Základy proteomiky. Proč právě proteomika? Jan Hejátko
|
|
- Miloslav Kučera
- před 7 lety
- Počet zobrazení:
Transkript
1 Základy proteomiky Proč právě proteomika? Jan Hejátko
2 Základy proteomiky zdrojová literatura Zdrojová literatura k první přednášce: Monografie a učebnice Plant Functional Genomics, ed. Erich Grotewold, 2003, Humana Press, Totowa, New Jersey Proteome Research: New Frontiers in Functioonal Genomics, ed. Wilkins, M.R., Wiliams, K.L., Appel, R.D., Hochstrasser, D.F., 1997, Springer-Verlag, Berlin, Heidelberg Dubová J., Hejátko J., Friml J. (2005) Reproduction of Plants, in Encyclopedia of Molecular Cell Biology and Molecular Medicine (ed, R. A. Meyers), pp Wiley-VCH, Weinheim, Germany Publikace v mezinárodních časopisech Wang, L. and Wessler, S.R. (1998) Inefficient reinitiation is responsible for upstream open reading frame-mediated translational repression of the maize R gene. Plant Cell, 10, (1733) Friml, J. and Palme, K. (2002) Polar auxin transport. Old questions and new concepts?. Plant Mol. Biol., 49, Mello, C.C. and Conte Jr., D. (2004) Revealing the world of RNA interference. Nature, 431, Surpin, M. and Raikhel, N. (2004) Traffic jams affect plant development and signal transduction. Nature Reviews/Molecular Cell Biology 5,
3 Základy proteomiky Proč právě proteomika? Postgenomová éra a co s informacemi, které neumíme číst Genotyp vs. fenotyp, aneb co všechno se děje při vyjadřování Od genu k proteinu a zpět Přístupy současné proteomiky exprese, purifikace a analýza rekombinantních proteinů analýza vztahu mezi strukturou a funkcí proteinů diferenční proteomika analýza posttranslačních modifikací
4 Základy proteomiky Proč právě proteomika? PROTEOME = PROTEins expressed by genome (konference 2-D ELFO, Siena, 1994) DNA: GENOME, HAPLOME, EPIGENOME RNA: TRANSCRIPTOME PROTEIN: ORFEOME, PHENOME, PHENOME: kombinace různých dat, zahrnujících fenotyp, expresní data různých (ideálně všech) genů daného organismu a proteinová data (interakce, jednotlivé vlastnosti proteinů, ) PROTEOME, LOCALISOME, INTERACTOME, METABOLOME, Proč vůbec studovat proteiny, když máme tolik genetických dat? (sekvence genomů, expresní profily genů, fenotypy mutantů,?) V koncovém výsledku, tedy fenotypu, se vždy projeví regulace na všech úrovních, od genu po protein a jeho modifikaci Na konci je vždy BIOLOGICKÝ PROBLÉM!!!!
5 Anotace genů a odhad aminokyselinových sekvencí předpokládaných proteinů Postgenomová éra a co s informacemi, které neumíme číst dnes k dispozici v databázích více než záznamů (nr databáze) různých organizmů Získané informace lze pomocí bioinformatiky zpracovat Genome Project at NCBI
6 Predikce funkce genů in silico struktura genů struktura genů promotor počátek transkripce 5 UTR počátek translace místa sestřihu stop kodon 3 UTR polyadenylační signál TATA ATG.ATTCATCAT 5 UTR ATTATCTGATATA.ATAAATAAATGCGA 3 UTR
7 Anotace genů a odhad aminokyselinových sekvencí předpokládaných proteinů Postgenomová éra a co s informacemi, které neumíme číst dnes k dispozici v databázích více než záznamů (nr databáze) různých organizmů Získané informace lze pomocí bioinformatiky zpracovat
