Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o. Pro certifikaci dle Nařízení 303/2008/EK Ing.
|
|
- Marie Slavíková
- před 9 lety
- Počet zobrazení:
Transkript
1 Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o Diagram chladícího okruhu Pro certifikaci dle Nařízení 303/2008/EK Ing. Jiří Brož
2 Úvod k prezentaci Tato jednoduchá prezentace je výukový materiál Svazu chladící a klimatizační techniky a slouží k vysvětlení a znázornění fyzikálních pochodů chladícího okruhu v i-log p diagramu. (V anglo-saské literatuře je tento graf nazýván jako h-log p)
3 K čemu je dobré znát diagram?? Zobrazí fyzikální děje v chladícím okruhu Slouží k technickým výpočtům Má mnoho dalších možností použití Každé chladivo má svůj jedinečný diagram Grafy všech chladiv jsou si ale podobné
4 Toto je ten tajemný diagram chladiva nazývaný i-log p
5 Svislá a vodorovná osa diagramu Tak jako každý diagram má i diagram i-log p dvě osy. Vodorovnou osu X, na kterou je vynesena enthalpie a svislou osu Y, na kterou je vynesena logaritmická stupnice tlaku. Logaritmická stupnice zobrazuje se stejným krokem jednotky, stovky a tisíce. Umožňuje tedy zobrazit velký rozsah hodnot na malé úsečce. Entalpie je termodynamický název a zjednodušeně si jí lze představit jako tepelný obsah 1 kg chladiva. Hodnoty entalpie a měrného objemu jsou uvedeny v hodnotách pro 1 kg nebo 1m3 Viz další obrázek
6 Logaritmická stupnice tlaku Vodorovná osa = enthalpie (tepelný obsah 1kg chladiva)
7 Mezní křivky a kritický bod Nejvýraznější částí každého diagramu jsou jeho mezní křivky. Levá část se nazývá dolní mezní křivkou, pravá část horní, mezní křivkou. Dolní i horní mezní křivka se setkávají v nejvyšším bodě, který se jmenuje kritický bod. Viz další obrázek
8 C= kritický bod Dolní mezní křivka Horní mezní křivka Mezní křivka a kritický bod
9 Oblast kapaliny a par V oblasti diagramu mezi horní a dolní mezní křivkou se nachází chladivo v kapalném stavu. V oblasti vně mezních křivek se nachází chladivo pouze jako páry. Pokud se teplota par pohybuje tak vysoko, že je v diagramu nad kritickým bodem a z tohoto důvodu neprotíná mezní křivky, nikdy nedojde ke kondenzaci chladiva. V těchto případech se musí horké chladivo nejdříve ochladit, aby se teplota dostala pod teplotu kritického bodu a byla možná kondenzace. Viz další obrázky
10 Oblast par a kapaliny v diagramu Podchlazená kapalina V oblasti mezi horní a dolní mezní křivkou se vyskytuje kapalné chladivo + mokré páry Páry chladiva
11 Důležitá poznámka ke kondenzaci Pokud čára kondenzace neprotíná mezní křivky např.nad kritickým bodem, kondenzace nenastane. Chladivo kondenzuje pouze tehdy, pokud čára kondenzace protíná horní a dolní mezní křivku
12 Průběh křivek v diagramu V diagramu je znázorněn průběh teplot, měrného objemu chladiva a entalpie. Pomocí těchto křivek lze ve skutečném diagramu odečítat hodnoty veličin v libovolném místě diagramu. Isoterma = křivka stejné teploty Isobara = křivka stejného tlaku Viz další obrázek
13 Průběh křivek teploty,měrného objemu a entalpie ISOTERMA Měrný objem Entalpie ISOTERMA = čára konstatní teploty
14 Fyzikální pochody chladícího okruhu Komprese (stlačení chladiva v kompresoru) mezi body 1-2 Kondenzace (ochlazení a zkapalnění chladiva v kondenzátoru ) mezi body Škrcení změna tlaku z kondenzačního na vypařovací v expanzním ventilu mezi body 4-5 Vypařování ohřátí a odpaření kapalného chladiva mezi body Bližší vysvětlení v dalších obrázcích. Čísla diagramu odpovídají číslům schematického,chladícího okruhu. Viz další obrázky
15 Chladící okruh znázorněný ve skutečném diagramu chladiva
16 Komprese 1-2 Komprese
17 Ochlazení a kondenzace chladiva V kondenzátoru dochází nejdříve k ochlazení horkých par chladiva z teploty konce komprese na teplotu horní mezní křivky. Ochlazují se páry a chladivo nekondenzuje. Tato část se nazývá ochlazeni přehřátých par chladiva ( mezi body 2-3) a probíhá na začátku kondenzátoru Kondenzace (zkapalnění) chladiva nastává mezi body 3-4 ( horní dolní mezní křivkou). Viz další obrázek
18 Ochlazování a kondenzace Kondenzace Ochlazení přehřátých par Pochod kondenzace má dvě fáze 2-3 Ochlazení přehřátých par 3-4 Kondenzace vlastní zkapalnění chladiva
19 Škrcení chladiva Na výstupu z kondenzátoru se chladivo nachází v kapalném stavu. Tento stav je možné nazvat pod tlakem zkapalněný plyn. Škrcením v expanzním orgánu ( ventilu nebo kapiláře) dojde k prudkému poklesu tlaku. Tato změna tlaku je s dostatečnou technickou přesností zaznamenána v diagramu jako svislice mezi body 4-5. Bod 4 je průsečík kondenzačního tlaku a dolní mezní křivky. Bod 5 je průsečík svislice z bodu 4 a čáry vypařovacího tlaku.
