyzického (F) adresního prostoru L=F L>F L<F Nic neřešíme Typický stav, řeší se mapování paměti (mapování logické adresy na fyzickou). Někdy je mapování pevně dané (typicky mikrokontrolery). U procesorů mapování často zahrnuje i mechanismus virtuální paměti (automaticky řešeno HW) Netypický případ, lze to, ale přístup do paměti musí být řešen na úrovni SW i na aplikační úrovni Adresní módy (v instrukcích) (Přímý operand hodnota/číslo uvedena v kódu instrukce) Přímé absolutní adresování přímo adresa/číslo odkazující na pamět (A) Adresování registrem - Nepřímé adresování, (R) registr obsahuje adresu Bázové s posunem (A+R) Přímá adresa + posun v registru Nepřímé s offsetem (R+I) Nepřímá adresa v registru + offset I Indexované (R+R) Adresa i offset v registrech Indexovaný s měřítkem - (R+R*m) Nepřímé přez paměť ((R)) registr obsahuje adresu na které je ukazatel Autoinkrement/Autoderement (R++, R++m) čtení z paměti a navýšení/snížení ukazatele Bitově reversibilní adresování spodní část adresy je bitově otočena, výpočet FFT Kruhové adresování po dosažení konce oblasti se pokračuje opět na začátku
2 Segmentace a Stránkování Segment = Virtuální adresní prostor různé velikosti (=segment) začínající od (virtuální) adresní nuly s aplikačně různým určením (tj. rozdělení na segmenty respektuje log.strukturu programu/dat/os) typicky segment kódový, segment (statických) dat, segment zásobníku, segment systémový atp. Každý segment může mít různá přístupová práva (kódový segment jen pro spouštění, do zásobníkového segmentu může přistupovat jen jeden proces atp. ). Výhody: Ochrana přístupu procesů (práva), velikost segmentu je uzpůsobena potřebě, lze měnit umístění segmentu v paměti jen změnou segmentu, offset v segmentu zůstává zachován Nevýhody: Obecně problémy s alokací segmentů při změnách velikosti a možná fragmentace, režie při přístupu do paměti (převod adresy přes tab.segmentů) (Algorimy přidělování paměti / volného bloku Firstfit,lastfit, worstfit, exactorworstfit, bestfit) Stránka = virtuální adresní prostor je rozdělen na stránky stejné velikosti. Jejich reálné umístění ve fyzické paměti je dáno překladem (tab.stránek, překládá log.adresu na fyzickou) Výhody: omezení fragmentace paměti, možnost přístupových práv Nevýhody: Nedokonalé využítí paměti (dané velikostí stránky), režie při přístupu do paměti (převod adresu přes tab.stránek, často víceúrovňovou) (Algoritmy výběru stráky pro vyhození/oběti - optimal(teoreticke),fifo,odložené fifo, LRU (lastrecentlyused), LFU (lastfrequentlyused), pseudo-lru) pozn. Jak pro segmentování tak pro stránkování lze použít mapování, kdy ve fyzické paměti je jen část programu/dat a ty části které se nepotřebují jsou odloženy na jinde (typicky na disku) a při jejich potřebě se do paměti přesouvají (výpadek segmentu, swapování) Segmentace+Stránkování = kombinace výše uvedených metod. Ponechává výhody segmentace (první krok), a díky stránkování (druhý krok) řeší problém s fragmentací a umožňuje mít v paměti jen používané části segmentu Aby výše uvedené bylo efektivní je toto nutné řešit na úrovni HW (MMU =memory management unit) Příklad přístupu do paměti pro segmetanci + dvouúrovňové stránkování (tj. překlad log.adresy na fyzickou, logická adresa ve tvaru segment:offset je tab.segmentů převedena na lineární adresu a ta je pře dvouúrovňovou stránkovací tabulku převedena na fyzickou adresu)