8 Základy proteomiky Proč právě proteomika? Postgenomová éra a co s informacemi, které neumíme číst Genotyp vs. fenotyp, aneb co všechno se děje při vyjadřování
9 Genotyp vs. fenotyp, aneb co všechno se děje při vyjadřování Genom vs. Proteom Danaus plexippus (monarch) Gen Transkript Protein Fenotyp
10 Genotyp vs. fenotyp, aneb co všechno se děje při vyjadřování Možná analogie s textem a jeho interpretací DNA: Kdyžadoperbtabijsemdfjfwůcsaknclůsnínjxldalnxckjcnbychcxmasizdciksrdceasnanazxcnlsdlaň. Když je s ní-----dal by si------srdce na dlaň. Když jsem snídal srdce. Když jsem s ní-----dal bych si------srdce na dlaň. RNA: Když jsem s ní, dal bych si srdce na dlaň. Když je jsem ní, dala si srdce na dlaň. Když s ní,s dal by si by srdce na dlaň. Když jsem snídal srdce. PROTEIN:
11 Základy proteomiky Proč právě proteomika? Postgenomová éra a co s informacemi, které neumíme číst Genotyp vs. fenotyp, aneb co všechno se děje při vyjadřování Od genu k proteinu a zpět
12 Od genu k proteinu a zpět Základní mechanismy regulace genové exprese regulace transkripce sestřih RNA
13 Od genu k proteinu a zpět Základní mechanismy regulace genové exprese regulace transkripce sestřih RNA
14 Základní mechanismy regulace genové exprese struktura genů struktura genů promotor počátek transkripce 5 UTR počátek translace místa sestřihu stop kodon 3 UTR polyadenylační signál TATA ATG.ATTCATCAT 5 UTR ATTATCTGATATA.ATAAATAAATGCGA 3 UTR
15 Základní mechanismy regulace genové exprese regulace transkripce odchylky rozpoznávání míst sestřihu u rostlin v praxi - příklad vývojové plasticity (nejen) rostlin identifikace mutanta s bodovou mutací (tranzice G A) přesně v místě sestřihu na 5 konci 4. exonu BsmI AlwNI analýza pomocí RT PCR prokázala přítomnostasei fragmentu BpmI Pf lmi PsiI SpeI BclI kratšího než by odpovídalo cdna po normálním sestřihu CTGCGAATTACAAAGTTGTTATTGTCTTGATCCTAAATTGAATGCTCTTGTGTTTTCTATTTCTCCAGGAACTGGTGAAGCTCACTGGTGCAAAAACACATGAAGCCAAGATAAACATTATTAATGATGTTAATGGCATTATAAAGCCAGGAAGGTTAGTAGTTGTCTCCTAACTAGTTTTGATCAAAGTTTTATACCTTCAAGTGTGCT GACGCTTAATGTTTCAACAATAACAGAACTAGGATTTAACTTACGAGAACACAAAAGATAAAGAGGTCCTTGACCACTTCGAGTGACCACGTTTTTGTGTACTTCGGTTCTATTTGTAATAATTACTACAATTACCGTAATATTTCGGTCCTTCCAATCATCAACAGAGGATTGATCAAAACTAGTTTCAAAATATGGAAGTTCACACGA sekvenace tohoto fragmentu pak ukázala na alternativní sesřih s PDR_U1b využitím nejbližšího možného místa sestřihu v exonu 4 R L V V V S. L V L I K V L Y L Q V C S no splicing EXON 3 pis1 intron E L V K L T G A K T H E A K I N I I N D V N G I I K P G R PDR exon 3 ORF BsmI BpmI AlwNI Pf lmi AseI PsiI SpeI BclI PstI CTGCGAATTACAAAGTTGTTATTGTCTTGATCCTAAATTGAATGCTCTTGTGTTTTCTATTTCTCCAGGAACTGGTGAAGCTCACTGGTGCAAAAACACATGAAGCCAAGATAAACATTATTAATGATGTTAATGGCATTATAAAGCCAGGAAGGTTAGTAGTTGTCTCCTAACTAGTTTTGATCAAAGTTTTATACCTTCAAGTGTGCT BspMI HpaI StuI Pv uii GACGCTTAATGTTTCAACAATAACAGAACTAGGATTTAACTTACGAGAACACAAAAGATAAAGAGGTCCTTGACCACTTCGAGTGACCACGTTTTTGTGTACTTCGGTTCTATTTGTAATAATTACTACAATTACCGTAATATTTCGGTCCTTCCAATCATCAACAGAGGATTGATCAAAACTAGTTTCAAAATATGGAAGTTCACACGA TATTCTTCTTGCTGTTGCAGGTTAACACTGTTGCTTGGTCCTCCTAGCTGCGGAAAAACAACTTTGTTAAAGGCCTTGTCTGGAAATTTAGAAAACAATCTAAAGGTTCTAATGATGAAAGCAGTTATATCATTTTCTTGTGAAGATTTTTTTGCTGCAGCTGTGTGAAGTTTGTACCTTTTC existence podobných obranných mechanizmů prokázána i u jiných