20 Škrcení kapalného chladiva Škrcení 4-5 Škrcení kapalného chladiva S dostatečnou technickou přesností se zobrazuje v grafu jako svislice.
21 Vypařování a přehřátí Do výparníku se nastřikuje směs kapaliny a tzv. mokrých par chladiva. Vypařování chladiva nastává mezi body 5-6. Chladivo při svém odpařování odnímá teplo svému okolí ochlazuje ho. Tuto část je možné nazvat užitečným ohřátim chladiva. Z výparníku vystupuje chladivo o vypařovací teplotě v bodě 6. Po odchodu z výparníku se chladivo dále ohřívá v potrubí mezi výparníkem a kompresorem a i v samotném kompresoru. Pro zjednodušení uvažujeme pouze s ohřátim chladiva v potrubí Teplota vstupu chladiva do kompresoru je bod 6. Úsečka 6-1 se nazývá přehřátí chladiva v sání. Toto ohřátí chladiva je neužitečné ohřátí. Viz další obrázek
22 Vypařování a přehřátí Vypařování Přehřátí 5-6 Vypařování -výparníku 6-1 Přehřátí chladiva v sání
23 Diagram i-log p se znázorněných chladícím okruhem
24 Co vyčteme z diagramu?? Diagram i-log p nám umožní názorně zobrazit působení změn teplot na chladící okruh a tím i na efektivnost celého chladícího zařízení. Následně si některé změny ukážeme na Následně si některé změny ukážeme na skutečném diagramu chladiva R22
25 Nástřik chladiva do výparníku Do výparníku je nastřikována směs kapalného chladiva a mokrých par. To je fyzikální vlastnost procesu škrcení a nemůžeme s tím nic dělat. Kapalné chladivo odpařením ochladí výparník. Toto chladivo je znázorněno v diagramu mezi body 5-6 Mokrá pára neochladí nic a bez užitku je nasáta do kompresoru. Množství mokré páry je v diagramu znázorněno mezi body X-5 Viz další obrázek
26 Do výparníku je nastřikována směs kapaliny a par chladiva X 5 neužitečné páry 5-6 užitečné kapalné chladivo
27 Vliv kondenzační teploty Kondenzační teplota výrazným způsobem ovlivňuje energetickou spotřebu a celkovou efektivitu chladícího okruhu. Na obrázku jsou znázorněny skutečné poměry R22 při kondenzační teplotě +55 C a potom červenou čarou poměry při snížené kondenzační teplotě na +40 C. Na vypařovací teplotě je znázorněn zisk kapalného chladiva, které bude užitečně ochlazovat výparník. Tím se zmenší množství mokrých par, které bez užitku odcházejí z výparníku. Zařízení lépe chladí. Viz další obrázek
28 Vliv snížení kondenzační teploty Kondenzace +55 C Kondenzace +40 C Vypařování -25 C Zisk kapaliny ve výparníku lepší chladí
29 Vliv vypařovací teploty Při původní vypařovací teplotě -25 C byla teplota horkého chladiva za Kompresorem (konec komprese) +120 C. Zvýšením vypařovací teploty na -15 C klesne teplota chladiva za kompresorem (konec komprese) na +80 C. Začáranou oblast mezi kompresí z teploty -15 C a následně z teploty 25 C je možné s jistou nepřesností nazvat enregetickou ztrátou. O toto pole musíme obrazně dodat více energie. Viz další obrázek
30 Vliv vypařovací teploty Kondenzace +55 C 80 C 120 C Vypařování -15 C Energetická ztráta Musi se dodat víc energie Vypařování -25 C
31 Podchlazení kapaliny Z kondenzátoru vystupuje kapalné chladivo. Jeho škrcením dostaneme při vypařovací teplotě přesně definovanou směs kapalného chladiva a mokrých par. (viz škrcení) Abychom zvýšili množství kapalného chladiva a snížili množství neužitečných mokrých par, musíme kapalné chladivo vystupující z kondenzátoru nějak dále ochladit. Toto ochlazení za dolní mezní křivku se nazývá podchlazení kapalného chladiva. Viz další obrázek
32 Vliv podchlazení kapaliny Podchlazení kapaliny o10k Zisk kapaliny ve výparníku
33 Závěr Po této prezentaci by měl každý mechanik rozumět základům diagramu pro znázornění chladícího okruhu Toto je velmi zjednodušený výklad diagramu, který pro zjednodušení pomíjí některé technické detaily.
