FSI VUT DIPLOMOVÁ PRÁCE List 4

Rozměr: px
Začít zobrazení ze stránky:

Download "FSI VUT DIPLOMOVÁ PRÁCE List 4"

Transkript

1

2 FSI VUT DIPLOMOVÁ PRÁCE List 4 ABSTRAKT Cílem práce je začlenění bezdotykového měření povrchové teploty mezi ostatní způsoby měření a jeho využití při vyhodnocení teplot povrchu polotovaru vrtaného různými nástroji. Těmito nástroji je vrtán neprůchozí otvor v blízkosti snímané stěny. Teploty stěny polotovaru jsou v uvedeném experimentu snímány termokamerou a dále porovnány pro jednotlivé použité nástroje. Klíčová slova IR, termovize, měření teploty, obrábění, vrtání ABSTRACT Contactless measuring of surface temperature integration in the other measurement methods and their assimilation at evaluation of surface temperature of a semi-finished product bored by various tools is the target of the work. An impassable opening is being bored by these tools. The opening is close to a scanned wall. The semi-finished wall temperatures are being scanned by thermocamera and subsequently compared for every single used tool in this experiment. Key words IR, thermovision, temperature measurement, machining, boring BIBLIOGRAFICKÁ CITACE ŠŤÁVA, Radek. Název: Bezdotykové měření povrchových teplot při obrábění. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, s., příloh. Ing. Aleš Polzer, Ph.D.

3 FSI VUT DIPLOMOVÁ PRÁCE List 5 Prohlášení Prohlašuji, že jsem diplomovou práci na téma Bezdotykové měření povrchových teplot při obrábění vypracoval samostatně s použitím odborné literatury a pramenů, uvedených v seznamu, který tvoří přílohu této práce. Datum: Radek Šťáva

4 FSI VUT DIPLOMOVÁ PRÁCE List 6 Poděkování Děkuji tímto Ing. Aleši Polzerovi, Ph.D. za cenné připomínky a rady při vypracování diplomové práce.

5 FSI VUT DIPLOMOVÁ PRÁCE List 7 OBSAH Abstrakt...4 Prohlášení...5 Poděkování...6 Obsah...7 Úvod...9 MĚŘENÍ TEPLOTY Teplota Teplo Přenos tepla vedením Přenos tepla prouděním Přenos tepla radiací Rozdělení teploměrů Dilatační teploměry Elektrické teploměry Speciální teploměry Bezdotykové teploměry TEORIE BEZDOTYKOVÉHO MĚŘENÍ TEPLOTY Infračervené spektrum Záření Fyzikální podstata záření Černé těleso Vyzařování černého tělesa Vyzařování šedého tělesa Emisivita Stanovení emisivity Další parametry ovlivňující měření Teplota okolí Vzdálenost Relativní vlhkost Infračervený měřicí systém Detektory Termoelektrické detektory Bolometry Pyroelektrické detektory Termokamera Příslušenství termokamery Využití termokamery TEPLOTA PŘI OBRÁBĚNÍ Teplota a opotřebení břitů nástrojů Mechanismy opotřebení Teplo a teplota řezného procesu PŘÍPRAVA EXPERIMENTU Použité vybavení Termokamera Program pro vyhodnocování Otočná vrtačka...40

6 FSI VUT DIPLOMOVÁ PRÁCE List Mikroskop Měřidla ovlivňujících parametrů Řezné nástroje Obráběný materiál Barva se známou emisivitou Návrh řezných podmínek REALIZACE EXPERIMENTU Parametry ovlivňující měření Stanovení velikosti tepelně ovlivněné oblasti Průběh maximálních teplot v místě řezu Srovnání teplot použitých vrtáků Šíření teploty Břity použitých nástrojů...55 Diskuse...59 Závěr...60 Seznam použitých zdrojů...62 Seznam použitých zkratek a symbolů...64 Seznam příloh...65

7 FSI VUT DIPLOMOVÁ PRÁCE List 9 ÚVOD Vzrůstající ceny energií způsobují, že jsou v současné době kladeny stále vyšší požadavky na jejich úsporu. Velký podíl ztracené energie často uniká ve formě tepla. Proto je díky svým nesporným výhodám využíváno bezdotykového měření teploty v nejrůznějších odvětvích lidské činnosti. Cena a přednosti bezdotykových zařízení se stávají dostupnějšími a zvýhodňují bezdotykové měření i pro využití v mnoha jiných aplikacích. Jednou z nich je měření povrchových teplot při obrábění. Téměř všechna energie potřebná pro řezný proces je přeměněna v teplo (3, 10). Toto teplo nepříznivě ovlivňuje řezný proces a jeho účastníky, zejména pak nástroj a obrobek. Z tohoto důvodu je důležité měřit a analyzovat teploty při obrábění vzniklé a odváděné. Řešením tohoto problému pomocí bezdotykových měřidel teploty se zabývá tato práce. V práci jsou stručně rozděleny metody měření teploty mezi něž jsou začleněny metody bezdotykové, jejichž princip je podrobně popsán a vysvětlen. Nastíněna je také teorie vzniku a odvodu tepla z místa řezu. Dále je součástí práce návrh a praktická realizace experimentu orientovaného na měření povrchových teplot obrobku při vrtání neprůchozích otvorů nástroji z HSS bez použití chlazení.

8 FSI VUT DIPLOMOVÁ PRÁCE List 10 MĚŘENÍ TEPLOTY Teplota má tu vlastnost, že při styku více látek se teploty vyrovnávají. To proto, že vznikne termodynamická soustava, která přechází do stavu termodynamické rovnováhy třemi typy přenosu. Na tomto principu se teplota měří. (16) 1.1 Teplota Teplota je dle Lysenka (12) stavová veličina udávající střední kinetickou energii chaotického (tepelného) pohybu částic ve stavu tepelné rovnováhy. V termodynamice je teplota definována vztahem (1.1), kde je teplota T dána podílem přírůstku tepla Q ke změně entropie S, která udává míru neuspořádanosti systému. Měření teploty je tudíž převedeno na měření tepla, což je pro praxi výhodnější. T Q (1.1) d S 1.2 Teplo Teplo je forma energie vyměněná mezi systémem a okolím jako důsledek teplotního rozdílu mezi nimi (6). Vacík (22) uvádí energii vyměňovanou ve formě tepla nebo práce. Energie přijatá systémem ve formě práce vyvolá uspořádaný posun mnoha mikročástic nebo makroskopických těles stejným směrem, a systém je proto schopen překonávat vnější sílu. Teplo je energie, vyměněná jiným způsobem než prací. K výměně energie ve formě tepla dochází tehdy, existuje-li mezi soustavou a jejím okolím teplotní rozdíl. Z kinetické teorie víme, že teplo souvisí s chaotickým pohybem molekul. Energie přijatá systémem ve formě tepla zvýší intenzitu pohybu molekul a tím teplotu soustavy. Protože však pohyb molekul v tomto případě není uspořádaný jen v jednom směru, ale je chaotický (děje se všemi směry), pak elementární práce, vykonané jednotlivými molekulami se navzájem vykompenzují a systém jako celek práci nekoná. Vnitřní mechanický pohyb molekul a atomů ustává při teplotě termodynamické neboli absolutní nuly (0 K = -273,16 C).

9 FSI VUT DIPLOMOVÁ PRÁCE List 11 Dle (19) existují 3 základní typy přenosů tepla: vedení (kondukce), proudění (konvekce) a záření (radiace). Všechno teplo je přenášeno jedním z těchto tří typů přenosů, obvykle ale kombinací dvou nebo všech tří typů přenosů. Infračervená termografie je pochopitelně nejblíže radiačnímu přenosu tepla, ale důležité je pochopit všechny tři typy, abychom mohli lépe chápat význam infračervených (IR) termogramů Přenos tepla vedením Tento přenos se uskutečňuje vibracemi (kmitáním) atomů pevných látek, nebo srážkami molekul kapalin. Tím dochází k pohybu energie od teplejších částic směrem k částicím chladnějším. Přesto tento mechanismus probíhá převážně v pevných tělesech. (19) Obr. 1.1 Vedení tepla jednoduchou rovinnou stěnou (16) Vedení tepla jednoduchou rovinnou stěnou popisuje Schauer (16) jako rovinnou stěnu o tloušťce d, která je znázorněna na obr Soustava souřadnic je zvolena tak, aby osy y a z ležely v jednom povrchu stěny a aby osa x byla na stěnu kolmá. Povrchová teplota stěny z jedné strany (pro x = 0) je T 1, z druhé strany (x = d) je T 2. Rovinná stěna je tvořena homogenní látkou, jejíž součinitel tepelné vodivosti je λ. Pro tuto stěnu stačí uvažovat změny teplot ve směru x, změny teplot v ostatních směrech jsou nulové. Proto můžeme psát rovnici (1.2).

10 FSI VUT DIPLOMOVÁ PRÁCE List 12 T d x (1.2) Obecným řešením této rovnice je rovnice (1.3). T x a x b (1.3) Přenos tepla prouděním Přenos tepla prouděním se uplatňuje u pohybujících se skupenství a probíhá většinou vždy u přenosu tepla mezi pevným a kapalným (plynným) skupenstvím. Volné proudění se uplatňuje pokud přenos tepla způsobuje změnu hustoty kapaliny a teplejší část stoupá vzhůru jako výsledek vzrůstajícího vztlaku. Nucené proudění se uplatňuje v případě, kdy vnější zdroj, jako např. ventilátor chlazení, uvádí kapalinu (plyn) do pohybu. (19) Přenos tepla radiací Přenos tepla radiací se od předcházejících dvou liší v několika aspektech: - může procházet vakuem - uskutečňuje se elektromagnetickou emisí a absorpcí - probíhá rychlostí světla a chová se jako světlo - zatímco přenos tepla vedením nebo prouděním mezi dvěma body je lineárně závislý na rozdílu teplot mezi těmito dvěma body, pak energie vyzařovaná z povrchu je úměrná čtvrté mocnině své absolutní teploty Tepelná infračervená (IR) radiace opouštějící povrch tělesa se nazývá radiační excitace nebo radiosita. Ta může být emitována z povrchu, odražená od povrchu nebo může procházet povrchem. Celková excitace je rovna součtu jednotlivých komponent, tj. části emitované, odražené a části procházející. Teplota povrchu je ovšem závislá pouze na jedné komponentě a to na emitované excitaci. (19)

11 FSI VUT DIPLOMOVÁ PRÁCE List Rozdělení teploměrů Se změnou teploty látek se mění řada dalších veličin, které jsou poměrně snadno měřitelné a umožňují tedy měření teploty. Zařízení, pomocí kterého je teplota měřena, se nazývá teploměr, nebo teplotní čidlo. Podle toho, zda je teploměr dáván do styku s látkou, jejíž teplota je měřena, jsou teploměry rozdělovány na kontaktní a bezkontaktní. Podle fyzikální veličiny, která na teplotu reaguje a pomocí které je teplota indikována, jsou teploměry rozdělovány do několika skupin. (16) Dilatační teploměry Čech (4) uvádí, že všechny typy dilatačních teploměrů spojuje využití délkové nebo objemové roztažnosti příslušné látky s měnící se teplotou. Citlivým materiálem může být pevná, kapalná i plynná látka. Teploměry kapalinové Tato skupina teploměrů využívá objemové roztažnosti kapalin. Jako teploměrná kapalina je nejčastěji použita rtuť nebo líh, méně často pak pentan nebo toluol. Jednotlivé kapaliny lze použít v intervalu jejich mezních teplot tuhnutí a varu. (4) Jak uvádí Bašus (2), je výhodou běžných skleněných kapalinových teploměrů spolehlivost, jednoduchost, skladnost a poměrně nízké náklady. Nevýhodou je, že jejich údaj nelze přenášet na dálku a dále zpracovávat. Kromě toho jsou skleněné teploměry mechanicky málo odolné a sloupec teploměrné kapaliny vyčnívající z prostoru o měrné teplotě může způsobit přídavné chyby měření. Uvedené teploměry se hodí k běžným měření v rozsahu (-50 až 600 C), při nichž je měřící místo snadno přístupné a teploměr není mechanicky namáhán. Teploměry kovové Dilatační kovové teploměry využívají délkové teplotní roztažnosti kovů. Podle konstrukčního provedení jsou děleny na teploměry tyčové a bimetalové. Tyčový teploměr sestává z pouzdra a tyče. Jejich materiály mají rozdílný součinitel délkové roztažnosti. Při změně teploty se tyč prodlouží o rozdílnou