organizmů (např. nestabilita mutantní mrna se vznikem předčasného R L V V V S. L V L I K V L Y L Q1653 V C PDR_U1b splicing (> bp před normálním stop kodonem) u eukaryot, viz doporučená studijní literatura, Singh ands Lykke-Andersen,no2003) ATAAGAAGAACGACAACGTCCAATTGTGACAACGAACCAGGAGGATCGACGCCTTTTTGTTGAAACAATTTCCGGAACAGACCTTTAAATCTTTTGTTAGATTTCCAAGATTACTACTTTCGTCAATATAGTAAAAGAACACTTCTAAAAAAACGACGTCGACACACTTCAAACATGGAAAAG EXON 3 L F F L L L Q no splicing E L T L L L G P P pis1 DEL BspMI L V K L T G A K T H E A K I N I PDR exon 3 ORF pis1 EXON 4 HpaI pis1 intron I N D V N G I I K P G R PstI Pv uii StuI C G K T T L L K A L S G N L E N N L K TATTCTTCTTGCTGTTGCAGGTTAACACTGTTGCTTGGTCCTCCTAGCTGCGGAAAAACAACTTTGTTAAAGGCCTTGTCTGGAAATTTAGAAAACAATCTAAAGGTTCTAATGATGAAAGCAGTTATATCATTTTCTTGTGAAGATTTTTTTGCTGCAGCTGTGTGAAGTTTGTACCTTTTC pis1 intron pis1 exon 4 ORF ATAAGAAGAACGACAACGTCCAATTGTGACAACGAACCAGGAGGATCGACGCCTTTTTGTTGAAACAATTTCCGGAACAGACCTTTAAATCTTTTGTTAGATTTCCAAGATTACTACTTTCGTCAATATAGTAAAAGAACACTTCTAAAAAAACGACGTCGACACACTTCAAACATGGAAAAG GCTGTTGCAa L F F L L L no splicing Q L T L L L G pis1 DEL P P pis1 EXON 4 C G K pis1 intron T T L EXON 4 L K A L S G pis1 exon 4 ORF N L E N N L K GCTGTTGCAa L T L L L G P P S C G K T T L L K A L S G N L E N N L K EXON 4 PDR exon 4 ORF L T L L L G P P S C G K T T L L K PDR exon 4 ORF A L S G N L PDR_L1 PDR_L1 E N N L K stopkodonu 1470
16 Základní mechanismy regulace genové exprese přeskupování subgenů při produkci protilátek Přeskupování subgenů jako specifický mechanismus při produkci protilátek protilátky variabilní oblast (V) a konstantní oblast (C) a lehký (L) a těžký (H) řetězec každá z V oblastí L řetězce u myší je kódována 2 subgeny (V a J) každá z V oblastí H řetězce u myší je kódována 3 subgeny (V, J a D) v zárodečných liniích myších B-lymfocytů dochází k tzv. kombinatorické diversifikaci (přeskupování) subgenů (místně-specifickou rekombinací) L řetězec (κ): cca 300 V sub-genů a 4 J subgeny (300 x 4 = 1200 možností) H řetězec: cca 500 V sub-genů, 4 J subgeny a 12 D subgenů (500 x 4 x 12 = možností) celkové množství kombinací u myší: cca 1200 x = 28 mil. různých V oblastí (protilátek rozpoznávající různé antigeny) antigen indukuje tzv. afinitní dozrávání mechanismem somatické hypermutace po aktivaci B-lymf. pomocnými T-lymf. dochází ke zvýšenému výskytu mutací ve V oblastech (1 mutace/v oblast/generaci, cca 1 mil. X vyšší než je obvyklé (např. u tzv. house-keeping genů) a selekci protilátek se zvýšenou afinitou k antigenu
17 Od genu k proteinu a zpět Základní mechanismy regulace genové exprese regulace transkripce sestřih RNA translační represe
18 Regulace genové exprese mechanismem translační represe Funkční význam sestřihu v nepřekládaných oblastech - důležitá regulační součást genů Translační represe prostřednictvím krátkých ORF v 5 UTR M K R A F. ATGaaaagagcttttTAG Identifikováno např. u kukuřice (Wang and Wessler, 1998, viz doporučená lit.) M K R A F. ATGaaaagagcttttTAG ATGatggtgaaagttaca. M M V K V T ATGatggtgaaagttaca. V případě CKI1 pokus prokázat tento způsob regulace genové exprese pomocí transgenních linií nesoucích uida pod kontrolou dvou verzí promotoru, zatím nepotvrzeno M M V K V T ATGatggtgaaagttaca.