Jak správně provést retrofit. Když se to dělá správně, potom všechno funguje 2014
Jak správně provést retrofit Když se to dělá správně, potom všechno funguje 2014 Výzva poslední doby-náhrada chladiv R404A Jako náhrada za R404a jsou preferována chladiva R407A a R407F Problém teploty
CHLADICÍ TECHNIKA A TEPELNÁ ČERPADLA
CHLADICÍ TECHNIKA A TEPELNÁ ČERPADLA PODKLADY PRO CVIČENÍ Ing. Miroslav Petrák, Ph.D. Praha 2009 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Obsah Popis diagramů... 2 Řešené příklady...
Poznámky k cvičením z termomechaniky Cvičení 10.
Příklad 1 Topné těleso o objemu 0,5 [m 3 ], naplněné sytou párou o tlaku 0,15 [MPa], bylo odstaveno. Po nějaké době vychladlo na teplotu 30 C. Určete množství uvolněného tepla a konečný stav páry v tělese.
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
Nová technologie pro vysokoteplotní tepelná čerpadla
Nová technologie pro vysokoteplotní tepelná čerpadla Autor: Ing. Vladimír Macháček Jednookruhová nízkoteplotní tepelná čerpadla vzduch-voda a jejich porovnání s novým kaskádovým řešením vysokoteplotního
TECHNICKÉ INFORMACE. Alfea. tepelné čerpadlo vzduch/voda
TECHNICKÉ INFORMACE Alfea tepelné čerpadlo vzduch/voda Alfea řez kondenzátorem 2 Atlantic Alfea - technické informace 2014 LT Alfea tepelné čerpadlo vzduch / voda údaje elektro Typ 11,4 A 11 A - - - Typ
Zpracování teorie 2010/11 2011/12
Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit
1/ Vlhký vzduch
1/5 16. Vlhký vzduch Příklad: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 16.10, 16.11, 16.12, 16.13, 16.14, 16.15, 16.16, 16.17, 16.18, 16.19, 16.20, 16.21, 16.22, 16.23 Příklad 16.1 Teplota
CHLADÍCÍ ZAŘÍZENÍ. Obr. č. VIII-1 Kompresorový chladící oběh
CHLADÍCÍ ZAŘÍZENÍ 01. Zadání cvičení - proveďte měření tepelných výkonů chladícího kompresoru. Při měření respektujte ČSN 14 06 13. Ze změřených veličin vyhodnoťte hmotnostní chladivost, chladící výkon,
CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU
CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU Co to je Molliérův diagram? - grafický nástroj pro zpracování izobarických změn stavů vlhkého vzduchu - diagram je sestaven pro konstantní
Příklad 1: Bilance turbíny. Řešení:
Příklad 1: Bilance turbíny Spočítejte, kolik kg páry za sekundu je potřeba pro dosažení výkonu 100 MW po dobu 1 sek. Vstupní teplota a tlak do turbíny jsou 560 C a 16 MPa, výstupní teplota mokré páry za
Alfea. tepelné čerpadlo vzduch/voda TECHNICKÉ INFORMACE. Extensa Extensa Duo Excellia Excellia Duo Hybrid Duo Gas Hybrid Duo Oil. www.alfea.
Alfea tepelné čerpadlo vzduch/voda TECHNICKÉ INFORMACE Extensa Extensa Duo Excellia Excellia Duo Hybrid Duo Gas Hybrid Duo Oil www.alfea.cz Alfea OBSAH OBSAH: Úvod... 3 Topný výkon tepelných čerpadel...