12 FSI VUT DIPLOMOVÁ PRÁCE List 14 hodnotu než pouzdro. Koncové body se tedy vzájemně posunou. Toto posunutí je možné například číselníkovým úchylkoměrem převést na teplotní stupnici. (4) Dvojkolové nebo-li bimetalové teploměry pracují na principu různé teplotní roztažnosti dvou kovů. Spojíme-li plošně dva kovové pásky různé teplotní roztažnosti vytvarované do kruhového oblouku dle obr. 1.2, bude se vlivem změny teploty měnit poloměr oblouku a tím i vzdálenost d konce oblouku. Této vlastnosti lze využít především ke konstrukci spínacích teploměrů. (16) Obr. 1.2 Princip bimetalového teploměru (16) Výhodou je dle Bašuse (2) jejich levnost a trvanlivost, nevýhodou značné rozměry čidla, menší přesnost a omezený rozsah teplot. Hodí se hlavně k hrubším provozním měřením a k regulaci. Čech (4) uvádí rozsah měřených teplot (0 až 1000 C). Tlakové teploměry Schauer (16) popisuje tyto teploměry jako nádobky konstantního objemu naplněné plynem (vodík, helium, dusík apod.), u něhož se v širokém rozsahu teplot mění tlak lineárně s teplotou. Ke zjištění teploty měříme tlakoměrem tlak plynu. Čech (4) dále uvádí nutnost kompenzace chyb při vedení tlakové tekutiny v prostředí o rozdílné teplotě. Kompenzace se provádí například bimetalickým páskem v převodu tlakoměru. Výhodou teploměrů je lineární statická charakteristika a měřící rozsah (-20 až 600 C), robustní konstrukce a velká přestavující síla. To umožňuje použít tlakové teploměry v těžkých pracovních podmínkách. Nevýhodou je potřeba

13 FSI VUT DIPLOMOVÁ PRÁCE List 15 kompenzace. Kapalinové tlakové teploměry se vyrábějí ve třídách přesnosti 0,6 až Elektrické teploměry Tyto teploměry se dělí dle principu na odporové (polovodičové) nebo termoelektrické. Princip odporových teploměrů popisuje Bašus (2) takto: Řada látek mění svůj elektrický odpor s teplotou, a to v užším oboru teplot přibližně lineárně. U vodičů odpor s teplotou roste, u polovodičů obvykle klesá. Teploměry využívající tohoto jevu převádějí měření teploty na měření elektrického odporu. Obr. 1.3 Teplotní závislost odporu používaných materiálů (16) Termočlánky jsou elektrické teploměry, které na principu Seebeckova jevu převádějí teplotní rozdíl na termoelektrické napětí. Jde tedy o zdroje elektrického proudu, jejichž elektromotorické napětí se řídí rozdílem teplot. Klasický termočlánek vznikne spojením dvou kovů, nebo polovodičů, jejichž výstupní práce se liší. Výstupní prací se rozumí energie, kterou musíme dodat volnému elektronu v kovu nebo polovodiči, aby opustil jeho povrch. Spoj termočlánku s indexem 0 nazýváme referenční, na něm udržujeme definovanou konstantní teplotu. Druhý spoj termočlánku slouží k měření teploty, přičemž termoelektrické napětí na termočlánku je funkcí rozdílu teplot obou spojů. Při méně přesných měřeních se používá zapojení termočlánku bez referenčního spoje. (16)

14 FSI VUT DIPLOMOVÁ PRÁCE List 16 Obr. 1.4 Srovnání termočlánků s referenčním spojem a bez referenčního spoje (16) Mezi přednosti odporových teploměrů patří vysoká přesnost, lineární charakteristika a vyšší signál. Polovodičové snímače vykazují vyšší citlivost i rozsah teplot, nižší náklady a rozměry. Vlastnosti termočlánků vyjmenovává Bašus (2). Výhodou termoelektrických teploměrů je dobrá mechanická odolnost, malé rozměry čidla, možnost přenosu a zpracování údaje, široký obor teplot, poměrně jednoduché indikační zařízení a možnost snadného měření teplotních rozdílů Speciální teploměry Kromě osvědčených způsobů měření teplot lze využít i jiných fyzikálních jevů, které se uplatňují ve zvláštních případech. K měření velmi nízkých teplot kolem 1 K se hodí změny magnetického pole některých paramagnetických látek, které nastávají při změnách teploty. (2) Keramické žároměrky jsou trojboké komolé jehlany se šikmou tělesnou osou. Žároměrky jsou zhotoveny z keramických hmot, které při předepsaných podmínkách ohřevu měknou a mění svůj tvar (ohýbají se). (4) Teplotu lze také měřit s využitím speciálních barevných indikátorů, které mění barvu při určité teplotě. Tímto způsobem lze detekovat například dosažení potřebné teploty, nebo zjišťovat teplotní pole. Podle Bašuse (2) lze určité teploty velmi přesně reprodukovat změnami fáze některých látek, při nichž se teplota s přívodem tepla nemění. Je to zejména trojný bod, tání a var. Tímto způsobem se realizují základní teploměrné body.

15 FSI VUT DIPLOMOVÁ PRÁCE List Bezdotykové teploměry Bezdotykové teploměry pracují na principu měření tepelného záření. Jejich funkce je podrobně popsána v následující kapitole. Výhody a nevýhody popisuje Hušek (8) takto: Výhody bezdotykového měření teploty: 1. Je rychlé (v milisekundovém rozsahu) - šetří čas a navíc umožňuje uskutečňovat mnohem více měření. 2. Umožňuje měření teploty pohybujících se objektů (rotujících součástí, výrobků na dopravnících apod.). 3. Může se bezpečně provádět měření na nebezpečných nebo nesnadno dostupných objektech (součásti pod elektrickým napětím, pohyblivé součásti, vzdálené objekty). 4. Lze bez problémů měřit i velmi vysoké teploty (nad 1300 C). V těchto případech není vůbec možno použít dotykových teploměrů, nebo mají velmi omezenou životnost. 5. Není zde žádné ovlivnění měřeného objektu - není z něho při měření odebírána žádná energie. Například v případě špatných vodičů tepla, jako jsou plasty nebo dřevo, jsou měření ve srovnání s dotykovým měřením velmi přesná bez zkreslení měřených hodnot. 6. Není zde riziko kontaminace a nejsou zde žádné mechanické účinky na povrch měřeného objektu. Nedojde tedy např. k poškrábání lakovaných povrchů a je možno měřit i měkké povrchy. Měření v potravinářství je naprosto hygienické. Nevýhody bezdotykového měření teploty: 1. Měřený objekt musí být pro IR teploměr opticky (infračerveně opticky) viditelný. Vysoké úrovně kouře nebo prachu snižují přesnost měření. Pevné překážky, jako jsou uzavřené kovové reakční nádoby, dovolují pouze povrchová měření.

16 FSI VUT DIPLOMOVÁ PRÁCE List Optika čidla musí být chráněna před prachem a kondenzujícími kapalinami (výrobce pro to dodává příslušná zařízení). 3. Je možno měřit pouze povrchovou teplotu, přičemž je nutno brát v úvahu různou emisivitu jednotlivých materiálů. 4. Vyšší pořizovací cena zařízení pro bezdotykové měření.

17 FSI VUT DIPLOMOVÁ PRÁCE List 19 2 TEORIE BEZDOTYKOVÉHO MĚŘENÍ TEPLOTY I když je bezkontaktní měření teploty velmi jednoduché, pro dosažení správných hodnot, co nejvyšší přesnosti a pro využití všech předností, které tato technika nabízí, je potřebné znát základní principy a vlastnosti tohoto měření. (8) Bezdotykové teploměry jsou velmi přesná zařízení s nimiž je možné měřit i velice nepřesně. 2.1 Infračervené spektrum Měření tepelné infračervené radiace tvoří základ bezkontaktního měření teploty a IR termografie. Protože pohyb molekul představuje přemísťování náboje, je dle Huška (8) vyzařováno elektromagnetické záření (fotonové částice). Tyto fotony se pohybují rychlostí světla a chovají se dle známých optických zákonů. Mohou být odkláněny, soustředěny čočkami nebo odráženy odraznými povrchy. Spektrum tohoto vyzařování pokrývá vlnové délky od 0,7 do 1000 µm. Z tohoto důvodu toto záření nemůže být normálně viditelné pouhým okem. Tato oblast vlnových délek leží za červenou částí viditelného světla a nazývá se proto "infra"-červená (z latiny). Obr. 2.1 Elektromagnetické spektrum užívané pro měřicí účely (8)

18 FSI VUT DIPLOMOVÁ PRÁCE List 20 Dle (19) všechny povrchy těles, které jsou teplejší než absolutní nula, vysílají energii v infračerveném spektru a velmi teplá tělesa ve spektru viditelného světla. Hušek (8) píše, ze tělesa při vysokých teplotách vyzařují ještě i malé množství viditelného záření. Proto každý může vidět předměty při velmi vysokých teplotách (nad 600 C) žhnoucí někde mezi červenou a bílou. Zkušení taviči dovedou dle barvy odhadnout dosti přesně teplotu tělesa. Neviditelná část spektra však obsahuje až krát více energie. Na tom staví infračervená technologie. 2.2 Záření Zářením se rozumí elektromagnetické vlnění přičemž se přenáší energie. Záření jež přenáší tepelnou energii se nazývá tepelným zářením. Tepelné záření je emitováno povrchem všech těles, jejichž teplota je vyšší než 0 K. Vyzařující těleso se skládá z molekul a ty z atomů, které kmitají v silovém poli ostatních molekul a atomů, tzn. že konají tepelný pohyb. Energie tohoto kmitavého pohybu se jednak přenáší na sousední částice, jednak přechází do okolního prostoru formou elektromagnetických vln. Vyzářená energie jde na účet energie tepelného pohybu částic tělesa, a proto se vyzařováním těleso ochlazuje. Z pohledu jednotlivých atomů je pochod vyzařování nahodilým jevem, řídí se proto statistickými zákony. Tomu také odpovídá spojité vyzařované elektromagnetické spektrum. (12) Fyzikální podstata záření Při tepelném záření jde tedy o výměnu energie mezi tělesem a elektromagnetickým vlněním. Atomy, z nichž se skládá zářící těleso, kmitají kolem svých rovnovážných poloh a tvoří tak lineární oscilátory. Energie lineárních oscilátorů nemohou nabývat spojitě všech hodnot a přechod z jednoho stavu do druhého se děje skokem. (12) Pochod absorpce je záření, které dopadne na atom, předá mu svou energii a převede ho skokem z nižší energetické hladiny do vyšší. Dopadnuté záření tím zaniká a projeví se zvýšením celkové kinetické a potenciální energie atomu. (12)

19 FSI VUT DIPLOMOVÁ PRÁCE List 21 Přejde-li atom z vyšší energetické hladiny skokem do nižší, vyzáří (emituje) se rozdíl obou energií ve formě elektromagnetického vlnění. Energie se tedy vyzařuje i pohlcuje v kvantech, která odpovídají rozdílům energetických hladin. Každému vyzářenému nebo pohlcenému kvantu přísluší určitá vlnová délka. (12) 2.3 Černé těleso Černé těleso je Vavřičkou (23) definováno jako ideální těleso, které pohlcuje veškerou radiaci na něj dopadající, bez ohledu na vlnovou délku a úhel, pod kterým je povrch tělesa ozářen. A zároveň vyzařuje na všech vlnových délkách při dané teplotě maximální dosažitelnou energii zářivého toku. Neexistuje však žádný materiál, který by měl vlastnosti černého tělesa. V praxi je černé těleso realizováno malým otvorem do velké dutiny, kde dochází vlivem odrazů k pohlcení veškerého dopadajícího záření. Ideálně by jeho ústí mělo být ohraničené ostrým břitem. (23) Obr. 2.2 Černé těleso Vyzařování černého tělesa Intenzitu vyzařování černého tělesa H 0 podle Lysenka (1) udává Stephan- Boltzmannův zákon. Kde σ = 5, [W m -2 K -4 ] je Stephan- Boltzmannova konstanta.