19 Expression of CKI1 in Diploid Generative Tissue Inflorescence
20 Od genu k proteinu a zpět Základní mechanismy regulace genové exprese regulace transkripce Sestřih RNA translační represe posttranskripční umlčování mechanizmem sirna
21 Genomika III. mechanismus RNA interference Molekulární podstata posttranskripčního umlčování genů (PTGS) RNAi objevena u Coenorhabditis elegans umlčování bylo indukováno jak sense tak antisense RNA (pravď. kontaminace obou při in vitro transkripci) dsrna indukovala umlčování cca x účinněji dsrna indukce je závislá na vlastních genech-gen. vyhledávání RNAi rnai
22 Genomika III. mechanismus RNA interference Molekulární podstata posttranskripčního umlčování genů (PTGS) RNAi objevena u Coenorhabditis elegans je to přirozený mechanismus regulace genové exprese u všech eukaryot podstatou je tvorba dsrna, způsoby: která může být spuštěna několika přítomnost cizí aberantní DNA specifické transgeny obsahující obrácené repetice částí cdna transkripce vlastních genů pro shrna (short hairpin RNA) nebo mirna (micro RNA, endogenní vlásenková RNA) dsrna je procesována enzymovým komplexem (DICER), což vede k tvorbě sirna (short interference RNA), která se pak váže buď na enzymový komplex RITS (RNA-induced transcriptional silencing complex) nebo RISC (RNA-induced silencing komplex) RISC zprostředkovává buď degradaci mrna (v případě úplné similarity sirna a cílové mrna) nebo vede pouze k zastavení translace (v případě neúplné homologie jako je tomu např. v případě mirna RITS zprostředkovává reorganizaci genomové heterochromatinu a inhibice transkripce) DNA (tvorba
23 Mechanism of RNA interference short hairpin RNA micro RNA RNA-dependent RNA polymerase + tasirnas bp Mello and Conte, Nature (2004)
24 The Nobel Prize in Physiology or Medicine 2006 "for their discovery of RNA interference - gene silencing by double-stranded RNA" Andrew Z. Fire Craig C. Mello USA USA Stanford University School of Medicine Stanford, CA, USA University of Massachusetts Medical School Worcester, MA, USA b b. 1960
25 Od genu k proteinu a zpět posttranskripční umlčování mechanizmem sirna Regulace vývoje květů u Arabidopsis prostřednictvím mirna ABC model vývoje květních orgánů u rostlin během vývoje květních orgánů dochází k určování identity jednotlivých květních orgánů kombinací exprese tzv. homeiotických genů homeiotické geny kódují transkripčních faktorů většinou rostlinné homolgy MADS-box mezi jednotlivými homeiotickými geny dochází k tzv. katastrálním interakcím, kdy exprese jednoho genu inhibuje expresi dalšího wt např. AP1 je nejprve aktivní v celém květním meristému, po indukci exprese AG pak AG inhibuje expresi AP1 ve vnitřních dvou kruzích) výjimkou je exprese genu AP2, jehož mrna je přítomná v celém květním meristému, ale exprese AP2 je regulována na úrovni translace prostředictvím mirna (gen mirna 172) ap2 35S::miRNA 172 in situ lokalizace mirna172 v 3. a 4. kruhu
26 Od genu k proteinu a zpět Základní mechanismy regulace genové exprese regulace transkripce Sestřih RNA translační represe posttranskripční umlčování mechanizmem sirna směřování proteinů
27 Od genu k proteinu a zpět směřování (cílování) proteinů Intracelulární lokalizace proteinů Pro funkci proteinů v buňkách je zásadní jejich správná lokalizace prostřednictvím tzv. signálních sekvencí v rostlinných buňkách dochází k velice dynamickým procesům, zprostředkovávaným zejména tzv. endomembránovým transportem (viz film, GFP směřované do ER) endomembránový transport je důležitým regulačním mechanismem při přenosu signálu a regulaci buněčných procesů CV, central vacuole; DV, dense vesicle; ER, endoplasmic reticulum; GA, Golgi apparatus; LV, lytic vacuole; N, nucleus; PAC, precursoraccumulating compartment; PB, protein body; PCR, partially coated reticulum; PSV, protein-storage vacuole; PVC, pre-vacuolar compartment; SV, secretory vesicle. Surpin and Raikhel, 2004.