Mechanické regulátory tlaku
Mechanické regulátory tlaku 102 Regulátory tlaku Základní údaje a technické informace Regulátory výkonu Regulátory výkonu typu ACP a CPHE jsou regulátory obtoku horkých par a slouží k úpravě chladícího
VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA
VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA ForArch 2015 Ing. Jan Sedlář, Univerzitní Centrum Energeticky Efektivních Budov České Vysoké Učení Technické v Praze OBSAH Motivace k vývoji tepelných čerpadel pokročilejších
CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM
CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM Co to je vlhký vzduch? - vlhký vzduch je směsí suchého vzduchu a vodní páry okupující společný objem - vodní pára ve směsi může měnit formu z plynné na kapalnou
h nadmořská výška [m]
Katedra prostředí staveb a TZB KLIMATIZACE, VĚTRÁNÍ Cvičení pro navazující magisterské studium studijního oboru Prostředí staveb Cvičení č. 1 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly za
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 TEPELNÁ ČERPADLA ING. JAROSLAV
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak páry po expanzi ve vysokotlaké části turbíny
Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)
Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny
TOSHIBA ESTIA TEPELNÁ ČERPADLA VZDUCH-VODA
TOSHIBA ESTIA TEPELNÁ ČERPADLA VZDUCH-VODA Systém Estia představuje tepelná čerpadla vzduch-voda s extrémně vysokou účinností, která přinášejí do vaší domácnosti velmi nízké náklady na topení, na ohřev
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
ZMĚNY SKUPENSTVÍ LÁTEK
ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak
Posouzení klimatizačních a chladících systémů v energetických auditech z pohledu energetického auditora Ing. Vladimír NOVOTNÝ I&C Energo a.s., Seminář AEA 26.5.2005 FAST Brno Veveří 95 Regionální kancelář
SHF Čtyřcestné ventily TECHNICKÉ ÚDAJE
Čtyřcestné elektromagnetické ventily se používají zejména v tepelných čerpadlech pro záměnu činnosti výměníků tepla. Záměnou lze činnost chlazení vystřídat s činností vytápění. Vlastnosti Naprostá těsnost
Ing. Jan Sedlář Matematický model chladicího zařízení s odtáváním výparníku ODBORNÁ KONFERENCE SCHKT 26. LEDNA 2016, HOTEL STEP, PRAHA
Ing. Jan Sedlář Matematický model chladicího zařízení s odtáváním výparníku ODBORNÁ KONFERENCE SCHKT 26. LEDNA 216, HOTEL STEP, PRAHA UCEEB ČVUT Fakulta strojní Ústav energetiky Výuka Vývoj tepelných čerpadel
TX2 TX3 EXPANZNÍ VENTILY TX2/3. Vlastnosti. Zvláštní provedení
Str. 1 z 11 Termostatické expanzní ventily ALCO TX2 a TX3 byly vyvinuty zejména pro využití v klimatizaci a tepelných čerpadlech. TX2 a TX3 jsou ideální řešení pro všechna použití, kde je požadován ventil
F - Změny skupenství látek
F - Změny skupenství látek Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn
POUŽITÍ KOMPRESORŮ SCROLL PRO NÍZKÉ TEPLOTY
Str. 1 ABSTRAKT POUŽITÍ KOMPRESORŮ SCROLL PRO NÍZKÉ TEPLOTY Zdeněk Čejka ALFACO s.r.o. Choceň, Česká Republika Oblast nízkých teplot - míněn rozsah teplot - 20 až - 50 C je používána pro řadu účelů, zejména
ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU
2. Konference Klimatizace a větrání 212 OS 1 Klimatizace a větrání STP 212 ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.cz
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,
Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:
Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5
23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_
Obsah 23_ Změny skupenství... 2 24_ Tání... 2 25_ Skupenské teplo tání... 2 26_ Anomálie vody... 4 27_ Vypařování... 5 28_ Var... 5 29_ Kapalnění... 5 30_ Jak určíš skupenství látky?... 7 31_ Tepelné motory:...
Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze
ermodynamika par Fázové změny látky: Přivádíme-li pevné fázi látky teplo, dochází při jisté teplotě a tlaku ke změně pevné fáze na fázi kapalnou (tání) Jestliže spojíme body tání při různých tlacích, získáme
Pístové spalovací motory-pevné části
Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.8.2013 Definice spalovacího motoru Název zpracovaného celku: Pístové spalovací motory-pevné části Spalovací motory jsou tepelné stroje,
Poznámky k semináři z termomechaniky Grafy vody a vodní páry
Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,
PROCESY V TECHNICE BUDOV 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
Kondenzační jednotky. www.jdk.cz
Kondenzační jednotky www.jdk.cz O bsah Všeobecná charakteristika 5 Systém značení 6 Specifikace standardní výbavy 7 Volitelné příslušenství 8 Návrh jednotky 9 Výkony 11 Jednotky s hermetickými pístovými
Zásobování teplem. Cvičení Ing. Martin NEUŽIL, Ph. D Ústav Energetiky ČVUT FS Technická Praha 6
Zásobování teplem Cvičení 2 2015 Ing. Martin NEUŽIL, Ph. D Ústav Energetiky ČVUT FS Technická 4 166 07 Praha 6 Měření tlaku (1 bar = 100 kpa = 1000 mbar) x Bar Přetlak Absolutní tlak 1 Bar Atmosférický
TEPELNÁ ČERPADLA REGULUS PROJEKČNÍ PODKLADY PRO MODELY TC08, TC13, TC16, TC18
TEPELNÁ ČERPADLA REGULUS PROJEKČNÍ PODKLADY PRO MODELY TC08, TC13, TC16, TC18 1. OBSAH 1. OBSAH 2 2. TYPY TEPELNÝCH ČERPADEL 2 3. TECHNICKÉ PARAMETRY 3 4. PRINCIP A FUNKCE TEPELNÉHO ČERPADLA 4 5. POPIS
TI Řada Termostatické - expanzní ventily
Technické údaje Termostatické expanzní ventily ALCO řady TI s vyměnitelnými tryskami jsou určeny pro řízení nástřiku chladiva v menších chladících zařízeních, jako je chlazený nábytek, malé sklady chlazené
Dnes jsou kompresory skrol Copeland vyráběny v moderních výrobních závodech v Belgii, Severním Irsku, ve Spojených Státech, Thajsku a Číně.
Úvod Kompresory skrol Copeland Výrobní program kompresorů skrol Copeland je výsledkem rozsáhlého výzkumu a vývoje, který probíhá již od roku 1979. Vynaložené úsilí vedlo k zavedení do výroby moderních
Alfea. tepelné čerpadlo vzduch/voda TECHNICKÉ INFORMACE. Extensa Extensa Duo Excellia Excellia Duo Hybrid Duo Gas Hybrid Duo Oil.
Alfea tepelné čerpadlo vzduch/voda TECHNICKÉ INFORMACE Extensa Extensa Duo Excellia Excellia Duo Hybrid Duo Gas Hybrid Duo Oil www.alfea.cz Alfea úvod 2 Atlantic Alfea - technické informace 2.1 Alfea úvod
APLIKACE KOMPRESORŮ SCROLL S EVI SYSTÉMEM. Ing. Luděk Pospíšil JDK, spol. s r.o., Pražská 2161, Nymburk, Česká republika
APLIKACE KOMPRESORŮ SCROLL S EVI SYSTÉMEM Ing. Luděk Pospíšil JDK, spol. s r.o., Pražská 2161, Nymburk, Česká republika ABSTRAKT Náklady na provoz chladicího zařízení s růstem cen elektrické energie tvoří
TOSHIBA ESTIA UNIKÁTNÍ KVALITA TEPELNÝCH ČERPADEL VZDUCH-VODA
TOSHIBA ESTIA UNIKÁTNÍ KVALITA TEPELNÝCH ČERPADEL VZDUCH-VODA Systém Estia představuje tepelná čerpadla vzduch-voda s extrémně vysokou účinností, která přinášejí do vaší domácnosti velmi nízké náklady
Chlazení kapalin. řada WDC. www.jdk.cz. CT125_CZ WDC (Rev.04-11)
Chlazení kapalin řada WDC www.jdk.cz CT_CZ WDC (Rev.0-) Technický popis WDC-S1K je řada kompaktních průtokových chladičů kapalin (chillerů) s nerezovým deskovým výměníkem. Jednotka je vhodná pro umístění
TEPELNÁ ČERPADLA SE ZVÝŠENOU EFEKTIVITOU
Energeticky efektivní budovy sympozium Společnosti pro techniku prostředí. října, Buštěhrad TEPELNÁ ČERPADLA SE ZVÝŠENOU EFEKTIVITOU Michal Broum ), Jan Sedlář ) ) Regulus, s.r.o. ) Energetické systémy
Tepelná čerpadla. princip funkce topný faktor typy tepelných čerpadel hodnocení provozu tepelných čerpadel otopné soustavy
Tepelná čerpadla princip funkce topný faktor typy tepelných čerpadel hodnocení provozu tepelných čerpadel otopné soustavy Tepelná čerpadla zařízen zení k získz skávání využiteln itelné tepelné energie
Tepelná čerpadla MATOUŠ FOREJTEK 1.S
Tepelná čerpadla MATOUŠ FOREJTEK 1.S Úvod Stroj který čerpá teplo z jednoho místa na druhé pomocí vnější práce. Princip tepelného čerpadla je znám už velmi dlouho. Tato technologie je v mnoha zařízeních.