3 Paměť RAM - vnitřní struktura, adresace Obecná Vnitřní struktura paměti a paměťové buňky SRAM vs DRAM. ad SRAM pro uchování stavu (bitu) klopný obvod (4T (ECL) nebo 6T (CMOS), T=tranzistorů) (odtud S=statické), buňka je rychlá, ale prostorově (=cenově) náročná. Čtení je nedestruktivní (na rozdíl od DRAM). ad DRAM pro uchování stavu (bitu) kondenzátor (velmi nízké kapacity <<1pF), čtením se kondezátor vybije a je nutné informaci obnovit. Kvůli samovolnému vybíjení je nutno informaci v paměti pravidelně obnovovat (odtud D =dynamické, cca 10-ky ms). Toto obvykle řeší externí obvody. Adresování DRAM je dvoustupňové řádek (R) a sloupec (C), pro refresh stačí řádky. Čtení z DRAM je relativně pomalé (10-ky ns). Kvůli nízké kapacitě buňky je uchovávaná informace a čtecí/zápisová elektronika citlivá (používají se diferenciální čtecí zesilovače) např. na napájecí napětí, teplotu, časování atp. Také vzhledem k nízké kapacitě/malému rozměru může být údaj v buňce poškozen měkkým zářením (ionizace izolační vrstvy a tím ztráta náboje v buňce). Proto se používají korekční ECC kódy. SDRAM = synchronní DRAM (všechny signnály jsou sychronizované s hodinami) DDR = SDRAM se synchronizací na obě hrany hodin (double data rate) čtecí a zápisový cyklus pro DRAM + cyklus pro DDR
4 Sběrnice, Adresní dekoder - Sběrnice Datová, adresová, řídící(kontrolní) - Datová šířka dat (8bitobá, 16bitová, 32bitová, ) - Adresová velikost paměti (16bitů = 2^16 = adres) - Řídící činnosti paměti, typicky (může se lišit): - CS = Chipselect povolení komunikace s pamětí (0/1=zakázáno/povoleno) - /CS = neg.chipselect povolení komunikace s pamětí (0=povoleno/zakázáno) - OE = Output enable povolení výstupu na datovou sběrnici (čtení) - /WE = write enable povel/řízení zápisu do paměti Dekódodání adres Fyzická pamět (fyzický adr.prostor) je typicky menší než adresovatelná paměť (logický adr.prostor) Např. - Fyzická pamět 8bitů adres.zběrnice (A0 az A7) = 256Byte = rozsah adres 00-ff - procesor má 10bitovou adr.sběrnici (A0 az A9) = 1kB = rozsah adress 000-3ff Procesor-Dekoder-Pamet A0-A7 Pameť A8-A9 nezapojeno A0-A7 Pameť A7..A0 A8-A9 nezapojeno A0-A1 nezapojeno A2-A9 Dvě paměti X a Y A0-A7 Pameť X i Y A8 dekoder X nebo Y A9 nezapojeno Dvě paměti X a Y A0 dekoder X nebo Y A1-A8 Pameť X i Y A9 nezapojeno A0-A7 Pameť X i Y A8,A9 dekoder nic-x-y-nic Mapování (co/odkud čteme z adres 000 až 3ff) Základní nejednodušší, log.prostor je mapován: FF FF FF FF Prohozené adresová bity, log.prostor je mapován: C0.. 7F FF FF FF FF Nepsrávné použití, log.prostor je mapovan: Dekodovani adresy, log.prostor je mapovan: x0 x1 xff y0 y1 yff x0 x1 xff y0 y1 yff pokud by byl A9 zapojen do dekoderu pak: x0 x1 xff y0 y1 yff nic nic Dekodovani adresy, log.prostor je mapovan: x0 y0 x1 y1 xff yff x0 y0 x1 y1 xff yff Dekodovani adresy, log.prostor je mapovan: nic(256b) x0 x1 xff y0 y1 yff nic(256b) Příklad zapojení
5 Cache Hierarchie paměťového systému - ideální paměť: co nejrychlejší, nejlevnější, největší, držící informace i po vypnutí - nelze docílit splnění všech podmínek najednou, tj. Paměťový subsystém se skládá z různých druhů pamětí Při přístupu do paměti se obvykle projevuje časová lokalita tj. Byla li položka použita bude pravděpodobně použita znova (proměnné v algoritmech a cyklech, instrukce v cyklu) prostorová lokalita tj. Byla li použita nejaká položka bude pravděpodobně použita i nějaká okolní (práce s poli, s vrcholkem zásobníku, následující instrukce) původní počítačové systémy rychlost paměti > rychlost procesoru. Nové systémy rychlost paměti < rychlost procesoru použití Cache Cache Paměti (vyrovnávací paměti) rychlá vyrovnávací paměť umístěná typicky mezi procesorem a hlavní pamětí, vyrovnává jejich rozdílné rychlosti, může být i víceúrovňová (L1,L2). Používá se SRAM paměť (rychlejší než DRAM, ale menší kapacity Vel.Cache << Vel.Paměti), snaha aby informace byli v Cache a co nejméně se přistupovalo do hlavní paměti. V cache je třeba rychle nalézt jsou li tam obsažena hledaná data cache by měla být asociativní paměť kde klíčem je adresa do hlavní paměti tj. ideálně v jeden okamžik porovná paralelně vstupující klíč se všemi uloženými klíči (fce XOR). Koherence cache (zápis) Pokud něco zapíšeme do cache je nutné to také (někdy) zapsat do hlavní paměti Přímý zápis po změně v cache okamžitě zapisuji i dále ( pomalé) Zápis s mezipamětí spec.mezipamět pro zápis omezené velikosti Zpětný zápis Zapisuji v okamžiku kdy přepisuji položku v Cache Zpětný zápis změněného - Zapisuji v okamžiku kdy přepisuji položku v Cache ale jen změněné/zapsané položky (tj. je zde navíc příznak zápisu tkzvn. Dirty bit/flag) Velikost bloku Cache