20 FSI VUT DIPLOMOVÁ PRÁCE List 22 H 4 0 T (2.1) Toto množství energie popisuje i graf závislosti vyzařovací charakteristiky černého tělesa na jeho teplotě obr Z tohoto grafu je také se vzrůstající teplotou patrný posun maxima vyzařované energie směrem k nižším vlnovým délkám. Toto také popisuje Wienův zákon posuvu (2.2), ve kterém λ max je vlnová délka maxima a b = 2, [m K] konstanta Wienova zákona. T max b (2.2) Obr. 2.3 Vyzařování černého tělesa v závislosti na jeho teplotě (9)

21 FSI VUT DIPLOMOVÁ PRÁCE List Vyzařování šedého tělesa Šedé těleso se svými vlastnostmi blíží tělesům reálným. Teplota je pro něj vyhodnocována podle Stephan-Boltzmannova zákona, který je psán ve tvaru: H T 4 (2.3) Ze vztahu (2.3) je zřejmý vliv emisivity ε na množství vyzářené energie. Proto je emisivita nejdůležitějším parametrem ovlivňujícím měření. 2.4 Emisivita V praxi se pod emisivitou obvykle rozumí relativní schopnost nějaké plochy vydávat elektromagnetické záření odpovídající její teplotě, jde tedy o číslo od nuly do jedné. Přesně jde o podíl intenzity vyzařování teplotního zářiče a intenzity vyzařování absolutně černého tělesa o stejné teplotě. (17) H (2.4) H Stanovení emisivity Vyhledání emisivity v tabulkách vlastností materiálů Takto určenou emisivitu je třeba brát hodně s rezervou, protože skutečnou emisivitu povrchu může ovlivnit celá řada dalších skutečností (např. jakým způsobem byl kov obráběn broušením, frézováním, leštěním apod., jak je odolný vůči povrchové korozi atd.). Proto by hodnoty emisivit stanovené na základě tabulek měly být brány jako orientační, zvláště pak u kovů. (23) Tab. 2.1 Ukázka tabulky emisivity pro vybrané povrchy (9) Černé těleso 1,00 Černý matový lak 0,99 Voda 0,95 Cihly 0,85 Zoxidovaný ocelový plech 0,75 Zoxidovaný hliník 0,55 Lesklý ocelový plech 0,25

22 FSI VUT DIPLOMOVÁ PRÁCE List 24 Ohřátím měřeného vzorku na známou teplotu Pokud je měřené těleso ohřáto na předem známou teplotu, je poté možné na termokameře měnit hodnotu emisivity dokud naměřená teplota neodpovídá teplotě, na kterou byl předmět ohřát. Předem známou teplotu je také možno zjistit termoelektrickým článkem na tělese ohřátém na neznámou teplotu. (23) Použitím speciálního nátěru na části měřeného objektu Teplota tělesa je změřena termokamerou na povrchu opatřeném nátěrem se známou emisivitou. Poté je při snímání povrchu bez nátěru nastavena emisivita tak, aby změřená teplota odpovídala teplotě povrchu s nátěrem. (23) 2.5 Další parametry ovlivňující měření Kromě emisivity mohou způsobovat chyby bezdotykového měření další faktory dané okolním prostředím. Pro přesné měření je nutno tyto faktory pochopit a znát Teplota okolí Tento parametr se užívá ke kompenzaci radiace odražené od objektu a radiace atmosféry mezi kamerou a objektem. Je-li emisivita nízká, vzdálenost vysoká a teplota objektu relativně blízká teplotě okolí, je velmi důležité brát v úvahu hodnotu okolní teploty pro kompenzaci jejího vlivu. (5) Vzdálenost Tohoto parametru se používá pro korekci vlivu způsobeného skutečností, že radiace objektu je částečně pohlcována v atmosféře, která je mezi objektem a kamerou, a že přenos v atmosféře klesá (je utlumován) se vzdáleností. (5) Relativní vlhkost Kamera rovněž může "vykompenzovat" skutečnost, že přenos v atmosféře poněkud závisí na její relativní vlhkosti. Pro korekci tohoto vlivu při velkých vzdálenostech je nutné parametr relativní vlhkosti správně zadat. U malých

23 FSI VUT DIPLOMOVÁ PRÁCE List 25 vzdáleností může být hodnota relativní vlhkosti ponechána na předvolených 50 %. (5) 2.6 Infračervený měřicí systém Měřicí systém bezdotykového teploměru je patrný z obrázku 2.4, kde tepelné záření emitované z povrchu měřeného objektu po průchodu atmosférou vstupuje do optického systému. Záření upravené optikou dopadá na detektor, ve kterém je přeměněno na elektrickou veličinu. Ta je pak dále upravována v elektronických obvodech a nakonec převedena na výstupní signál. Obr. 2.4 Blokové schéma bezdotykového teploměru (9) Důležitým prvkem bezdotykových teploměrů jsou tepelné detektory záření. Tyto detektory pracují na principu elektrických teploměrů. Jejich rozdělení je uvedeno v následující kapitole. 2.7 Detektory Tepelné detektory se vyznačují tím, že dopadající vstupní záření je pohlcováno jejich aktivní plochou. To vede ke zvýšení jejich teploty. Spektrální rozdělení nemá (téměř) žádný vliv na teplotní změny. Výstupní signál tepelných detektorů je proto v principu (téměř) nezávislý na vlnové délce dopadajícího záření je tedy neselektivní. Povrch detektoru má ale pro různé vlnové délky rozdílnou absorpci, nelze tedy absolutní neselektivnosti dosáhnout. Teplotní změny citlivého elementu vlastního detektoru jsou zpravidla o několik řádů větší, než časová konstanta fotodetektoru. Ve velmi hrubém přiblížení lze konstatovat, že časová konstanta tepelného detektoru je v milisekundové oblasti, kdežto u fotodetektoru se pohybuje v mikrosekundové oblasti. (12)

24 FSI VUT DIPLOMOVÁ PRÁCE List 26 U tepelných detektorů obecně bývá relativně vysoká citlivost daná širokým absorbovaným spektrem a velkým poměrem signál šum, vyvolaným velkými teplotními změnami citlivého elementu dopadajícím zářivým tokem. (12) Vzhledem k tomu, že teplotu detektoru nelze měřit přímo, převádí se na jinou veličinu. Používané typy převodníků jsou následující: Termoelektrické detektory Podle Lysenka (12) využívají změnu termoelektrického napětí dvojice vodičů vlivem rozdílu teplot mezi měřícím a srovnávacím spojem. Fyzikální podstatou je existence kontaktního potenciálu na povrchu každého kovu. Elektrony z povrchu kovů nemohou vystupovat samovolně. Kovy jsou však látkami, které mají ve vnější valenční sféře jeden nebo dva elektrony. Ty jsou ke svému jádru slabě vázány. Ohřátím již na pokojovou teplotu (cca 300 K) se od svého jádra odtrhnou a stanou se volnými. Bude-li se měřící spoj ohřívat a srovnávací spoj zůstane chladný, bude pohyb elektronů na teplejší straně intenzivnější, než na straně chladnější. Zvětšeným tepelným pohybem budou elektrony difundovat směrem k chladnějšímu konci, což povede k proudění tepla. Přesun elektronů ale též způsobí, že teplejší spoj se bude nabíjet kladně a chladnější záporně. (12) V současné době jsou termoelektrické články pro aplikace jako termoelektrické detektory, konstruovány z tenkých pásků. Ozářený spoj je začerněn z důvodu zvětšení absorpce vstupního záření. Pro zvětšení stability jsou vakuově pouzdřeny. (12) Bolometry Princip bolometrického detektoru infračerveného záření je znám od 80. let 19. století a princip činnosti je jednoduchý, dá se říct, že je vzdáleně podobný kovovým odporovým senzorům teploty. Elektrický odpor bolometru se zde také mění v závislosti na jeho teplotě, která však závisí na množství absorbovaného dopadajícího infračerveného záření. Množství dopadajícího záření může být tedy určeno ze změn odporu bolometru. Aby však byla změna teploty bolometru

25 FSI VUT DIPLOMOVÁ PRÁCE List 27 úměrná pouze absorbovanému infračervenému záření, musí být vlastní bolometr tepelně izolován od svého okolí. (24) Obr. 2.5 Provedení jednoduchého bolometru (24) Mikrobolometr (někdy též mikrobolometrové pole) se od jednoduchého bolometru liší počtem odporových plošek na jednom senzoru. Obvykle jde o dvourozměrné pole pokryté teplotně citlivým odporovým materiálem ve formě plošek, které absorbují infračervené záření. (24) Obr. 2.6 Mikrobolometrický senzor (24)

26 FSI VUT DIPLOMOVÁ PRÁCE List Pyroelektrické detektory Využívají pyroelektrického jevu spočívajícího ve změně spontánní polarizace feroelektrických krystalických materiálů způsobené změnou teploty pyroelektrického detektoru. Je-li feroelektrický krystal ohříván modulovaným zářivým tokem, dochází vlivem změny teploty feroelektrika ke změně jeho spontánní polarizace, která vede ke generaci elektrického náboje. Při neměnné teplotě se ale vlivem povrchové vodivosti způsobené volnými náboji, neutralizuje (tzv. vybije). (12) Pyrodetektory se vyznačují tzv. mikrofoničností, tj. citlivostí na mechanické rázy. Musí být proto v pouzdru pružně uchyceny. V současné době se mikrofoničnost eliminuje použitím antiparalelního zapojení se zacloněným kompenzačním detektorem. (12) 2.8 Termokamera Teplotu lze měřit bodově s různou velikostí snímané plochy, nebo plošně. Požadavek plošného snímání IR obrazu splňují termokamery. Dle (18) vyžadují IR detektory pro tepelné záření při výrobě speciální postupy a jsou velmi drahé. Z tohoto důvodu byly v počátku využívány k detekci jen "jednopixelové" prvky. Zorné pole bylo skenováno ve dvou na sobě kolmých směrech, takže obraz se zaznamenával v časové posloupnosti bod po bodu. Později byly realizovány lineární detektory, kdy v jedné lince byla umístěna řada detektorů a skenování probíhalo jen v jednom směru. Vlastní skenování bylo realizováno například kmitavým pohybem jednoho zrcadla, jež bylo součástí optiky termokamery. Teprve nedávno se objevily dvourozměrné detektory, které umožňovaly současnou registraci celého zorného pole. K těmto účelům jsou nejvíce používány mikrobolometry. Termovize pracuje na principu transformace tepelného záření na viditelný obraz. Zobrazení je ale v barvách neodpovídajících skutečnosti. Snímaným teplotním polím jsou přiřazovány barvy viditelného spektra záření a jejich odstíny.