Výměna tepla může probíhat vedením (kondukcí), prouděním (konvekcí) nebo sáláním (zářením).
10. VÝMĚNÍKY TEPLA Výměníky tepla jsou zařízení, ve kterých se jeden proud ohřívá a druhý ochlazuje sdílením tepla. Nezáleží přitom na konečném cíli operace, tj. zda chceme proud ochladit nebo ohřát, ani
Alco automatika pro chladiva HFO a směsi s HFO
Alco automatika pro chladiva HFO a směsi s HFO 10/2017 Chladící okruh s komponenty Alco Controls Na obrázku je znázorněn chladící okruh osazený komponenty Alco Controls. Chladiva HFO a směsi na bázi HFO
Chlazení kapalin. řada WDE. www.jdk.cz. CT120_CZ WDE (Rev.04-11)
Chlazení kapalin řada WDE www.jdk.cz CT120_CZ WDE (Rev.04-11) Technický popis WDE-S1K je řada kompaktních chladičů kapalin (chillerů) s nerezovým deskovým výparníkem a se zabudovanou akumulační nádobou
Průlom do světa regulace chlazení REFRIGERATION AND AIR CONDITIONING
REFRIGERATION AND AIR CONDITIONING Průlom do světa regulace chlazení Modulová koncepce Modulová koncepce ICV Vám umožní velmi pružně vytvořit ventil, který přesně odpovídá Vašim požadavkům. Konstrukční
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní
SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování
Obsah: ÚVOD:... 4 TEPELNÉ ČERPADLO... 5 PRINCIP TEPELNÉHO ČERPADLA VZDUCH- VODA... 6 9 DŮVODŮ, PROČ TOPIT TEPELNÝM ČERPADLEM... 7
Obsah: ÚVOD:... 4 TEPELNÉ ČERPADLO... 5 PRINCIP TEPELNÉHO ČERPADLA VZDUCH- VODA... 6 9 DŮVODŮ, PROČ TOPIT TEPELNÝM ČERPADLEM... 7 KOLIK UŠETŘÍ TEPELNÉ ČERPADLO?... 8 VLASTNÍ ZKUŠENOSTI?... 9 TEPELNÉ ČERPADLO
COPELAND SKROL KOMPRESORY
COPELAND SKROL KOMPRESORY Přehled vývoje výroby skrolů 1905 první patent konstrukce skrolu 1978 počátek vývojové koncepce u Copelandu 1986 příprava sériové výroby skrolu 1987 zahájení výroby klimatizační
TEPELNÉ ČERPADLO S ODVODEM TEPLA NA TŘECH ÚROVNÍCH
Konference Alternativní zdroje energie 0. až. července 0 Kroměříž TEPELNÉ ČERPADLO S ODVODEM TEPLA NA TŘECH ÚROVNÍCH Michal Broum, Jan Sedlář, Bořivoj Šourek, Tomáš Matuška Regulus spol. s.r.o. Univerzitní
TOSHIBA ESTIA UNIKÁTNÍ KVALITA TEPELNÝCH ČERPADEL VZDUCH-VODA
TOSHIBA ESTIA UNIKÁTNÍ KVALITA TEPELNÝCH ČERPADEL VZDUCH-VODA Systém Estia představuje tepelná čerpadla vzduch-voda s extrémně vysokou účinností, která přinášejí do vaší domácnosti velmi nízké náklady
1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.