6 - Pokud malý mnoho bloků (každý se svojí logikou) - Pokud velký častější výměna (vetší p-podobnost výpadku) často rozdělena do bloků velikosti které načteme/zapíšeme z/do DRAM jedním čtením/zápisem Hit rate pravděpodobnost úspěchu že dané dato je v cache, teoreticky (náhodný přístup) <<1%, prakticky až 95-99%. V případě neúspěchu (miss rate/miss penaulty) je třeba hledat dále v hiearchii. (tj. i způsob zápisu programu/algoritmu či dat.struktur může ovlivnit hit rate a tím rychlost provedení, např dvourozměrné pole přístup po rádkách, přístup po sloupcích) Pro zamezení konfliktů v přístupu se často odděluje datová cache a instrukční cache. Informace uložené v cache - data (vlastní data) o dané velikosti bloku - adresa (ke které adrese data náleží) (dle implementace je část asociativní a část indexová ) - dirty bit (příznak změny dat) - informace o užití položky (viz dále) Pokud potřebuji do cache nahrát novou položku musím nějakou odstranit (replacement): - RR (random replacement) - náhodný výběr - FIFO (first in, first outú - (nejdříve vloženou) - LFU (least frequently used) nejméně často používaná - MFU (most frequently used) nejčastěji použitá - LDU (last recently used) nejdéle nepoužívaná - atp, viz např. Jsou li za sebou dvě cache (L1,L2) mohou používat odlišný algoritmus. Plně asociativní Cache - ideální asociativní pamět, každá položka má vlastní porovnávací mechanismus náročné např. Adresa 32bitů, Cache o 1024 položkách, data velikosti 4B Každý řádek cache obsahuje: 30bitů adresa (32b-2b, 2b=velikost dat), 32bitů data, Příznak platnosti 1b (je položka obsazena) + Dirty bit 1b +?bits na nahrazovací algoritmus Porovnávací (asociativní část, xor fce) je 30 bitová o musí ji obsahovat každý řádek, tj. 1024* Cache s přímým mapováním Spodní část adresy je přímo indexem do cache tj. V cache nemohou být dvě adresy které mají tento index stejný. např. Adresa 32bitů, Cache o 1024 položkách, data velikosti 4B
7 Každý řádek cache obsahuje: 20bitů adresa (32b-2b-10b, 2b=velikost dat, 10b=velikost indexu), 32bitů data,, Příznak platnosti 1b (je položka obsazena) + Dirty bit 1b +?bits na nahrazovací algoritmus Porovnávací (asociativní část, xor fce) je 20 bitová a je zde pouze 1* N-cestná Cache Spodní část adresy je indexem do cache, ale cache je vícecestná, tj. Obsahuje N bloků s daným indexem. např. Adresa 32bitů, 4cestná cache o (celkem) 1024 položkách, data velikosti 4B Každý řádek cache obsahuje: 22bitů adresa (32b- 2b-8b, 2b=velikost dat, 8b=velikost indexu (10b- 2b za čtyřcestnost)), 32bitů data, Příznak platnosti 1b (je položka obsazena) + Dirty bit 1b +?bits na nahrazovací algoritmus Porovnávací (asociativní část, xor fce) je 22 bitová a je zde 4* (proto čtyřcestná) Algorimus Pseudo-LRU Upravený (zjednodušený) algoritmus pro určení nejdéle nepoužité položky. Není tak přesný, ale implementačně jednoduchý a pro N-položek (cest) vyžaduje 2*log2(N)-1 bitů. Příklad pro 4 cestnou pamět zapisujeme (na stejný index) postupně hodnoty ABCDE. Pro implementaci potřebujeme 3bity. Ty si představíme jako ukazatele v binárním stromu (0=doleva,1=doprava): Začínáme počátečním prázdným stavem. Zapisujeme na místo kam směřují ukazatele, po zápisu ukazatelům po cestě změníme hodnotu:
Paměťový podsystém počítače
Paměťový podsystém počítače typy pamětových systémů počítače virtuální paměť stránkování segmentace rychlá vyrovnávací paměť 30.1.2013 O. Novák: CIE6 1 Organizace paměťového systému počítače Paměťová hierarchie...