27 FSI VUT DIPLOMOVÁ PRÁCE List Příslušenství termokamery Termovizní kamera je vybavena zabudovaným 24 objektivem, vyjímatelnou baterií a řadou příslušenství. Termogramy mohou být vyhodnocovány v terénu pomocí analyzujících funkcí měření v reálném čase, které jsou zabudovány do kamery nebo na PC pomocí softwaru ThermaCAM Researcher. Pro dokumentaci měřeného objektu je možné obraz - termogram zachytit a zaznamenat na vyjímatelnou PC-kartu, která má v našem případě kapacitu 160 MB. Ke každému snímku je rovněž možné uložit zvukový komentář nebo i textový komentář spolu s informacemi jako jsou např. identifikační data objektu, okolní podmínky atd. Zvukový komentář je zaznamenáván pomocí mikrofonu a sluchátka, které jsou připojeny ke kameře. (13) Kameru lze připojit kabelem k PC, kde je možné snímky přímo ukládat a zpracovávat. Propojení je výhodné v laboratorních podmínkách, s vhodným notebookem je však možné využití i v terénu Využití termokamery Nejrozšířenější oblastí využití bezdotykového měření teploty je stavebnictví. (25) uvádí, že účelem většiny termovizních měření ve stavebnictví je stanovení rozložení povrchových teplot na plášti budov a zjištění, zda-li toto rozložení povrchové teploty není způsobeno např. špatně provedenými stavebními pracemi, poruchami izolace, netěsnostmi oken a dveří, kondenzací vlhkosti apod. Další využití je při kontrolách rozvodů tepla, podlahových vytápění, nepřístupných teplovodů a jejich poruch. V elektrotechnice se termovizní měření dle (25) využívá jako prostředek na identifikování a hledání problémových oblastí při výrobě, přenosu a distribuci elektrické energie. Také je úspěšně rozšířené jako nástroj elektrických kontrol, protože předností je, že se kontrola uskutečňuje během normálního provozu bez zásahu do zařízení (měření je nedestruktivní, bezkontaktní a tudíž i bezpečné). Při pravidelných kontrolách jsou případné závady objevovány již v počátečním stádiu, což má vliv na ekonomiku provozu. Při měřeních na elektrických zařízeních se snímá infračervené záření vyzářené v oblasti

28 FSI VUT DIPLOMOVÁ PRÁCE List 30 nedokonalého spojení dvou vodičů, kterými protéká elektrický proud. Hlavním kritériem pro rozhodnutí zda jde o špatný spoj není pouze absolutní teplota spoje, ale zejména teplotní rozdíl vůči ostatním spojům, eventuálně jeho rostoucí trend. Měřením, postupným sledováním a porovnáváním s archivovanými hodnotami lze rozhodnout o kvalitě sledovaného spoje. Následným měřením po opravě spoje lze také vyhodnotit kvalitu opravy spoje. Další využití termokamery je známo ze zdravotnictví. Jednoduchým snímkem povrchové teploty je zde zjišťováno postižené místo na těle pacienta. Záněty, poruchy prokrvení a také některá nádorová onemocnění lze objevit sledováním neobvykle teplejších, nebo naopak chladnějších částí těla. Tato metoda pouze detekuje postižené oblasti. Příčinu odlišné teploty musí určit jiné vyšetření. Nesporné výhody má použití IR snímačů obrazu v zabezpečovacích systémech. Využívají se zde pro možnost sledování i monitoring noční scény hlídaných budov, parkovišť a prostranství. Dále je snímačů využíváno při detekci zahoření na skládkách hořlavin. (13) píše, že kamery snímající v IR spektru mají ve strojírenském průmyslu velmi široké uplatnění. Využívají se ke sledování a vyhodnocování dějů probíhajících v oborech jako jsou například slévárenství, obrábění a tváření. Sledují se zde děje, při kterých dochází k zahřívání a ochlazování objektů, u nichž by bylo těžké jiným způsobem zjišťovat aktuální teplotu, nebo přenos a prostup tepla.

29 FSI VUT DIPLOMOVÁ PRÁCE List 31 3 TEPLOTA PŘI OBRÁBĚNÍ Teplota hraje důležitou roli v mnoha technologických procesech. Nejinak je tomu i při obrábění. Teplota je nedílnou součástí řezného procesu a může ovlivnit několik jeho faktorů. Významný vliv má teplota na opotřebení nástrojů. Dalším z ovlivněných faktorů může být například materiál obrobku, kdy hrozí popuštění již tepelně zpracovaného polotovaru, nebo jeho povrchu. Může nastat i opačný případ, kdy dojde vlivem teploty ke zlepšení mechanických vlastností povrchu obrobku a při následné operaci má toto opět významný vliv na opotřebení. Také přesnost rozměrů a tvaru obráběných povrchů bývá často ovlivněna tepelnou roztažností materiálu, který je řezným procesem vystaven vyšším teplotám. 3.1 Teplota a opotřebení břitů nástrojů SANDVIK (1) uvádí, že opotřebení nástroje je produktem kombinace zatěžujících faktorů, působících na břit. Trvanlivost břitu je ovlivňována celou řadou zatížení, která mají snahu změnit geometrii břitu. Opotřebení je tedy interakcí mezi nástrojem, materiálem obrobku a řeznými podmínkami. Nejdůležitějšími faktory jsou: - mechanický - tepelný - chemický - abrazivní Dále SANDVIK (1) píše o vzniku velkého množství tepla při obrábění. Toto teplo se vyvíjí na ploše čela a hřbetu břitové destičky. Tepelná zatížení značně namáhají materiál břitu nástroje a v některých případech mohou vytvářet dynamický faktor. Procesem utváření třísky se kontinuálně vytváří při vysokém tlaku a teplotách čistý kovový povrch, který má sklony k chemickým reakcím, případně k difúzním procesům. SANDVIK (1)

30 FSI VUT DIPLOMOVÁ PRÁCE List Mechanismy opotřebení Abrazivní opotřebení je, jak uvádí SANDVIK (1), velmi rozšířenou formou opotřebení, která vzniká hlavně působením tvrdých částic v materiálu obrobku. Vlivem mechanického zatížení tak vzniká rovinná plocha na hřbetě břitu. Schopnost břitu odolávat abrazivnímu opotřebení je z větší části závislá na jeho tvrdosti. Difúzní opotřebení popisuje Bumbálek (3). Když vzroste teplota na vysokou hodnotu a rychlosti pohybu povrchů vůči sobě jsou malé, je možné počítat s tím, že difúze bude ovlivňovat opotřebení. Tyto podmínky nastávají pouze u velmi zatížených třecích dvojic, kdy dochází v povrchové vrstvě k tečení. Oxidace většiny kovů je následkem vysoké teploty a okolního vzduchu. Speciálně v místě kontaktu břitu, kde končí šířka třísky má vzduch přístup do řezného procesu. V tomto případě vznikají působením oxidace typické žlábky, které však jsou v současné výrobě relativně vzácným fenoménem. SANDVIK (1) Adhezní opotřebení se podle SANDVIK (1) vyskytuje hlavně při nízkých teplotách obrábění na čele břitu nástroje. Tento jev vede k vytváření nárůstku mezi třískou a břitem. Jedná se přitom o dynamický průběh s narůstajícím počtem vrstev, které jsou z třísky navařovány a vytvrzovány a stávají se tak součástí břitu. Jakmile se zvýší teploty řezání, zmenšují se předpoklady pro vznik tohoto jevu, to znamená, že ke vzniku nárůstku, případně adhezního opotřebení dochází, v závislosti na afinitě mezi řezným nástrojovým materiálem a materiálem obrobku a na tlacích v místě řezu, jen v určité oblasti. Lom má často termomechanické příčiny. Kolísání teploty a zatížení řeznými silami mohou vést k vydrolování a lomu řezného nástroje. Řezné nástrojové materiály reagují na tato zatížení různě. V případě příliš měkkého řezného nástrojového materiálu může dojít k lomu, dojde-li vlivem vysokých teplot k plastické deformaci břitu a tím ke změně jeho geometrie. SANDVIK (1) Na většinu z uvedených mechanismů má teplota určitý vliv. Znalost teploty řezného procesu je proto velice důležitá.

31 FSI VUT DIPLOMOVÁ PRÁCE List Teplo a teplota řezného procesu Prakticky veškerá mechanická energie přivedená pro tvorbu třísky je podle Bumbálka (3) přeměněna v energii tepelnou (95 až 98 %). Zbývající část energie je uložena jako zbytková energie v třískách. Množství vzniklého tepla závisí na podmínkách deformace a tření při řezání. Kocman (10) píše, že teplo řezného procesu Q e vzniklé při odebrání určitého množství materiálu je přibližně rovné práci řezného procesu. Hlavní zdroje tepla jsou v oblasti plastických deformací při tvoření třísky, v oblasti tření třísky po čele nástroje a v oblasti tření hřbetu nástroje po obrobené ploše. Q e Q pd Q Q (3.1) Vzniklé teplo řezného procesu Q e je odváděno do jednotlivých prvků obráběcího systému. Podíl jednotlivých odváděných složek tepla řezného procesu do třísky Q t, obrobku Q o, nástroje Q n a řezného prostředí Q pr závisí na tepelné vodivosti materiálů obrobku a nástroje, na řezných podmínkách (především řezné rychlosti), řezném prostředí (způsobu chlazení a mazání) a na geometrii břitu řezného nástroje. (10) Q e Q Q Q Q (3.2) t o n pr Obr. 3.1 Odváděné složky tepla

32 FSI VUT DIPLOMOVÁ PRÁCE List 34 Kocman (10) dále uvádí, že největší část tepla vzniklého při obrábění je v ideálním případě odváděna ze zóny řezání třískou. Teplota třísky zatěžuje řezný nástroj jen tak dlouho, pokud je s ním v kontaktu. Nasazením moderních řezných destiček je možné proces obrábění optimalizovat tak, aby byl přechod tepla do břitu minimalizován. Teplo vznikající v oblasti hřbetu, kde se dráhy nástroje a opracovávaného obrobku rozdělují, by mělo být udržováno na co možná nejnižších hodnotách. Dostatečně velký úhel hřbetu a zamezení výrazného opotřebení hřbetu, které ve svém konečném efektu úhel hřbetu zmenšuje, jsou důležitými faktory. Nejsou-li brány v potaz, vzniknou vysoké teploty, které mají za následek rychlý lom břitu. (10) Teplota v zóně řezání je závislá hlavně na kontaktu třísky a nástroje, na velikosti řezných sil a třecích procesech mezi materiálem obrobku a břitem nástroje. Identifikace teplotního pole představuje složitý metrologický problém a vyžaduje složité měřící systémy. Při aplikaci standardních měřicích metod lze měřit střední teplotu všech stykových ploch mezi nástrojem a obrobkem. Měření lze provádět různými typy termočlánků, přičemž značným problémem je umístění měřicího spoje termočlánku co nejblíže ke stykové ploše nástroje a třísky. (10) Proto je snaha použít pro účely měření teploty při obrábění bezdotykových snímačů teploty. Značným omezením je zde však možnost měření pouze povrchových teplot.