28 Od genu k proteinu a zpět směřování (cílování) proteinů Cyklování auxinových přenašečů u Arabidopsis auxin je rostlinný hormon se silným morfogenním účinkem proteiny podílející se na transportu proteinů jsou tzv. PIN proteiny, polárně lokalizované v bunňkách kořene u Arabidopsis PIN proteiny cyklují v endomembránovém systému rostlinné buńky v přítomnosti inhibitorů endocytózy (BFA) dochází k akumulaci těchto proteinů v intracelulárních kompartmentech..čímž je zároveň negativně ovlivněn gravitropizmus u rostlin
29 Od genu k proteinu a zpět Základní mechanismy regulace genové exprese regulace transkripce sestřih RNA translační represe posttranskripční umlčování mechanizmem sirna směřování proteinů posttranslační modifikace proteinů
30 Od genu k proteinu a zpět postranslační modifikace proteinů Význam posttranslačních modifikací proteinů regulace enzymové aktivity regulace interakcí proteinu s dalšími proteiny nebo jinými biomolekulami lokalizace proteinu v buňce změna mechanických vlastností proteinu přenos signálu
31 Od genu k proteinu a zpět postranslační modifikace proteinů Typy posttranslačních modifikací proteinů přidání glykosylfosfatidylinositolové (GPI) kotvy fosforylace sulfonace glykosylace N-myristolyace N-metylace hydroxylace karboxylace prenylace.
32 Od genu k proteinu a zpět postranslační modifikace proteinů Přenos signálu a regulace genové exprese prostřednictvím fosforylace přenos cytokininového signálu u rostlin P in p u t s ig n a l P N H is in p u t d o m a in t r a n s m itt e r m o d u le h y b r id s e n s o r k in a s e A sp C o u tp u t s ig n a l P P r e c e iv e r m o d u le N H is C C N r e s p o n s e r e g u la to r (s ) o u tp u t d o m a in
33 Signal Transduction via TCS Recent Model of the CK Signaling via TCS Pathway CYTOKININ PM AHK sensor histidine kinases AHK2 AHK3 CRE1/AHK4/WOL HPt Proteins D Agostino et al., Plant Physiol, 2000 AHP1-6 Response Regulators NUCLEUS ARR1-24 CK primary response genes - Type-A ARRs expression REGULATION OF TRANSCRIPTION INTERACTION WITH EFFECTOR PROTEINS
34 Od genu k proteinu a zpět postranslační modifikace proteinů Přenos signálu a regulace genové exprese prostřednictvím fosforylace přenos signálu prostřednictvím TGFβ (Transforming Growth Factor) u živočichů
35 Základy proteomiky Proč právě proteomika? Postgenomová éra a co s informacemi, které neumíme číst Genotyp vs. fenotyp, aneb co všechno se děje při vyjadřování Od genu k proteinu a zpět Přístupy současné proteomiky exprese, purifikace a analýza rekombinantních proteinů
36 Přístupy současné proteomiky exprese, purifikace a analýza rekombinantních proteinů Technologie rekombinatních proteinů umožňuje získat velké množství analyzovaného proteinu ve velké čistotě využívá technologie rekombinantní DNA principem je vložení přívěsku prostřednictvím přípravy rekombinantní DNA, který usnadní purifikaci (afinitní purifikace) možnost využití přívěsku i pro lokalizaci a další analýzu proteinu v in vivo systémech
37 Základy proteomiky Proč právě proteomika? Postgenomová éra a co s informacemi, které neumíme číst Genotyp vs. fenotyp, aneb co všechno se děje při vyjadřování Od genu k proteinu a zpět Přístupy současné proteomiky exprese, purifikace a analýza rekombinantních proteinů analýza vztahu mezi strukturou a funkcí proteinů
38 Přístupy současné proteomiky analýza vztahu mezi strukturou a funkcí proteinů Analýza vztahu mezi funkcí a strukturou proteinu využívá technologie produkce rekombinantních proteinů a místně řízené mutageneze umožňuje analyzovat strukturu rekombinantního proteinu pomocí rentgenové krystalografie nebo NMR kopmparativní analýzou lze pak analyzovat strukturu a funkci jak u strandardního typu tak i mutantního proteinu
39 Základy proteomiky Proč právě proteomika? Postgenomová éra a co s informacemi, které neumíme číst Genotyp vs. fenotyp, aneb co všechno se děje při vyjadřování Od genu k proteinu a zpět Přístupy současné proteomiky exprese, purifikace a analýza rekombinantních proteinů analýza vztahu mezi strukturou a funkcí proteinů diferenční proteomika