Struktura a architektura počítačů (BI-SAP) 11
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 11 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Struktura a architektura počítačů (BI-SAP) 10
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Principy operačních systémů. Lekce 3: Virtualizace paměti
Principy operačních systémů Lekce 3: Virtualizace paměti Virtuální paměť Adresní prostor paměti je uspořádán logicky jinak, nebo je dokonce větší než je fyzická operační paměť RAM Rozšíření vnitřní paměti
Operační systémy. Jednoduché stránkování. Virtuální paměť. Příklad: jednoduché stránkování. Virtuální paměť se stránkování. Memory Management Unit
Jednoduché stránkování Operační systémy Přednáška 8: Správa paměti II Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné velikosti
Paměťová hierarchie. INP 2008 FIT VUT v Brně
Paměťová hierarchie INP 2008 FIT VUT v Brně 000 Výkonová mezera mezi CPU a pamětí Moorův zákon CPU CPU 60% za rok (2X/.5roku) výkonnost 00 0 980 98 DRAM 982 983 984 985 986 987 988 989 990 99 992 993 994
2010/2011 ZS P i r i nc č py po ít č čů a PAMĚŤOVÝ ĚŤ SUBSYSTÉM z pohledu OS OS
Pi Principy i počítačů čů PAMĚŤOVÝ SUBSYSTÉM z pohledu OS Správa paměti OS je správcem prostředků, tedy i paměti přidělování procesům zajištění ochrany systému i procesů zajištění požadavků aniž by došlo
Systém adresace paměti
Systém adresace paměti Základní pojmy Adresa fyzická - adresa, která je přenesena na adresní sběrnici a fyzicky adresuje hlavní paměť logická - adresa, kterou má k dispozici proces k adresaci přiděleného
Paměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje
Paměti Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na čipu procesoru jsou používány
Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
Mezipaměti počítače. L2 cache. L3 cache
Mezipaměti počítače Cache paměť - mezipaměť Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá vyrovnávací (cache) paměť SRAM. Rychlost
ÚVOD DO OPERAČNÍCH SYSTÉMŮ. Správa paměti. Přímý přístup k fyzické paměti, abstrakce: adresový prostor, virtualizace, segmentace
ÚVOD DO OPERAČNÍCH SYSTÉMŮ Správa paměti Přímý přístup k fyzické paměti, abstrakce: adresový prostor, virtualizace, segmentace České vysoké učení technické Fakulta elektrotechnická Y38ÚOS Úvod do operačních
Přidělování paměti II Mgr. Josef Horálek
Přidělování paměti II Mgr. Josef Horálek Techniky přidělování paměti = Přidělování jediné souvislé oblasti paměti = Přidělování paměti po sekcích = Dynamické přemisťování sekcí = Stránkování = Stránkování
09. Memory management. ZOS 2006, L.Pešička
09. Memory management ZOS 2006, L.Pešička Správa paměti paměťová pyramida absolutní adresa relativní adresa počet bytů od absolutní adresy fyzický prostor adres fyzicky k dispozici výpočetnímu systému
PAMĚŤOVÝ SUBSYSTÉM. Principy počítačů I. Literatura. Parametry paměti. Parametry paměti. Dělení pamětí podle funkce. Kritéria dělení pamětí
Principy počítačů I PAMĚŤOVÝ SUBSYSTÉM Literatura http://www.tomshardware.com http://www.play-hookey.com/digital/ 6 kb ought to be enough for anybody. Bill Gates, 98 Parametry paměti kapacita objem informace,
Dělení pamětí Volatilní paměti Nevolatilní paměti. Miroslav Flídr Počítačové systémy LS /11- Západočeská univerzita v Plzni
ělení pamětí Volatilní paměti Nevolatilní paměti Počítačové systémy Vnitřní paměti Miroslav Flídr Počítačové systémy LS 2006-1/11- Západočeská univerzita v Plzni ělení pamětí Volatilní paměti Nevolatilní
Adresní mody procesoru
Adresní mody procesoru K.D. - přednášky 1 Obecně o adresování Různé typy procesorů mohou mít v instrukci 1, 2 nebo více adres. Operandy mohou ležet v registrech nebo v paměti. Adresní mechanismus procesoru
Přednáška. Správa paměti I. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Správa paměti I. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
Operační systémy. Správa paměti (SP) Požadavky na SP. Spojování a zavedení programu. Spojování programu (linking) Zavádění programu (loading)
Správa paměti (SP) Operační systémy Přednáška 7: Správa paměti I Memory Management Unit (MMU) hardware umístěný na CPU čipu např. překládá logické adresy na fyzické adresy, Memory Manager software, který
Paměti cache. Cache může být realizována softwarově nebo hardwarově.
Paměti cache Cache je označení pro vyrovnávací paměť nacházející se mezi dvěma subsystémy s rozdílnou přenosovou rychlostí, a jak již její název vypovídá, tak tuto rychlost vyrovnává. Cache může být realizována
Pamět ová hierarchie, návrh skryté paměti 2. doc. Ing. Róbert Lórencz, CSc.