33 FSI VUT DIPLOMOVÁ PRÁCE List 35 4 PŘÍPRAVA EXPERIMENTU Realizovaný experiment byl zaměřen na sledování několika teplotních závislostí při vrtání. Závislosti byly měřeny termokamerou, při vrtání neprůchozího otvoru o průměru D = 6 mm. Obráběná hloubka byla nastavena na hodnotu trojnásobku průměru nástroje. Otvor byl vytvořen třemi nástroji shodného průměru. První ze sledovaných závislostí je porovnání maximální teploty v místě řezu na třech vrtácích různého materiálu. Dále bylo cílem experimentu sledovat průběh těchto maxim po vrtané dráze a vyhodnotit jejich trend. Cílem pomocného měření pro provedení zkoušek bylo zjištění tepelně ovlivněné oblasti. Tato oblast určuje vzdálenost vedlejšího otvoru, aby nedošlo k ovlivnění následně naměřených teplot. 4.1 Použité vybavení K provedení experimentu byly zapotřebí následující přístroje, nástroje, pomůcky a materiál. Použité vybavení poskytla Fakulta strojního inženýrství VUT v Brně, Ústav strojírenské technologie Termokamera Obr. 4.1 Termokamera FLIR SC 2000 (5)

34 FSI VUT DIPLOMOVÁ PRÁCE List 36 Termokamera značky FLIR, model SC 2000, je součástí sady ThermaCAM PM 695. Je odolná proti prachu a stříkající vodě, testována na otřesy a vibrace a je vhodná k použití v terénu při nejnáročnějších podmínkách. Obraz termogram o vysokém rozlišení je možné sledovat v reálném čase v integrovaném hledáčku nebo na přídavném monitoru, případně současně jak v hledáčku, tak na externím monitoru. (5) Tab. 4.1 Technické parametry termokamery FLIR SC 2000 (5) Rozsah měřených -40 až +120 o C, rozsah 1 teplot objektu 0 až +500 o C, rozsah 2 až do o C, s příslušenstvím až do o C, s příslušenstvím Přesnost měření ±2 % Teplotní citlivost < 0,08 o C při teplotě objektu +30 o C Zorné pole (H x V) 24 o 18 o /0,5 m Typ detektoru FPA, nechlazený mikrobolometr s rozlišením 320 x 240 pixelů Spektrální rozsah 7,5-13 µm, vestavěný filtr pro "odříznutí" na 7,5 µm Video výstup Standard VHS nebo S-VHS Hledáček Barevný LCD (TFT) Disková jednotka, PC-karty Jedna zásuvka pro PC-kartu Typu II nebo III. Může být použita karta FLASH nebo harddisk (kompatibilní s ATA) Plně dynamické, 14-ti bitové Jeden vyměnitelný NiMH akumulátor 2 hodiny při běžném použití (jedna baterie) -15 až +50 o C -40 až +70 o C Ukládání obrazu Bateriový systém Doba provozu Okolní teplota Skladovací teplota Krytí Kovový kryt, IP 54 Uchycení na stativ 1/4" 20 Hmotnost 1,9 kg bez akumulátoru; 2,3 kg včetně akumulátoru Rozměry mm Video kamera pixelů Kamera byla upevněna na stativu a kabelem propojena s notebookem, ve kterém byl nainstalován obslužný program. Pomocí tohoto programu bylo snímání ovládáno a zároveň byly snímky ukládány na harddisk pro pozdější vyhodnocení.

35 FSI VUT DIPLOMOVÁ PRÁCE List Program pro vyhodnocování Pro vyhodnocování snímků bylo využito programu ThermaCAM TM Researcher. Dle Honnera (7) je to software pro využití ve výzkumných aplikacích, kde je zapotřebí detailní tepelné analýzy dynamických dějů. Program zabezpečuje propojení a řízení termovizní kamery počítačem včetně vysokorychlostního záznamu dat. Díky tomuto propojení lze provádět teplotní analýzy a statistiky v reálném čase. Uložené sekvence termogramů lze později přehrávat a podrobně analyzovat. Program proto nabízí rozsáhlé možnosti zpracování statických i dynamických termogramů. Obsahuje funkce pro teplotní analýzy včetně izoterm, bodových měření, čárových profilů a plošných histogramů. Všechny tyto nástroje analýzy dovolují nezávislé nastavení emisivity a vzdálenostních parametrů. Obr. 4.2 Pracovní prostředí programu ThermaCAM TM Researcher Prvním z prvků analýzy je bodové měření, které umožňuje vyhodnocení teploty jednoho místa (pixelu) termogramu. Program má v nástrojích nejen bod,

36 FSI VUT DIPLOMOVÁ PRÁCE List 38 který umístěním v obraze detekuje teplotu v tabulce výsledků, ale i plovoucí bod, pomocí kterého je zobrazována teplota přímo v termogramu pouhým pohybem kurzoru po jeho ploše. Druhým z prvků jsou čárové profily. Jejich předností je širší pásmo snímaných poloh. V tabulce výsledků se pro tyto profily zobrazují teploty maximální, minimální i jejich rozdíly a teploty průměrné po délce čáry. V termogramech lze tvořit čárové profily přímkové, nebo i libovolně zalomené. Dalším prvkem jsou plošné obrazce, které rovněž vyhodnocují teploty všech bodů v nich obsažených. K dispozici jsou obrazce jako obdélník, kruh, nebo libovolný n-úhelník vytvořený nakreslením obrazce pomocí úseček. Nástroj izoterma umožňuje v termogramu grafické zobrazení všech míst se shodnou teplotou. Hodnota teploty i rozsah jejích krajních hodnot se volí ve stupnici zobrazeného snímku. V termogramu je možno vytvořit několik pásem v určitém rozsahu shodných teplot. Obr. 4.3 Panel prvků analýzy Výsledky všech těchto prvků (s výjimkou bodu) mohou být ovlivněny v případě, že jsou umístěny přes zobrazené povrchy s různou emisivitou. Bod je vždy umístěn pouze na jednom povrchu. Důležitými součástmi programu jsou záložky pracovní plochy. S jejich pomocí jsou zobrazovány výsledky teplotních analýz termogramů. Záložky jsou umístěny pod pracovní plochou, ve které se zobrazují jejich zobrazovací funkce. Obr. 4.4 Záložky pracovní plochy První záložka s označením IR slouží pouze k zobrazení snímků a jejich stupnice teplotního rozsahu. Zároveň je v této záložce zobrazován obraz snímaný termokamerou připojenou k tomuto počítači.

37 FSI VUT DIPLOMOVÁ PRÁCE List 39 Záložka Results slouží k zobrazení snímků a zároveň tabulky výsledků. V tabulce jsou přehledně vypsány teploty, polohy, parametry a informace o snímcích. Teploty a polohy jsou zde vypisovány nejen pro celý snímek, ale i pro všechny výše popsané prvky analýzy. V záložce Profile se navíc zobrazí graf popisující teplotní profil čar vytvořených ve snímku. Je zde vykreslena teplota závislá na bodu čárového profilu. Osa je tudíž v měřítku totožná s rozměrem čáry. Histogram naopak umožňuje vytvoření sloupcových grafů četnosti teplot v určitých dílech teplotního rozsahu prvku. Sloupcový graf popisuje procentuální zastoupení teplot v obrazci nebo na čáře. Záložka Plot vykresluje teplotní profily celé, nebo vybrané části sekvence snímků čárového profilu, který je společný pro všechny snímky. Zapnutím vykreslování probíhá zápis grafu souběžně s přehráváním sekvence snímků. Pro vykreslování jsou v nabídce nastavení např. teploty maximální, minimální a průměrné. Samozřejmostí je i nastavení zobrazování grafu. Poslední záložkou je Multi. Tato záložka zobrazí v jednom okně snímky, tabulku výsledků, teplotní profil i histogram. Kromě už popsaného panelu nástrojů prvků obsahuje program další panely ovládání. Panel Standard umožňuje spustit obecné nástroje jako: Nový, Otevřít, Uložit nebo Tisk. Kromě těchto nástrojů panel dále obsahuje například tlačítko pro dialogové okno nastavení, nebo výběr palety barev zobrazení teplotního spektra. Obr. 4.5 Základní panel nástrojů Standard Další panel slouží k nastavení rozsahu teplot a jeho uzamčení pro všechny načtené snímky. Panel play je určen k přehrávání sekvencí snímků nastavenou rychlostí, po kroku nebo nazpět. Jezdec zobrazuje průběh přehrávání a označení právě přehrávaného snímku se objevuje v pravém horním rohu tohoto panelu.

38 FSI VUT DIPLOMOVÁ PRÁCE List 40 Obr. 4.6 Panel přehrávání sekvencí Mezi poslední panely patří nástroje kamera, který slouží k nastavení on-line spojení s kamerou, nahrávání, jež při tomto spojení umožňuje záznam snímků a panel zdrojových dat sloužící pouze k zobrazení umístění složky, do níž jsou snímky zapisovány, nebo odsud načteny. Další používané nástroje programu lze spustit z roletkového menu. Jednou z nich je záznam. Tento nástroj převádí sekvenci snímků do formátů videa spustitelných v běžných přehrávačích videa Otočná vrtačka Vrtání bylo provedeno na stroji MAS VR2. Jedná se o otočnou (radiální) vrtačku výrobce KOVOSVIT a. s., závod Sezimovo Ústí. Obr. 4.7 Použitý stroj

39 FSI VUT DIPLOMOVÁ PRÁCE List Mikroskop Snímky nástrojů byly pořízeny fotoaparátem Carl Zeiss / SONY Cyber-Shot 3.3 DSC-S75 na stereomikroskopu Stemi 2000-C od firmy ZEISS. Fotoaparát je k mikroskopu připevněn adaptérem: SONY Adapter ring VAD S70 B. Obr. 4.8 Sestava mikroskopu Měřidla ovlivňujících parametrů Pro změření vzdálenosti termokamery od měřeného objektu byl použit ultrazvukový měřič vzdálenosti (BOSH DUS 20 plus). Okolní teplota byla stanovena zařízením (thermometr YK-2001 TM) s připojeným termočlánkem typu K. Vlhkost určilo stejné zařízení s připojenou sondou vlhkoměru YK- 200PRH.

40 FSI VUT DIPLOMOVÁ PRÁCE List Řezné nástroje Pro experiment byly vybrány jako řezné nástroje tři vrtáky shodného průměru a odlišného materiálu a geometrie. Zvolený průměr nástroje je shodný, pro dosažení stejných řezných rychlostí. Vrtáky byly zakoupeny u firmy TTI s. r. o., provozovna Brno. Informace o vrtácích se nacházejí v Katalogu nástrojů na výrobu děr TTI ve formátu (.pdf). Tento katalog je přílohou 1. První z vrtáků má v katalogu TTI označení: Jedná se o obyčejný černěný vrták z materiálu HSS, vhodný pro vrtání oceli do pevnosti 800 N mm 2, hliníku s obsahem Si do 10 % a slitiny mědi s drobivou třískou. Technologie výroby šroubovice je tváření. Druhý vrták je v katalogu označován číslem: Je vyroben z nástrojové oceli s přídavkem 4,8 % Co. Je to vysoce výkonná rychlořezná ocel s dobrou houževnatostí a teplotní odolností, vhodná pro těžce obrobitelné materiály o pevnosti v tahu do 1400 N mm 2, korozivzdorné a žáruvzdorné oceli, legovaného hliníku a slitiny mědi s drobivou třískou. Šroubovice je vyráběna vybrušováním z plna. Třetí z vrtáků má katalogové číslo: Pro jeho výrobu je použita superrychlořezná vysoce výkonná ocel s dobrou houževnatostí a výbornou teplotní odolností, vhodná pro vrtání nejen ocelí, slitin hliníku a mědi, ale i všech druhů litin. Šroubovice je taktéž vybrušována z plna. Tab. 4.2 Materiál nástrojů (26) Označení: Nástroj 1 Nástroj 2 Nástroj 3 Katalogové číslo: Materiál nástroje: HSS HSSCo5 HSSCo8 Povlak: - TiN TiN % C 0,90 0,92 1,1 % Cr 4,1 4,1 3,9 % Mo 5,0 5,0 9,2 % V 1,8 1,9 1,2 % W 6,4 6,4 1,4 % Co - 4,8 7,8