40 Tissue Specificity of CK Response Cytokinins are supposed to play opposite role in the control of shoot and root development WT 35S:AtCKX3 WT 35S:AtCKX3 WT Werner et al., Plant Cell (2003) Signaling and Hormonal Regulation of Plant Development 35S:AtCKX3
41 Shoot- and Root-Specificity of Proteome Response to CK Is there a shoot- and root-specificity in a proteome response to CK? 30 min. (early response) 6-days-old seedlings CK- 1 -BA Incubation in MS+5 µm BA 120 min. (delayed response) +BA CK+ 0 SHOOT sample CK- 1 CK+ -BA +BA 0,5 ROOT sample 0 tissue separation Signaling and Hormonal Regulation of Plant Development
42 Shoot- and Root-Specificity of Proteome Response to CK SHOOT: 43/18 (early/delayed) ROOT: 31/21 Žďárská et al., manuscript in preparation Signaling and Hormonal Regulation of Plant Development
43 Shoot- and Root-Specificity of Proteome Response to CK Transcriptional vs post-transcriptional type of regulations Žďárská et al., manuscript in preparation Signaling and Hormonal Regulation of Plant Development
44 Shoot- and Root-Specificity of Proteome Response to CK Carbohydrate Metabolism SHOOT Žďárská et al., manuscript in preparation Signaling and Hormonal Regulation of Plant Development
45 Shoot- and Root-Specificity of Proteome Response to CK Carbohydrate Metabolism SHOOT Žďárská et al., manuscript in preparation Signaling and Hormonal Regulation of Plant Development
46 Shoot and Root Specificity of CK Response Protein Synthesis and Destination ROOT Signaling and Hormonal Regulation of Plant Development Žďárská et al., manuscript in preparation
47 Shoot and Root Specificity of CK Response Protein Synthesis and Destination ROOT Signaling and Hormonal Regulation of Plant Development Žďárská et al., manuscript in preparation
48 Shoot and Root Specificity of CK Response Hormonal Metabolism Signaling and Hormonal Regulation of Plant Development Žďárská et al., manuscript in preparation
49 Shoot and Root Specificity of CK Response Hormonal Metabolism SHOOT: MAV pathway ROOT: C2H4 Žďárská et al., manuscript in preparation Signaling and Hormonal Regulation of Plant Development
50 Shoot and Root Specificity of CK Response Endogenous Hormone Levels Žďárská et al., manuscript in preparation Signaling and Hormonal Regulation of Plant Development
51 Základy proteomiky Proč právě proteomika? Postgenomová éra a co s informacemi, které neumíme číst Genotyp vs. fenotyp, aneb co všechno se děje při vyjadřování Od genu k proteinu a zpět Přístupy současné proteomiky exprese, purifikace a analýza rekombinantních proteinů analýza vztahu mezi strukturou a funkcí proteinů diferenční proteomika analýza posttranslačních modifikací
52 Přístupy současné proteomiky analýza posttrranslačních modifikací Analýza posttranslačních modifikací pomocí specifických metod lze identifikovat kotranslační a posttransalční modifikace, buď v gelu nebo po blotování na membránu (barvení spec. barvičkami) identifikace modifikací pomocí MS technik (MALDI TOF, ESI-MS, ) fosforylace přenos signálu acetylace regulace chromatinových strruktur a transkripční aktivity prostřednictvím regulace vazby histonů glykosylace velice heterogenní (aktivátor plasminogenu 3 místa pro glykosylaci na N-konci, až Pro-Q Diamond SYPRO Ruby izoforem) možných mikroheterogenita díky velkému množství různých cukerných zbytků, které se mohou vázat na jednu ak. makroheterogenita díky rozdílům v přítomnosti různých cukrů na různých ak. na různém počtu kopií daného proteinu
53 Základy proteomiky shrnutí Proč právě proteomika? Postgenomová éra a co s informacemi, které neumíme číst Genotyp vs. fenotyp, aneb co všechno se děje při vyjadřování Od genu k proteinu a zpět Přístupy současné proteomiky exprese, purifikace a analýza rekombinantních proteinů analýza vztahu mezi strukturou a funkcí proteinů diferenční proteomika analýza posttranslačních modifikací
Základy proteomiky 2011
Základy proteomiky 2011 Proč právě proteomika? Jan Hejátko Základy proteomiky 2011 Schéma přednášek ze Základů proteomiky 2011 Proč právě proteomika? (Jan Hejátko) Exprese a purifikace rekombinantních
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
Na rozdíl od genomiky se funkční genomika zaměřuje na dynamické procesy, jako je transkripce, translace, interakce protein - protein.