Architektura počítačových systémů Pamět ová hierarchie, návrh skryté paměti 2 doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů
Operační systémy. Přednáška 7: Správa paměti I
Operační systémy Přednáška 7: Správa paměti I 1 Správa paměti (SP) Memory Management Unit (MMU) hardware umístěný na CPU čipu např. překládá logické adresy na fyzické adresy, Memory Manager software, který
Pamět ová hierarchie, virtuální pamět. doc. Ing. Róbert Lórencz, CSc.
Architektura počítačových systémů Pamět ová hierarchie, virtuální pamět doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů
Operační systémy. Přednáška 8: Správa paměti II
Operační systémy Přednáška 8: Správa paměti II 1 Jednoduché stránkování Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné
Pokročilé architektury počítačů
Pokročilé architektury počítačů Architektura paměťového a periferního podsystému České vysoké učení technické, Fakulta elektrotechnická A4M36PAP Pokročílé architektury počítačů Ver.1.00 2010 1 Motivace
DUM č. 10 v sadě. 31. Inf-7 Technické vybavení počítačů
projekt GML Brno Docens DUM č. 10 v sadě 31. Inf-7 Technické vybavení počítačů Autor: Roman Hrdlička Datum: 04.12.2013 Ročník: 1A, 1B, 1C Anotace DUMu: jak fungují vnitřní paměti, typy ROM a RAM pamětí,
I. Dalšívnitřní paměti
BI-JPO (Jednotky počítače) I. Dalšívnitřní paměti c doc. Ing. Alois Pluháček, CSc. 2010 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální
Paměti Josef Horálek
Paměti Josef Horálek Paměť = Paměť je pro počítač životní nutností = mikroprocesor z ní čte programy, kterými je řízen a také do ní ukládá výsledky své práce = Paměti v zásadě můžeme rozdělit na: = Primární
Paměti a jejich organizace
Kapitola 5 Paměti a jejich organizace 5.1 Vnitřní a vnější paměti, vlastnosti jednotlivých typů Vnější paměti Jsou umístěny mimo základní jednotku. Lze je zařadit mezi periferní zařízení. Zápis a čtení
Paměti počítače ROM, RAM
Paměti počítače ROM, RAM Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje. Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na čipu procesoru
Pamět ová hierarchie, návrh skryté paměti cache 2
Architektura počítačových systémů Róbert Lórencz 8. přednáška Pamět ová hierarchie, návrh skryté paměti cache 2 http://service.felk.cvut.cz/courses/36aps lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2005)
Informační a komunikační technologie
Informační a komunikační technologie 7. www.isspolygr.cz Vytvořil: Ing. David Adamovský Strana: 1 Škola Integrovaná střední škola polygrafická Ročník Název projektu 1. ročník SOŠ Interaktivní metody zdokonalující
Úvod. Instrukce musí obsahovat: typ operace adresu operandu (operandů) typ operandů modifikátory adresy modifikátory operace POT POT
Úvod Instrukce musí obsahovat: typ operace adresu operandu (operandů) typ operandů modifikátory adresy modifikátory operace K.D. - přednášky 2 Pevná a proměnná délka instrukce (1) Pevná délka instrukce
Paměti počítače 9.přednáška
Paměti počíta tače 9.přednáška Paměť Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na
požadovan adované velikosti a vlastností Interpretace adresy POT POT
požadovan adované velikosti a vlastností K.D. - přednášky 1 Interpretace adresy Ve kterémkoliv místě lze adresu rozdělit na číslo bloku a offset uvnitř bloku. Velikost bloku je dána délkou příslušné části
Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. Petr Krajča (UP) KMI/YOS: Přednáška IV. 18. listopad, / 41
Operační systémy Pamět Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci Petr Krajča (UP) KMI/YOS: Přednáška IV. 18. listopad, 2016 1 / 41 Operační pamet zásadní část počítače uložení kódu
Operační paměti počítačů PC
Operační paměti počítačů PC Dynamické paměti RAM operační č paměť je realizována čipy dynamických pamětí RAM DRAM informace uchovávána jako náboj na kondenzátoru nutnost náboj pravidelně obnovovat (refresh)
Petr Krajča. 25. listopad, 2011
Operační systémy Pamět Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci 25. listopad, 2011 Petr Krajča (UP) KMI/YOS: Přednáška IV. 25. listopad, 2011 1 / 35 Operační pamet zásadní část počítače
Paměti operační paměti
Paměti operační paměti Autor: Kulhánek Zdeněk Škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo náměstí 1, příspěvková organizace Kód: VY_32_INOVACE_ICT_828 1.11.2012
Paměť počítače. 0 (neprochází proud) 1 (prochází proud)
Paměť počítače Paměť je nezbytnou součástí jakéhokoli počítače. Slouží k uložení základních informací počítače, operačního systému, aplikačních programů a dat uživatele. Počítače jsou vybudovány z bistabilních
Principy počítačů a operačních systémů
Principy počítačů a operačních systémů Operační systémy Správa paměti Zimní semestr 2011/2012 Správa paměti OS jako správce paměti specializovaný subsystém OS spravuje hlavní paměť systému přidělování
Princip funkce počítače
Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování
Uspořádání cache pamětí procesorů historie a současný stav
Uspořádání cache pamětí procesorů historie a současný stav Stránka: 1 / 17 Obsah 1Úvod...3 2Hierarchie pamětí počítače...4 2.1Pracovní registry procesoru...4 2.2L1 cache...4 2.3L2 cache...5 2.4Operační
Pohled do nitra mikroprocesoru Josef Horálek
Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická
Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je možné, že někde bude chyba.