41 FSI VUT DIPLOMOVÁ PRÁCE List Obráběný materiál Obráběný materiál o rozměrech 90x35x300 mm s označením dle normy DIN: 50CrV4, je ocel na listové pružiny automobilů. Vlastnosti oceli dle (14) jsou uvedeny v Tab Tab.4.3 Vlastnosti oceli 50CrV4 (14) DIN 50CrV4 ČSN EN 51CrV4 AISI 6150 Hustota 7,85 g m -3 Tvrdost podle Brinela 255 Tvrdost podle Vickerse 269 Tvrdost podle Rockwella 25 Mez pevnosti v tahu 883 MPa Mez kluzu v tahu 460 MPa Youngův modul pružnosti 205 GPa Modul objemové pružnosti 140 GPa Modul pružnosti ve smyku 80 GPa Poměrné prodloužení při přetržení 18,2 % Měrná tepelná kapacita -1 0,475 J g -1 C % C 0,480 0,530 % % Cr 0,980 % % Mn 0,8 % % P < 0,035 % % Si 0,23 % % S < 0,04 % % V > 0,15 % % Fe 97 % Normalizováno při 870 C Chlazeno na vzduchu Použití listové pružiny automobilů

42 FSI VUT DIPLOMOVÁ PRÁCE List Barva se známou emisivitou Speciální barva ThermaSpray 800 je určena pro úpravu povrchu měřeného objektu před bezkontaktním měřením teploty termovizní kamerou nebo bezkontaktním teploměrem. Díky jednoduché a rychlé aplikaci lze snadno provádět tato měření na objektech s neznámou nebo nízkou emisivitou (vysokou odrazivostí - zejména kovové části). ThermaSpray 800 je vhodný zejména pro dlouhodobou úpravu povrchů při opakovaných měřeních teplot, kde je třeba eliminovat vliv nízké emisivity měřeného objektu. (20) Touto barvou je nastříkána plocha sledovaná termokamerou, pro získání známé a vysoké emisivity snímaného povrchu. Nástřik obrobku je prováděn v kartonovém boxu s předstihem, aby došlo k jeho dostatečnému zaschnutí. Nanášená vrstva by měla být stejnoměrná po celé měřené ploše. Obr. 4.9 ThermaSpray 800 (20) 4.2 Návrh řezných podmínek Pro všechny experimenty byly použity shodné řezné podmínky. Zvolený posuv měl hodnotu f ot = 0,05 mm. Na stroji byly dále zvoleny otáčky vřetene. Jejich hodnota nastavena na n = 900 min -1. Maximální řezná rychlost měla hodnotu v c = 16,96 m min -1, která byla vypočtena pomocí vzorce (4.1). v c D n (4.1) 1000

43 FSI VUT DIPLOMOVÁ PRÁCE List 45 5 REALIZACE EXPERIMENTU Navržený experiment proběhl v laboratoři B1/410 na Fakultě strojního inženýrství VUT v Brně. Předem speciální barvou nastříkaný materiál obrobku byl upnut ke stolu vrtačky strojním svěrákem pozorovanou stranou svisle dolů. Hloubka vrtaného otvoru byla nastavena na h = 18 mm dorazem, který vypíná posuv. Otvor byl vždy vrtán ve shodné vzdálenosti od pozorované stěny obrobku. Rozměr tloušťky zbylé stěny byl nastaven na hodnotu s = 0,5 mm. Tato hodnota byla volena s ohledem na vztahy vedení tepla, aby se povrchová teplota co nejvíce blížila teplotě v místě řezu. Obr. 5.1 Parametry vrtaných děr Provedeno bylo celkem šest měření, pokaždé dvě na jednom vrtáku. Vyhodnocovány byly vždy druhé pokusy na každém nástroji z důvodu zaběhnutí nástroje v první vrtané díře. Experiment spočíval v bezdotykovém snímání teplotních polí při vrtání termokamerou Flir SC Touto termokamerou byla snímána plocha obrobku, v jejíž těsné blízkosti byl vrtán otvor vrtáky rozdílných vlastností. Takto byly vytvořeny snímky, které byly později vyhodnocovány.

44 FSI VUT DIPLOMOVÁ PRÁCE List Parametry ovlivňující měření Pro následné přesné vyhodnocení termogramů je nutné znát hodnoty parametrů, které mohou ovlivnit naměřené výsledky. Použitými přístroji uvedenými v kapitole 4 byly zjištěny hodnoty teploty prostředí, vlhkosti prostředí a vzdálenosti kamery od měřeného objektu. Hodnota emisivity je určena barvou použitou na pozorované ploše obrobku. Tab. 5.1 Parametry ovlivňující měření Emisivita [-] 0,96 Teplota [ C] 23,4 Vlhkost [%] 24 Vzdálenost [m] 0,2 Hodnoty uvedené v tab. 5.1 byly v programu zadány ke všem použitým snímkům. Takto je možné vyhodnocovat v programu například snímek povrchů s rozdílnou emisivitou. Bez zadaných ovlivňujících parametrů by byly teploty detekované v termogramech značně nepřesné. Dialogové okno s vyplněnými parametry je zobrazeno na obr Obr. 5.2 Dialogové okno nastavení

45 FSI VUT DIPLOMOVÁ PRÁCE List Stanovení velikosti tepelně ovlivněné oblasti První zjišťovanou hodnotou byla tepelně ovlivněná oblast. Její velikost směrem k dalšímu vrtanému otvoru po zdvojnásobení určuje vzdálenost vedlejšího vrtaného otvoru. Tuto vzdálenost je nutno dodržet, aby nedošlo k ovlivnění nového měření. Tomuto ovlivnění by se také dalo vyhnout provedením experimentu až po úplném vychladnutí součásti. Obr. 5.3 Měření ovlivněné oblasti Tepelně ovlivněná oblast byla stanovena těsně po vyvrtání. Teplý předmět (v termogramu kontrastní s tmavou neovlivněnou oblastí) byl přiložen do místa, kde oblast končila a následně byla změřena jeho vzdálenost od středu vrtáku. Její hodnota činila r = 51 mm. Rozměr r = 51 mm byl následně při vyhodnocování ověřen s použitím měřítka. V tomto případě byl využit známý rozměr hloubky vrtaného otvoru, z něhož byl poměrem vypočten rozměr ovlivněné oblasti. 5.3 Průběh maximálních teplot v místě řezu Tato závislost byla sledována v programu ThermaCAM Researcher 2001 v záložce Plot, kde bylo nastaveno vykreslování maximálních teplot do grafu relativního času. V grafech jsou nastaveny konstantní rozsahy sledovaných

46 FSI VUT DIPLOMOVÁ PRÁCE List 48 závislostí. Na obrazcích 5.4, 5.5 a 5.6 jsou zobrazeny tyto grafy vytvořené v prostředí programu. Obr. 5.4 Maximální teploty od nástroje 1 Obr. 5.5 Maximální teploty od nástroje 2 Obr. 5.6 Maximální teploty od nástroje 3

47 FSI VUT DIPLOMOVÁ PRÁCE List 49 V těchto grafech je možno sledovat několik oblastí. Ve všech případech je z grafu patrná vzrůstající tendence teploty v závěru vrtání otvoru. Tento růst se dá pozorovat u každého ze tří vrtáků vždy v poslední třetině obrábění a to v rozmezí relativního času t = s. Mírně nižší teploty v prostřední části obráběné dráhy oproti teplotě na začátku obrábění se vyskytly pouze u nástrojů 1 a 2. To souvisí s průběhem teploty v první části obrábění, kdy teplota po rychlém vzrůstu pozvolně klesá a přechází tak do střední části, kde pokles ustává. Nástroj číslo 3 vykazuje teplotu v prvních dvou oblastech téměř konstantní. Dále je možné z grafů pozorovat, že zatímco grafy vrtáků 2 a 3 mají relativně hladký průběh, průběh křivky vrtáku 1 popisuje mnohem větší výkyvy. Rozptyl roste zejména ve větší vrtané hloubce otvoru opět v úseku relativního času t = s. V oblasti chladnutí je možné u všech tří nástrojů sledovat vykreslení malé anomálie, kdy na krátkou chvíli přestane teplota klesat. Nejvýrazněji se toto opět projevilo u nástroje Srovnání teplot použitých vrtáků Pro srovnání povrchové teploty obrobku při obrábění otvorů třemi odlišnými nástroji byly využity hodnoty maximální teploty obrobku v místě řezu z předchozích grafů. Tyto teploty v závislosti na relativním čase byly přepsány do tabulkového editoru. Z přepsaných hodnot byl následně vytvořen společný graf uvedený na obr. 5.7.

48 FSI VUT DIPLOMOVÁ PRÁCE List nástroj 1 nástroj 2 nástroj 3 Teplota [ C] Relativní čas [s] Obr. 5.7 Maximální teploty obrobku v místě řezu Povrchové teploty obrobku vrtaného nástrojem 1 jsou o několik desítek stupňů vyšší než teploty povrchu obrobku zbylých dvou nástrojů, které se nacházejí v těsné blízkosti. Přesto se mezi nimi dá pozorovat rozdíl. Křivka pořízená při obrábění otvoru nástrojem 3 leží vždy o několik C pod křivkou nástroje 2. Z hodnot použitých pro tyto grafy byly ponechány pouze ty, které byly naměřeny v průběhu obrábění. To znamená, že byly odfiltrovány teploty snímků vytvořených při chladnutí a záběru nástroje. Z vybraných hodnot je možno vypočítat aritmetické průměry maximálních teplot pro jednotlivé nástroje. Odchylka aritmetických průměrů od okolní teploty byla porovnána v procentech, kdy nástroj 1 udává 100 % tohoto rozdílu. Výsledky výpočtu jsou uvedeny v tabulce 5.1. Tab. 5.2 Porovnání průměrných teplot nástrojů Nástroj Aritmetický průměr teploty 146,3 109,1 102,5 Odchylka teploty 122,6 85,4 78,8 Odchylka v % ,7 64,3

49 FSI VUT DIPLOMOVÁ PRÁCE List nástroj 1 nástroj 2 nástroj Teplota [ C] Relativní čas [s] Obr. 5.8 Maximální teploty v průběhu obrábění Vybrané hodnoty teplot v průběhu vrtání byly použity také pro vytvoření grafů maximální teploty v průběhu obrábění. Body povrchových teplot od jednotlivých nástrojů byly proloženy polynomy druhého stupně. K těmto křivkám byly přidány pásy spolehlivosti 95 %. Křivky od nástrojů 1 a 2 jsou výrazně konkávní. Křivka od nástroje 3 téměř lineárně stoupá. Naopak pásma spolehlivosti jsou u nástrojů 2 a 3 výrazně užší, než-li pásmo nástroje 1. Z obr. 5.8 je jasně patrné, nejen že se nepřekrývají proložené křivky, ale nepřekrývají se ani pásma spolehlivosti křivek nástroje 2 a nástroje 3. Toto potvrzuje určitý rozdíl v teplotách naměřených na povrchu obrobku při vrtání těmito nástroji.