FUNKČNÍ GENOMIKA Co to je: Oblast molekulární biologie která se snaží o zpřístupnění a využití ohromného množství dat z genomových projektů. Snaží se popsat geny, a proteiny, jejich funkce a interakce.
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
RNA interference (RNAi)
Liběchov, 29. 11. 2013 RNA interference (RNAi) post-transkripční umlčení genové exprese přirozený mechanismus regulace genové exprese a genomové stability obranný antivirový mechanismus konzervovaný mechanismus
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
RNA molekuly. Analýza genové exprese pomocí cytometrických (a jiných) metod. Analýza exprese a funkce microrna. Úrovně regulace genové exprese
Analýza genové exprese pomocí cytometrických (a jiných) metod Studium exprese a funkce microrna Eva Slabáková, Ph.D. Bi9393 Analytická cytometrie 12.11.2013 Oddělení cytokinetiky Biofyzikální ústav AVČR,
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk Aleš Hampl Tkáně Orgány Živé buňky, které plní různé funkce (podpora struktury, přijímání živin, lokomoce,
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 První kroky k objevu léčiva Nobelova cena za chemii 2013 Martin Karplus Michael Levitt
Detlef Weigel ( )
VORF-8 2015 Detlef Weigel (15. 12. 1961) 1 Max Planck Institute for Developmental Biology Department of Molecular Biology Spemannstrasse 37-39 D-72076 Tübingen Germany http://www.weigelworld.org/ Max Planck
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Základy genomiky II, Identifikace genů
Základy genomiky II. Identifikace genů Jan Hejátko Masarykova univerzita, Laboratoř funkční genomiky a proteomiky Laboratoř molekulární fyziologie rostlin Základy genomiky II. Zdrojová literatura ke kapitole
Kontrola genové exprese
Základy biochemie KBC/BC Kontrola genové exprese Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
EPIGENETIKA reverzibilních změn funkce genů, Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická
EPIGENETIKA Epigenetika se zabývá studiem reverzibilních změn funkce genů, aniž by při tom došlo ke změnám v sekvenci jaderné DNA. Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Molekulární diagnostika
Molekulární diagnostika Odry 11. 11. 2010 Michal Pohludka, Ph.D. Buňka základní jednotka živé hmoty Všechny v současnosti známé buňky se vyvinuly ze společného předka, tedy buňky, která žila asi před 3,5-3,8
Základy genomiky. I. Úvod do bioinformatiky. Jan Hejátko
Základy genomiky I. Úvod do bioinformatiky Jan Hejátko Masarykova univerzita, Oddělení funkční genomiky a proteomiky Laboratoř molekulární fyziologie rostlin Základy genomiky I. Zdrojová literatura ke
Výuka genetiky na Přírodovědecké fakultě UK v Praze
Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Translace, techniky práce s DNA Translace překlad z jazyka nukleotidů do jazyka aminokyselin dá se rozdělit na 5 kroků aktivace aminokyslin
7) Dormance a klíčení semen
2015 7) Dormance a klíčení semen 1 a) Dozrávání embrya a dormance b) Klíčení semen 2 a) Dozrávání embrya a dormance Geny kontrolující pozdní fázi vývoje embrya - dozrávání ABI3 (abscisic acid insensitive
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Aplikovaná bioinformatika
Aplikovaná bioinformatika Číslo aktivity: 2.V Název klíčové aktivity: Na realizaci se podílí: Implementace nových předmětů do daného studijního programu doc. RNDr. Michaela Wimmerová, Ph.D., Mgr. Josef
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2017-2018 1 Název Fenotypová analýza vybraných dvojitých mutantů MAPK v podmínkách abiotického stresu. Školitel Mgr.