Odpovědi jsem hledala v prezentacích a na http://www.nuc.elf.stuba.sk/lit/ldp/index.htm Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je
Počítač jako prostředek řízení. Struktura a organizace počítače
Řídicí počítače - pro řízení technologických procesů. Specielní přídavná zařízení - I/O, přerušovací systém, reálný čas, Č/A a A/Č převodníky a j. s obsluhou - operátorské periferie bez obsluhy - operátorský
asociativní paměti Ing. Jakub Št astný, Ph.D. 1 Katedra teorie obvodů FEL ČVUT Technická 2, Praha 6,
Pamět ové obvody, řadiče a implementace, asociativní paměti AČS Ing. Jakub Št astný, Ph.D. 1 1 FPGA Laboratoř Katedra teorie obvodů FEL ČVUT Technická 2, Praha 6, 166 27 http://amber.feld.cvut.cz/fpga
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:
Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje:
Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený
Paměti EEPROM (1) Paměti EEPROM (2) Paměti Flash (1) Paměti EEPROM (3) Paměti Flash (2) Paměti Flash (3)
Paměti EEPROM (1) EEPROM Electrically EPROM Mají podobné chování jako paměti EPROM, tj. jedná se o statické, energeticky nezávislé paměti, které je možné naprogramovat a později z nich informace vymazat
ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ. MEIII Paměti konstant
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEIII - 1.5 Paměti konstant Obor: Mechanik elektronik Ročník: 3. Zpracoval(a): Jiří Kolář Střední průmyslová škola Uherský Brod, 2010 Projekt je spolufinancován
Reprezentace dat v informačních systémech. Jaroslav Šmarda
Reprezentace dat v informačních systémech Jaroslav Šmarda Reprezentace dat v informačních systémech Reprezentace dat v počítači Datové typy Proměnná Uživatelské datové typy Datové struktury: pole, zásobník,
Přidělování zdrojů (prostředků)
Přidělování zdrojů (prostředků) Proces potřebuje zdroje (prostředky) hardware (I/O zařízení, paměť) software (data, programy) Klasifikace zdrojů (z hlediska multitaskingového režimu) Násobně použitelné
Správy cache. Martin Žádník. Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, Brno
Správy cache Martin Žádník Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno ant@fit.vutbr.cz Hierarchie Cílem cache je dostat data co nejblíže výpočetnímu
Rychlá vyrovnávací paměť v architektuře PC
Rychlá vyrovnávací paměť v architektuře PC 1 Cíl přednášky Prezentovat důvody, které vedly k zavedení rychlé vyrovnávací paměti (RVP) do architektury počítače. Vysvětlit principy činnosti RVP. Ukázat vývoj
Miroslav Flídr Počítačové systémy LS 2006-1/21- Západočeská univerzita v Plzni
Počítačové systémy Vnitřní paměti Miroslav Flídr Počítačové systémy LS 2006-1/21- Západočeská univerzita v Plzni Hierarchire pamětí Miroslav Flídr Počítačové systémy LS 2006-2/21- Západočeská univerzita
Pokročilé architektury počítačů
Pokročilé architektury počítačů Přednáška 3 Hierarchické uspořádání pamětí počítače Martin Milata Obsah Paměťový subsystém Obvyklé chování programů při přístupu do paměti Cache paměti princip činnosti
Strojový kód. Instrukce počítače
Strojový kód Strojový kód (Machine code) je program vyjádřený v počítači jako posloupnost instrukcí procesoru (posloupnost bajtů, resp. bitů). Z hlediska uživatele je strojový kód nesrozumitelný, z hlediska
PROTOKOL O LABORATORNÍM CVIČENÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ Provedl: Jan Kotalík Datum: 3.1. 2010 Číslo: Kontroloval/a Datum: 1. ÚLOHA: Návrh paměti Pořadové číslo žáka:
Metody připojování periferií BI-MPP Přednáška 2
Metody připojování periferií BI-MPP Přednáška 2 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011
Principy operačních systémů. Lekce 2: Správa paměti
Principy operačních systémů Lekce 2: Správa paměti Funkce správce paměti Správce (operační) paměti je součástí kernelu. Jeho implementace může být různá, ale základní funkce jsou obdobné ve všech OS: Udržovat
Mikrokontroléry. Doplňující text pro POS K. D. 2001
Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou
Procesor. Základní prvky procesoru Instrukční sada Metody zvýšení výkonu procesoru
Počítačové systémy Procesor Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Víceúrovňová organizace počítače Digital logic level Microarchitecture level Processor Instruction
Parametry pamětí vybavovací doba (tj. čas přístupu k záznamu v paměti) = 10 ns ms rychlost toku dat (tj. počet přenesených bitů za sekundu)
Paměti Parametry pamětí vybavovací doba (tj. čas přístupu k záznamu v paměti) = 10 ns...100 ms rychlost toku dat (tj. počet přenesených bitů za sekundu) kapacita paměti (tj. počet bitů, slabik, slov) cena
Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry.