1/5 9. Kompresory a pneumatické motory Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17 Příklad 9.1 Dvojčinný vzduchový kompresor bez škodného prostoru,
Termodynamika 1. UJOP Hostivař 2014
Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
Znalosti chladicí techniky ve 3 částech
Znalosti Chladicí technika Znalosti chladicí techniky ve 3 částech Úvod do chladicích zařízení. Základy a hlavní komponenty chladicí techniky. Správné měření na chladicích zařízeních. 1 2 Obsah Část 1:
TZB - VZDUCHOTECHNIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ HIRŠ, GÜNTER GEBAUER TZB - VZDUCHOTECHNIKA MODUL BT0-10 CHLAZENÍ PRO KLIMATIZACI STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Název
Přívod tepla. Nové typy automobilů mají velké prosklené plochy, které propouští více slunečních paprsků
Klimatizace Přívod tepla Přívod tepla Nové typy automobilů mají velké prosklené plochy, které propouští více slunečních paprsků Cirkulace Cirkulace Cirkulace Kabinový filtr Gebläse / Heizung Odpařovač
Kondenzační a kompresorové
Kondenzační a kompresorové jednotky Copeland ZF a ZF EVI - mrazírny www.jdk.cz Obsah Všeobecná charakteristika 2 Systém značení 3 Výkony 4 Kondenzační jednotky - přehled typů 5 R404A 6 R448A, R449A, R407F
ZZCE Termostatické vstřikovací ventily Technické údaje
Termostatické expanzní ventily ALCO řady ZZCE s vyměnitelnými jednotlivými díly jsou určeny pro řízení nástřiku chladiva v různých chladících zařízeních s nízkými vypařovacími teplotami až do -120 C. Díky
POTRUBÍ PRO CHLADICÍ OKRUHY
POTRUBÍ PRO CHLADICÍ OKRUHY Základy oboru 26-55/H004 Mechanik elektrotechnických zařízení údržba a servis chladicí a klimatizační techniky a tepelných čerpadel Potrubí podle ČSN EN 378 1 3.5 Potrubí, spoje,
Sdružená kompresorová jednotka Schiessl Euro Tower line (patentově chráněno č. 20315321.9)
Sdružená kompresorová jednotka Schiessl Euro Tower line (patentově chráněno č. 20315321.9) Dodávka sdružené jednotky Euro Towerline obsahuje: 3 nebo 4 ležaté kompresory Hitachi Scroll chlazené parami nasávaného
TX3 Termostatické vstřikovací ventily
Termostatické expanzní ventily ALCO TX3 byly vyvinuty zejména pro využití v klimatizaci a tepelných čerpadlech. TX3 jsou ideální řešení pro všechna použití, kde je požadován ventil v nerozebíratelném provedení
VYNALEZU KAUTORSKÉMU OSVĚDČENÍ
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A (19) M «йщ POPIS VYNALEZU KAUTORSKÉMU OSVĚDČENÍ (22) Přihlášeno 20 08 80 (21) (PV 3657-82) 228563 (11) (B1) (51) Int. Cl. 3 G 21 D 5/12 (40) Zveřejněno 15
KLIMATIZAČNÍ JEDNOTKA EnviMatic HC
VÝROBNÍ ŘADA KLIAIZAČNÍ JEDNOKA Enviatic HC Řada Enviatic HC je inovovanou řadou jednotek Enviatic H. Disponuje pracovním režimem cirkulace a dochlazování vnitřního vzduchu, čehož je využito při letních
Tepelné čerpadlo Excellence pro komfortní a úsporný dům
Tepelné čerpadlo Excellence pro komfortní a úsporný dům V současné době, kdy se staví domy s čím dál lepšími tepelně izolačními vlastnostmi, těsnými stavebními výplněmi (okna, dveře) a vnějším pláštěm,
1 Tepelná čerpadla Genia Air Split
1 Tepelná čerpadla Genia Air Split Kombinace s tepelným čerpadlem Přehled kombinací s tepelným čerpadlem Genia Air Split Tepelné čerpadlo Hydraulické moduly Regulátor Genia Air Split (1) GeniaSet Split
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia
projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály
F8 - Změny skupenství Číslo variace: 1
F8 - Změny skupenství Číslo variace: 1 1. K vypařování kapaliny dochází: při každé teplotě v celém jejím objemu pouze při teplotě 100 C v celém objemu kapaliny pouze při normální teplotě a normálním tlaku
PROCESY V TECHNICE BUDOV 9
UNIVERZIA OMÁŠE BAI VE ZLÍNĚ FAKULA APLIKOVANÉ INFORMAIKY PROCESY V ECHNICE BUDOV 9 ermodynamika reálných plynů (2. část) Dagmar Janáčová, Hana Charvátová Zlín 2013 ento studijní materiál vznikl za finanční
Příklady práce se software VZDUCH verze 1.2
Interaktivní grafický software pro termodynamické výpočty vlhkého vzduchu Příklady práce se software VZDUCH verze 1.2 Určeno pro počítače IBM PC a kompatibilní pracující pod operačním systémem DOS či Windows