50 FSI VUT DIPLOMOVÁ PRÁCE List Šíření teploty V předchozí kapitole byly pozorovány tři oblasti grafů maximálních povrchových teplot v místě řezu. Dá se tudíž předpokládat vliv rozdílného odvodu tepla z místa řezu. Proto bylo v každé z těchto oblastí sledováno teplotní pole na profilové čáře kolmé k ose nástroje. K tomuto srovnání bylo využito snímků pořízených při obrábění nástrojem 1, u kterého se rozdíly povrchových teplot projevily nejvýrazněji. Teploty na čáře je nutno porovnávat vždy ve stejné poloze k místu řezu. Proto pokaždé procházela čára místem řezu. Po dráze špičky nástroje byly tlačítkem pro vytvoření profilové čáry - line rovnoměrně rozmístěny tři měřící úsečky a to v první části LI01, v prostřední části LI03 a v konečné části LI02. Toto rozmístění je zobrazeno na obrázku 5.8, což je poslední snímek obrábění a zobrazuje také hloubku vrtaného otvoru. Z této hloubky je nutno opět pomocí měřítka určit délku úseček, které tvoří druhou osu grafu teplotního pole špičky nástroje v různé hloubce otvoru. Obr. 5.8 Rozmístění profilových čar Program ThermaCAM Researcher 2001 neumožňuje vykreslení grafů různých snímků společně. Proto byly hodnoty odečtené v záložce Profile a zapsány do tabulkového editoru, kde z nich byl vytvořen graf uvedený na obrázku 5.9. Jelikož je pokles teplot symetrický podle osy nástroje, byly použity hodnoty pouze jedné poloviny profilové čáry.

51 FSI VUT DIPLOMOVÁ PRÁCE List 53 Obr. 5.9 Snímek šíření teploty profilové čáry LI01 Obr Snímek šíření teploty profilové čáry LI03 Obr Snímek šíření teploty profilové čáry LI02

52 FSI VUT DIPLOMOVÁ PRÁCE List Teplota [ C] LI01 LI03 LI Vzdálenost od osy nástroje [mm] Obr Graf šíření teploty od místa řezu Z grafu nejsou patrny výrazné rozdíly ve strmosti jednotlivých šíření tepla. Křivka LI01 se s LI03 téměř překrývá. Liší se pouze kolem osy vrtání, kde má teplotu vyšší a v poloze p = -10 mm, kde je teplota naopak mírně nižší. Křivka LI02 je o několik C posunuta k vyšším teplotám. Má však téměř stejný charakter jako ostatní.

53 FSI VUT DIPLOMOVÁ PRÁCE List Teplota [ C] LI01 LI03 LI Vzdálenost od osy nástroje [mm] Obr Křivky spádu teplotního pole Pro zřetelnější zobrazení spádu teplotního pole byly na obrázku 5.10 hodnoty šíření teploty proloženy křivkami polynomu 2. řádu. Obecně lze tento polynom popsat rovnicí uvedenou ve vzorci 5.1. Koeficienty jednotlivých křivek jsou uvedeny v následující tabulce. y A x 2 B x C (5.1) Tab. 5.3 Koeficienty kvadratické funkce Koeficient: A B C Křivka LI01: 0, , ,48 Křivka LI03: 0, , ,50 Křivka LI02: 1, , , Břity použitých nástrojů Uvedené břity použitých nástrojů byly nafoceny pomocí mikroskopu. Z obrázků jsou patrny rozdílné geometrie břitů jednotlivých vrtáků. Na obrázku

54 FSI VUT DIPLOMOVÁ PRÁCE List nástroje 1 jsou velice dobře zřetelné dráhy po jeho ostření na hřbetě břitu. Povlakované nástroje mají zkrácené ostří tedy zúžené jádro. Nejzřetelnější opotřebení lze pozorovat opět na nástroji 1. Na jeho břitu se vyskytuje největší opotřebení hřbetu a to převážně u středu vrtáku. Také je zřetelné opotřebení špičky příčného ostří. Malý nárůstek se vytvořil ve větší vzdálenosti od středu nástroje. Břit nástroje 2 vykazuje oproti předešlému mnohem menší opotřebení hřbetu. Zřetelnější opotřebení se vyskytlo na vnější špičce břitu a na břitu vytvořeném vybroušením jádra. Opotřebení na břitu vytvořeném vybroušením jádra se objevilo i na nástroji 3. Rozdíl v opotřebení se u těchto nástrojů projevil na vnější špičce břitu, kde na nástroji 3 nevzniklo tak výrazné opotřebení, ale došlo k tvorbě nárůstku. Podle SANDVIK (1) vznik nárůstku ovlivňuje geometrii břitu, proto se efektivní úhel čela zvětšuje a úhel hřbetu se zmenšuje. Zmenšený úhel hřbetu má za následek zvýšené tření. Tomuto tvrzení by mohl odpovídat mírný nárůst teploty v poslední části obráběného otvoru popisovaný v kapitole 5.4. Tvorba nárůstků by se dala potvrdit také kolísáním teplot v grafu nástroje 1 za předpokladu cyklického odlamování nárůstků. Vzhledem k tomu, že se nárůstek neobjevil u všech nástrojů, lze tedy předpokládat, že zmiňovaný nárůst teploty souvisí s nedostatečným odvodem třísek z místa řezu ve větší hloubce vrtaného otvoru. O nárůstku se dále zmiňuje SANDVIK (1) takto: Zvýšením řezné rychlosti se přesune oblast vzniku nárůstku blíž směrem k ose vrtáku. Navíc se zvýší teplota a u břitu se snižuje odolnost proti opotřebení. Vytváření nárůstku by se tedy dalo odstranit snížením řezné rychlosti. O další možnosti odstranění nárůstku dále píše Kocman (11). Řezná kapalina ovlivňuje tvorbu nárůstku tím, že působí na velikost teploty řezání. Ovlivňuje velikost plastické deformace i velikost tření. Obsahuje-li řezná kapalina přísady, které tření zmenšují, potom je možné počítat s tím, že s přívodem takovéto řezné kapaliny dojde v celém rozsahu řezných podmínek ke zmenšování tvorby nárůstku a tím i ke zlepšení jakosti obrobeného povrchu.

55 FSI VUT DIPLOMOVÁ PRÁCE List 57 Obr Břit nástroje 1 Obr Břit nástroje 2

56 FSI VUT DIPLOMOVÁ PRÁCE List 58 Obr Břit nástroje 3

1 Bezkontaktní měření teplot a oteplení

1 Bezkontaktní měření teplot a oteplení 1 Bezkontaktní měření teplot a oteplení Cíle úlohy: Cílem úlohy je seznámit se s technologií bezkontaktního měření s vyhodnocováním tepelné diagnostiky provozu elektrických zařízení. Součastně se seznámit

Více

Bezkontaktní me ř ení teploty

Bezkontaktní me ř ení teploty Bezkontaktní me ř ení teploty I když je bezkontaktní měření teploty velmi jednoduché - opravdu stačí "namířit na měřený objekt a na displeji odečíst teplotu" - pro dosažení správných hodnot, co nejvyšší

Více

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí. 1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A

Více

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory 25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem

Více

TERMOGRAFICKÉ MĚŘENÍ LOPATEK ROTAČNÍHO STROJE "FROTOR"

TERMOGRAFICKÉ MĚŘENÍ LOPATEK ROTAČNÍHO STROJE FROTOR TERMOMECHANIKA TECHNOLOGICKÝCH PROCESŮ VÝZKUMNÁ ZPRÁVA TERMOGRAFICKÉ MĚŘENÍ LOPATEK ROTAČNÍHO STROJE "FROTOR" Autoři: Ing. Pavel Litoš Ing. Jiří Tesař Číslo projektu: Číslo zprávy: Odpovědný pracovník

Více

Teplota je nepřímo měřená veličina!!!

Teplota je nepřímo měřená veličina!!! TERMOVIZE V PRAXI Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/48 Teplota je nepřímo měřená veličina!!! Základní rozdělení senzorů teploty: a) dotykové b) bezdotykové 2/48 1

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 6.1a 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní

Více

Školení CIUR termografie

Školení CIUR termografie Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

Bezkontaktní termografie

Bezkontaktní termografie Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření

Více

Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. emisivní p. ZS 2015/ Ing. Václav Rada, CSc.

Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. emisivní p. ZS 2015/ Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní - 2 18-2p. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Přímé pokračování - 2. díl o A emisivních principech snímačů VR -

Více

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu

Více

LABORATORNÍ CVIČENÍ Z FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA APLIKOVANÉ MATEMATIKY FAKULTA DOPRAVNÍ LABORATORNÍ CVIČENÍ Z FYZIKY Jméno Jana Kuklová Stud. rok 7/8 Číslo kroužku 2 32 Číslo úlohy 52 Ročník 2. Klasifikace

Více

OPOTŘEBENÍ A TRVANLIVOST NÁSTROJE

OPOTŘEBENÍ A TRVANLIVOST NÁSTROJE Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

Infračervená termografie ve stavebnictví

Infračervená termografie ve stavebnictví Infračervená termografie ve stavebnictví Autor: Ing. Marcela POČINKOVÁ, Ph.D., Ing. Olga RUBINOVÁ, Ph.D. Termografické měření a následná diagnostika je metodou pro bezkontaktní a poměrně rychlý průzkum

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU I. diskusní fórum K projektu Cesty na zkušenou Na téma Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) které se konalo dne 30. září 2013 od 12:30 hodin v místnosti H108

Více

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným

Více

Termodiagnostika pro úsporu nákladů v průmyslových provozech

Termodiagnostika pro úsporu nákladů v průmyslových provozech Termodiagnostika pro úsporu nákladů v průmyslových provozech SpektraVision s.r.o. Štěpán Svoboda Vidíme svět v celém spektru Zaměření společnosti Analyzátory kvality elektrické energie Zásahové termokamery

Více

Příručka pro infračervenou měřicí techniku

Příručka pro infračervenou měřicí techniku Příručka pro infračervenou měřicí techniku 3. přepracované vydání Příručka pro infračervenou měřicí techniku Informace shromážděné naší firmou jsou uvedeny s veškerou vynaloženou pečlivostí a s odbornými

Více

Molekulová fyzika a termika:

Molekulová fyzika a termika: Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření hladiny 2 P-10b-hl ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Hladinoměry Principy, vlastnosti, použití Jedním ze základních

Více

Snímkování termovizní kamerou

Snímkování termovizní kamerou AB Solartrip,s.r.o. Na Plavisku 1235 755 01 Vsetín www.solarniobchod.cz mobil 777 642 777, e-mail: r.ostarek@volny.cz AKCE: Termovizní diagnostika vnitřní prostory rodinného domu č. p. 197 Ústí u Vsetína

Více

Úvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství.

Úvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. Laserové kalení Úvod Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. poslední době se začínají komerčně prosazovat

Více

17. Celá čísla.notebook. December 11, 2015 CELÁ ČÍSLA

17. Celá čísla.notebook. December 11, 2015 CELÁ ČÍSLA CELÁ ČÍSLA 1 Teploměr na obrázku ukazuje teplotu 15 C Říkáme: je mínus 15 stupňů Celsia je 15 stupňů pod nulou je 15 stupňů mrazu Ukaž na teploměru: 10 C, 8 C, +3 C, 6 C, 25 C, +36 C 2 Teploměr Teploměr

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická

Více

9. ČIDLA A PŘEVODNÍKY

9. ČIDLA A PŘEVODNÍKY Úvod do metrologie - 49-9. ČIDLA A PŘEVODNÍKY (V.LYSENKO) Čidlo (senzor, detektor, receptor) je em jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování ) je to člen

Více

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače

Více

Teplota. fyzikální veličina značka t

Teplota. fyzikální veličina značka t Teplota fyzikální veličina značka t Je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého. Jak se tato vlastnost jmenuje? Teplota Naše pocity

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření MĚŘENÍ RELATIVNÍ VLHKOSTI - pro měření relativní vlhkosti se používají metody měření obsahu vlhkosti vplynech Psychrometrické metody Měření rosného bodu Sorpční metody Rovnovážné elektrolytické metody

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak)

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické vizualizace principu

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Měření teploty v budovách

Měření teploty v budovách Měření teploty v budovách Zadání 1. Seznamte se s fyzikálními principy a funkčností předložených senzorů: odporový teploměr Pt100, termistor NCT, termočlánek typu K a bezdotykový úhrnný pyrometr 2. Proveďte

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Integrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty

Integrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty Snímače teploty Měření teploty patří k jednomu z nejdůležitějších oborů měření, protože je základem řízení řady technologických procesů. Pro měření teploty jsou stanoveny dvě stupnice: a) Termodynamická

Více

LOGO. Molekulová fyzika

LOGO. Molekulová fyzika Molekulová fyzika Molekulová fyzika Molekulová fyzika vysvětluje fyzikální jevy na základě znalosti jejich částicové struktury. Jejím základem je kinetická teorie látek (KTL). KTL obsahuje tři tvrzení:

Více

Technologie a procesy sušení dřeva

Technologie a procesy sušení dřeva strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

AX-7520. Návod k obsluze. UPOZORNĚNÍ: Tento návod popisuje tři modely, které jsou odlišeny označením model A, B a C. A B C.