Paměti Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry. Klíčové pojmy: paměť, RAM, rozdělení pamětí, ROM, vnitřní paměť, vnější paměť. Úvod Operační paměť
Paměti EEPROM (1) 25/07/2006 1
Paměti EEPROM (1) EEPROM - Electrically EPROM Mají podobné chování jako paměti EPROM, tj. jedná se o statické, energeticky nezávislé paměti, které je možné naprogramovat a později z nich informace vymazat
Řízení IO přenosů DMA řadičem
Řízení IO přenosů DMA řadičem Doplňující text pro POT K. D. 2001 DMA řadič Při přímém řízení IO operací procesorem i při použití přerušovacího systému je rychlost přenosu dat mezi IO řadičem a pamětí limitována
Přerušovací systém s prioritním řetězem
Přerušovací systém s prioritním řetězem Doplňující text pro přednášky z POT Úvod Přerušovací systém mikropočítače může být koncipován několika způsoby. Jednou z možností je přerušovací systém s prioritním
Základní principy konstrukce systémové sběrnice - shrnutí. Shrnout základní principy konstrukce a fungování systémových sběrnic.
Základní principy konstrukce systémové sběrnice - shrnutí Shrnout základní principy konstrukce a fungování systémových sběrnic. 1 Co je to systémová sběrnice? Systémová sběrnice je prostředek sloužící
Provádění instrukcí. procesorem. Základní model
procesorem 1 Základní model Kód programu (instrukce) a data jsou uloženy ve vnější paměti. Procesor musí nejprve z paměti přečíst instrukci. Při provedení instrukce podle potřeby čte nebo zapisuje data
Akademický rok: 2004/05 Datum: Příjmení: Křestní jméno: Osobní číslo: Obor:
Západočeská univerzita v Plzni Písemná zkouška z předmětu: Zkoušející: Katedra informatiky a výpočetní techniky Počítačová technika KIV/POT Dr. Ing. Karel Dudáček Akademický rok: 2004/05 Datum: Příjmení:
Paměti Flash. Paměti Flash. Základní charakteristiky
Paměti Flash K.D. - přednášky 1 Základní charakteristiky (Flash EEPROM): Přepis dat bez mazání: ne. Mazání: po blocích nebo celý čip. Zápis: po slovech nebo po blocích. Typická životnost: 100 000 1 000
Sběrnicová architektura POT POT. Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry.
Systémov mová sběrnice 1 Sběrnicová architektura Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry. Single master jeden procesor na sběrnici, Multi master více
Dekódování adres a návrh paměťového systému
Dekódování adres a návrh paměťového systému K.D. 2004 Tento text je určen k doplnění přednášek z předmětu POT. Je zaměřen jen na některé body probírané na přednáškách bez snahy o úplné vysvětlení celé
Technické prostředky počítačové techniky
Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení
Operační systémy 2. Přednáška číslo 2. Přidělování paměti
Operační systémy 2 Přednáška číslo 2 Přidělování paměti Základní pojmy Paměť = operační paměť paměť, kterou přímo využívají procesory při zpracování instrukcí a dat Funkce modulu přidělování paměti: Sledování
Kubatova 19.4.2007 Y36SAP - 13. procesor - control unit obvodový a mikroprogramový řadič RISC. 19.4.2007 Y36SAP-control unit 1
Y36SAP - 13 procesor - control unit obvodový a mikroprogramový řadič RISC 19.4.2007 Y36SAP-control unit 1 Von Neumannova architektura (UPS1) Instrukce a data jsou uloženy v téže paměti. Paměť je organizována
Systém řízení sběrnice
Systém řízení sběrnice Sběrnice je komunikační cesta, která spojuje dvě či více zařízení. V určitý okamžik je možné aby pouze jedno z připojených zařízení vložilo na sběrnici data. Vložená data pak mohou
Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů).