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. M.Kabrhel 1 Typy tepelných
Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů. Doc. Ing. Jiří Vondrák, DrSc
Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů Doc. Ing. Jiří Vondrák, DrSc 1. Obecný úvod Tato stať se zabývá stavem látek, a to ve skupenství kapalném či tuhém, a přechody mezi
Destilace
Výpočtový ý seminář z Procesního inženýrství podzim 2007 Destilace 18.9.2008 1 Tématické okruhy destilace - základní pojmy rovnováha kapalina - pára jednostupňová destilace rektifikace 18.9.2008 2 Destilace
V ÝR OBC E CH L AD I C Í TE CH NI K Y. Chladivo R404A
V ÝR OBC E CH L AD I C Í TE CH NI K Y Chladivo R404A Kondenzační jednotky JME/JHE/JLE-T hermetický pístový kompresor Tecumseh vzduchem chlazený kondenzátor Výhody Aplikace Osvědčený design Jednoduchý chladicí
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
Elektromagnetický ventil Typy EVR 2 40 NC/NO
MAKING MODERN LIVING POSSIBLE Datový list Elektromagnetický ventil y EVR 2 40 NC/NO EVR je elektromagnetický ventil přímo ovládaný nebo ovládaný pomocí servopohonu určený pro montáž do potrubí kapalného
INOVAČNÍ ŘEŠENÍ VYTÁPĚNÍ DOMÁCNOSTÍ. Vzduch-voda
INOVAČNÍ ŘEŠENÍ VYTÁPĚNÍ DOMÁCNOSTÍ Vzduch-voda je ekonomický a čistý systém ohřevu vody pomocí tepelného čerpadla TOPENÍ TEPLÁ VODA xxxxxxxxxxxxxxxxx je efektivní systém ohřevu vody založený na technologii
TEPELNÉ MOTORY (první část)
TEPELNÉ MOTORY (první část) A) Výklad: Tepelné motory: Tepelné motory jsou hnací stroje, které přeměňují část vnitřní energie paliva uvolněné hořením na energii pohybovou (tj. mechanickou). Obecný princip
Klimatizační systémy a chlazení pro vzduchotechniku
AT 02 TZB II a technická infrastruktura LS 2012 Klimatizační systémy a chlazení pro vzduchotechniku 11. Přednáška Ing. Olga Rubinová, Ph.D. 1 Harmonogram AT02 t. část Přednáška Cvičení 1 UT Mikroklima
Škola: Střední škola obchodní, České Budějovice, Husova 9
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
C opeland ZR a ZB + CT001_CZ KCHJ (Rev.10-17)
Kondenzační a kompresorové jednotky C opeland ZR a ZB + Ma neurop + cumseh www.jdk.cz Obsah Všeobecná charakteristika 2 Systém značení 3 Specifikace standardní výbavy 4 Volitelné příslušenství 5 Volitelné
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3
Způsob značení kompresorů ZB D 45 K C E - TFD - 551 1 2 3 4 5 6 7 8
Úvod 4 Typové řady Středoteplotní kompresory 8 ZB ZS Středoteplotní kompresory s plynulou regulací výkonu 9 ZBD Nízkoteplotní kompresory 10 ZF Oblasti provozního použití 12 Technické údaje R404A 14 R134a
Obor: 12 Tvorba učebních pomůcek, didaktická technologie Model tepelného čerpadla VZDUCH/VODA
Obor: 12 Tvorba učebních pomůcek, didaktická technologie Model tepelného čerpadla VZDUCH/VODA práce SOČ Autor: Moński Jakub Ročník studia: druhý Název, adresa školy: SPŠ, Karviná, Žižkova 1818, Karviná
Charlesův zákon (pt závislost)
Charlesův zákon (pt závislost) V této úloze pomocí čidla tlaku plynu GPS-BTA a teploměru TMP-BTA (nebo čidla Go!Temp) objevíme součást stavové rovnice ideálního plynu Charlesův zákon popisující izochorický
TX 6 Termostatické expanzní ventily Technické údaje
ALCO TX6 byly vyvinuty zejména pro využití v chladící technice, klimatizaci a tepelných čerpadlech. TX6 jsou ideální řešení pro všechna použití, kde je požadován ventil v nerozebíratelném provedení s přesným
www.vorcz.cz 32 7002-27 Digitální Manometr Mastercool
32 7002-27 Digitální Manometr Mastercool Specifikace: ukazatel nízkého stavu baterie zobrazuje 61 chladiv zobrazuje saturaci, orosení, teplotu varu čidlo / termočlánek zobrazuje teplotu přehřátí / podchlazení
Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu,
Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu, případně suchost a měrnou entalpii páry. Příklad 2: Entalpická
1. Úvod 2. Teorie tepelného čerpadla
NÁVRH TEPELNÉHO ČERPADLA PRO NÍZKOENERGETICKÝ DŮM Robin Fišer Střední průmyslová škola stavební Máchova 628, Valašské Meziříčí 1. Úvod 2. Teorie tepelného čerpadla 2.1. Proč Tepelné čerpadlo 2.2. Princip