AX-7520. Návod k obsluze. UPOZORNĚNÍ: Tento návod popisuje tři modely, které jsou odlišeny označením model A, B a C. A B C. AX-7520 UPOZORNĚNÍ: Tento návod popisuje tři modely, které jsou odlišeny označením model A, B a C. A B C Nastavitelná emisivita Teplotní alarm Návod k obsluze OBSAH 1. Bezpečnostní informace...3 2. Bezpečnostní

Více

Fyzikální podstata DPZ

Fyzikální podstata DPZ Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný

Více

Ing. Petr Knap Carl Zeiss spol. s r.o., Praha

Ing. Petr Knap Carl Zeiss spol. s r.o., Praha METROTOMOGRAFIE JAKO NOVÝ NÁSTROJ ZAJIŠŤOVÁNÍ JAKOSTI VE VÝROBĚ Ing. Petr Knap Carl Zeiss spol. s r.o., Praha ÚVOD Společnost Carl Zeiss Industrielle Messtechnik GmbH již dlouhou dobu sleduje vývoj v poměrně

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

6. STUDIUM SOLÁRNÍHO ČLÁNKU

6. STUDIUM SOLÁRNÍHO ČLÁNKU 6. STUDIUM SOLÁRNÍHO ČLÁNKU Měřicí potřeby 1) solární baterie 2) termoelektrická baterie 3) univerzální měřicí zesilovač 4) reostat 330 Ω, 1A 5) žárovka 220 V / 120 W s reflektorem 6) digitální multimetr

Více

Technická diagnostika, chyby měření

Technická diagnostika, chyby měření Technická diagnostika, chyby měření Obsah přednášky Technická diagnostika Měřicí řetězec Typy chyb měření Příklad diagnostiky: termovize ložisko 95 C měření 2/21 Co to je? Technická diagnostika Obdoba

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Zapojení odporových tenzometrů

Zapojení odporových tenzometrů Zapojení odporových tenzometrů Zadání 1) Seznamte se s konstrukcí a použitím lineárních fóliových tenzometrů. 2) Proveďte měření na fóliových tenzometrech zapojených do můstku. 3) Zjistěte rovnici regresní

Více

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

R9.1 Molární hmotnost a molární objem

R9.1 Molární hmotnost a molární objem Fyzika pro střední školy I 73 R9 M O L E K U L O V Á F Y Z I K A A T E R M I K A R9.1 Molární hmotnost a molární objem V čl. 9.5 jsme zavedli látkové množství jako fyzikální veličinu, která charakterizuje

Více

PROCESY V TECHNICE BUDOV 12

PROCESY V TECHNICE BUDOV 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

Obrazové snímače a televizní kamery

Obrazové snímače a televizní kamery Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické

Více

Obrazové snímače a televizní kamery

Obrazové snímače a televizní kamery Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické

Více

Vysoké teploty, univerzální

Vysoké teploty, univerzální Vysoké teploty, univerzální Vynikající koeficient tření na oceli Trvalá provozní teplota do +180 C Pro střední a vysoké zatížení Zvláště vhodné pro rotační pohyb HENNLICH s.r.o. Tel. 416 711 338 Fax 416

Více

HILGER s.r.o., Místecká 258, 720 02 Ostrava-Hrabová, Telefon: (+420) 596 718 912, (+420) 596 706 301, Email: hilger@hilger.cz,

HILGER s.r.o., Místecká 258, 720 02 Ostrava-Hrabová, Telefon: (+420) 596 718 912, (+420) 596 706 301, Email: hilger@hilger.cz, Tyto kamery třetí generace mají vysoce citlivý IR detektor a ergonomický tvar. Jsou cenově dostupné, jednoduše se ovládají, poskytují vysoce kvalitní snímky a umožňují přesné měření teplot. Mají integrovanou

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Charakteristiky optoelektronických součástek

Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel

Více

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN 5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

Spektrální charakteristiky

Spektrální charakteristiky Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který

Více

DPZ - IIa Radiometrické základy

DPZ - IIa Radiometrické základy DPZ - IIa Radiometrické základy Ing. Tomáš Dolanský Definice DPZ DPZ = dálkový průzkum Země Remote Sensing (Angl.) Fernerkundung (Něm.) Teledetection (Fr.) Informace o objektu získává bezkontaktním měřením

Více

Dosah γ záření ve vzduchu

Dosah γ záření ve vzduchu Dosah γ záření ve vzduchu Intenzita bodového zdroje γ záření se mění podobně jako intenzita bodového zdroje světla. Ve dvojnásobné vzdálenosti, paprsek pokrývá dvakrát větší oblast povrchu, což znamená,

Více

Moderní trendy měření Radomil Sikora

Moderní trendy měření Radomil Sikora Moderní trendy měření Radomil Sikora za společnost RMT s. r. o. Členění laserových měřičů Laserové měřiče můžeme členit dle počtu os na 1D, 2D a 3D: 1D jsou tzv. dálkoměry, které měří vzdálenost pouze

Více

Základy molekulové fyziky a termodynamiky

Základy molekulové fyziky a termodynamiky Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou

Více

Katedra obrábění a montáže, TU v Liberci při obrábění podklad pro výuku předmětu TECHNOLOGIE III - OBRÁBĚNÍ je při obrábění ovlivněna řadou parametrů řezného procesu, zejména řeznými podmínkami, geometrií

Více

VÍŘIVÉ PROUDY DZM 2013 1

VÍŘIVÉ PROUDY DZM 2013 1 VÍŘIVÉ PROUDY DZM 2013 1 2 VÍŘIVÉ PROUDY ÚVOD Vířivé proudy tvoří druhou skupinu v metodách, které využívají ke zjišťování vad materiálu a výrobků působení elektromagnetického pole. Na rozdíl od metody

Více

2010 Brno. Hydrotermická úprava dřeva - cvičení vnější parametry sušení

2010 Brno. Hydrotermická úprava dřeva - cvičení vnější parametry sušení 2010 Brno 06 - cvičení vnější parametry sušení strana 2 Proč určujeme parametry prostředí? správné řízení sušícího procesu odvislné na správném řízení naplánovaného sušícího procesu podle naměřených hodnot

Více

Infračervený teploměr

Infračervený teploměr Infračervený teploměr testo 835 Rychlý a přesný infračervený teploměr pro řemeslo a průmysl Bezpečné a přesné měření až do oblasti vysokých teplot. 4-bodový laser zobrazuje přesně oblast měření a eliminuje

Více

FDA kompatibilní iglidur A180

FDA kompatibilní iglidur A180 FDA kompatibilní Produktová řada Je v souladu s předpisy FDA (Food and Drug Administration) Pro přímý kontakt s potravinami a léčivy Pro vlhká prostředí 411 FDA univerzální. je materiál s FDA certifikací

Více

Plazmové metody. Základní vlastnosti a parametry plazmatu

Plazmové metody. Základní vlastnosti a parametry plazmatu Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.

Více

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost Elektricky vodivý iglidur Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost HENNLICH s.r.o. Tel. 416 711 338 ax 416 711 999 lin-tech@hennlich.cz

Více

Zapojení teploměrů. Zadání. Schéma zapojení

Zapojení teploměrů. Zadání. Schéma zapojení Zapojení teploměrů V této úloze je potřeba zapojit elektrickou pícku a zahřát na požadovanou teplotu, dále zapojit dané teploměry dle zadání a porovnávat jejich dynamické vlastnosti, tj. jejich přechodové

Více

Termografie - měření povrchu železobetonového mostu

Termografie - měření povrchu železobetonového mostu Název diagnostiky: Termografie - měření povrchu železobetonového mostu Datum provedení: duben 2014 Provedl: Centrum dopravního výzkumu. v.v.i. Stručný popis: Termografické měření a vyhodnocení železobetonového

Více

ZÁKLADY STAVEBNÍ FYZIKY

ZÁKLADY STAVEBNÍ FYZIKY ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Infračervený teploměr

Infračervený teploměr Infračervený teploměr testo 835 Rychlý a přesný infračervený teploměr pro řemeslo a průmysl Bezpečné a přesné měření až do oblasti vysokých teplot. 4-bodový laser zobrazuje přesně oblast měření a eliminuje

Více

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost

Více

Ruční bezdotykový teploměr Více jistoty při měření díky dvoubodovému laseru

Ruční bezdotykový teploměr Více jistoty při měření díky dvoubodovému laseru testo 830-T4 Ruční bezdotykový teploměr Více jistoty při měření díky dvoubodovému laseru testo 830-T4 ruční bezdotykový teploměr Teploměr testo 830-T4 je profesionálním řešením pro bezdotykové měření teploty

Více

METROTOMOGRAFIE JAKO NOVÝ NÁSTROJ ZAJIŠŤOVÁNÍ JAKOSTI VE VÝROBĚ

METROTOMOGRAFIE JAKO NOVÝ NÁSTROJ ZAJIŠŤOVÁNÍ JAKOSTI VE VÝROBĚ METROTOMOGRAFIE JAKO NOVÝ NÁSTROJ ZAJIŠŤOVÁNÍ JAKOSTI VE VÝROBĚ Ing. Petr Knap Carl Zeiss spol. s r.o., Praha ÚVOD Společnost Carl Zeiss Industrielle Messtechnik GmbH již dlouhou dobu sleduje vývoj v poměrně

Více

Základy pyrometrie. - pyrometrie = bezkontaktní měření teploty. 0.4 µm... 25 µm - 40 0 C... 10 000 0 C

Základy pyrometrie. - pyrometrie = bezkontaktní měření teploty. 0.4 µm... 25 µm - 40 0 C... 10 000 0 C Základy pyrometrie - pyrometrie = bezkontaktní měření teploty 0.4 µm... 25 µm - 40 0 C... 10 000 0 C výhody: zanedbatelný vliv měřící techniky na objekt možnost měření rotujících nebo pohybujících se těles

Více

EXPERIMENTÁLNÍ METODY I 3. Měření teplot

EXPERIMENTÁLNÍ METODY I 3. Měření teplot FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 3. Měření teplot OSNOVA 3. KAPITOLY Úvod do problematiky měření teplot

Více

13 otázek za 1 bod = 13 bodů Jméno a příjmení:

13 otázek za 1 bod = 13 bodů Jméno a příjmení: 13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit

Více

Název zařízení / sestavy:

Název zařízení / sestavy: Počet sestav: 10 Bateriový systém na napájení měřícího zařízení Sestava musí obsahovat 4 baterie, 2 skříně na baterie,2 nabíječky akumulátorů a 1 solární panel. Nabíječky a baterie slouží k dobíjení venkovních

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více