Strojový kód k d a asembler procesoru MIPS Použit ití simulátoru SPIM K.D. - cvičení ÚPA 1 MIPS - prostředí 32 ks 32bitových registrů ( adresa registru = 5 bitů). Registr $0 je zero čte se jako 0x0, zápis
Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus
Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná
Profilová část maturitní zkoušky 2014/2015
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika
Semestrální práce z předmětu Speciální číslicové systémy X31SCS
Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší
2.9 Vnitřní paměti. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Zjednodušené schéma systému z základ hardware pro mainframe tvoří: operační pamět - MAIN / REAL STORAGE jeden
Cache paměť - mezipaměť
Cache paměť - mezipaměť 10.přednáška Urychlení přenosu mezi procesorem a hlavní pamětí Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Petr
Memory Management vjj 1
Memory Management 10.01.2018 vjj 1 10.01.2018 vjj 2 sledování stavu paměti free used správa paměti strategie přidělování paměti techniky přidělování paměti realizace uvolňování paměti 10.01.2018 vjj 3
4. Elektronické logické členy. Elektronické obvody pro logické členy
4. Elektronické logické členy Kombinační a sekvenční logické funkce a logické členy Elektronické obvody pro logické členy Polovodičové paměti 1 Kombinační logické obvody Způsoby zápisu logických funkcí:
Kapitola 10: Diskové a souborové struktury. Klasifikace fyzických médií. Fyzická média
- 10.1 - Kapitola 10: Diskové a souborové struktury Přehled fyzických ukládacích médií Magnetické disky RAID (Redundant Array of Inexpensive Disks) Terciární úložiště Přístup k médiu Souborové organizace
Téma 8 Virtuální paměť Obsah
Téma 8 Virtuální paměť Obsah. Principy virtuální paměti. Stránkování na žádost. Politika náhrad stránek a algoritmy výběru oběti. Algoritmus LRU a jeho aproximace. Přidělování prostoru procesům, problém
Procesory a paměti Procesor
Procesory a paměti Procesor základní součást počítače, integrovaný obvod s velmi vysokým stupněm integrace, uváděn jako mozek počítače. V současné době jsou na trhu procesory dvou výrobců: Intel a AMD.
Principy komunikace s adaptéry periferních zařízení (PZ)
Principy komunikace s adaptéry periferních zařízení (PZ) Několik možností kategorizace principů komunikace s externími adaptéry, např.: 1. Podle způsobu adresace registrů, které jsou součástí adaptérů.
Paměťové prvky. ITP Technika personálních počítačů. Zdeněk Kotásek Marcela Šimková Pavel Bartoš
Paměťové prvky ITP Technika personálních počítačů Zdeněk Kotásek Marcela Šimková Pavel Bartoš Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Osnova Typy
Hardware počítačů. Architektura počítačů Paměti počítačů Aritmetika - ALU Řadič
Hardware počítačů Architektura počítačů Paměti počítačů Aritmetika - ALU Řadič 5. Paměťový systém počítače Paměť je důležitou součástí počítače, procesor si s ní neustále vyměňuje data. vnitřní paměť =
Témata profilové maturitní zkoušky
Obor vzdělání: 18-20-M/01 informační technologie Předmět: programování 1. Příkazy jazyka C# 2. Datové konstrukce 3. Objektově orientované programování 4. Tvorba vlastních funkcí Obor vzdělání: 18-20-M/01
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
Memory Management vjj 1
Memory Management 30.11.2016 vjj 1 30.11.2016 vjj 2 sledování stavu paměti free used správa paměti strategie přidělování paměti techniky přidělování paměti realizace uvolňování paměti 30.11.2016 vjj 3
Při překrývání se využívá toho, že ne všechny moduly programu jsou vyžadovány současně. Jakmile skončí využívání jednoho
Operační systémy Tomáš Hudec 9 Správa paměti, metody alokace paměti, virtualizace paměti Obsah: 9.1 Techniky přidělování paměti, 9.1.1 Pevné dělení paměti, 9.1.1.1 Stejně velké oblasti, 9.1.1.2 Různě velké
Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010
Přednášky o výpočetní technice Hardware teoreticky Adam Dominec 2010 Rozvržení Historie Procesor Paměť Základní deska přednášky o výpočetní technice Počítací stroje Mechanické počítačky se rozvíjely už