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2015-2016 1 Název Funkční analýza jaderných proteinů fosforylovaných pomocí mitogenaktivovaných proteinkináz. Školitel
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Virologie a diagnostika Výzkumný ústav veterinárního lékařství, v.v.i., Brno Alternativní
Schéma průběhu transkripce
Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK
ové technologie v analýze D A, R A a proteinů Stanislav Kmoch Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK Motto : "The optimal health results from ensuring that the right
Petr Müller Masarykův onkologický ústav. Genová terapie
Genová terapie Petr Müller Masarykův onkologický ústav Genová terapie =terapie využívající vpravení exogenní DNA do buněk či tkání organismu za účelem opravy fenotypu (deficience či mutace genu, vrozené
Výzkumné centrum genomiky a proteomiky. Ústav experimentální medicíny AV ČR, v.v.i.
Výzkumné centrum genomiky a proteomiky Ústav experimentální medicíny AV ČR, v.v.i. Systém pro sekvenování Systém pro čipovou analýzu Systém pro proteinovou analýzu Automatický sběrač buněk Systém pro sekvenování
Modifikace dědičné informace rostlin
Modifikace dědičné informace rostlin Lukáš Fischer, KFR PřF UK Jak zlepšit vlastnosti rostlin Principy a klasické způsoby přípravy geneticky modifikovaných rostlinných buněk a celých rostlin Genový přenos
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna
Obsah přednášky 1) Klonování složených eukaryotických genů 2) Úprava rekombinantních genů 3) Produkce rekombinantních proteinů v expresních systémech 4) Promotory 5) Vektory 6) Reportérové geny Zdrojem
O původu života na Zemi Václav Pačes
O původu života na Zemi Václav Pačes Ústav molekulární genetiky Akademie věd ČR centrální dogma replikace transkripce DNA RNA protein reverzní transkripce translace informace funkce Exon 1 Intron (413
BUŇEČNÝ CYKLUS A JEHO KONTROLA
BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené
Transgeneze u ptáků: očekávání vs. realita
Transgeneze u ptáků: očekávání vs. realita Proč ptáci? Kuře - základní model v anatomii, embryologii, vývojové biologii množství získaného proteinu nižší riziko cross reaktivity s tím spojená možnost produkce
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU
PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU Podstata prezentace antigenu (MHC restrikce) byla objevena v roce 1974 V současnosti je zřejmé, že to je jeden z klíčových
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC
v oboru KLINICKÁ GENETIKA PRO ODBORNÉ PRACOVNÍKY V LABORATORNÍCH METODÁCH
RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÁ GENETIKA PRO ODBORNÉ PRACOVNÍKY V LABORATORNÍCH METODÁCH 1. Cíl specializačního vzdělávání Cílem specializačního vzdělávání
Struktura chromatinu. Co je to chromatin?
Struktura chromatinu Buněčné jádro a genová exprese Lenka Rossmeislová struktura-význam-modifikace Co je to chromatin? hmota, ze které jsou vytvořeny chromozomy DNA asociovaná s proteiny, které napomáhají
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
DMPK (ZNF9) V DIFERENCOVANÝCH. Z, Kroupová I, Falk M* M
FISH ANALÝZA m-rna DMPK (ZNF9) V DIFERENCOVANÝCH TKÁNÍCH PACIENT IENTŮ S MYOTONICKOU DYSTROFI FIÍ Lukáš Z, Kroupová I, Falk M* M Ústav patologie FN Brno *Biofyzikáln lní ústav AVČR R Brno Definice MD Myotonická
Replikace, transkripce a translace
Replikace, transkripce a translace Pravděpodobnost zařazení chybné báze cca 1:10 4, reálně 1:10 10 ; Proč? Výběr komplementární base je zásadní pro správnost mezigeneračního předávání genetické informace
MECHANIZMY EPIGENETICKÝCH PROCESŮ
MECHANIZMY EPIGENETICKÝCH PROCESŮ METYLACE DNA Metylace DNA Adice metylové skupiny (CH 3 ) na 5. uhlík cytosinu Obvykle probíhá pouze na cytosinech 5 vůči guanosinu (CpG) Cytosin NH 2 5-Metylcytosin NH
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Biologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
Rostlinné hormony brasinosteroidy a jejich úloha ve vývoji a růstu rostlin
SFZR 1 2016 Rostlinné hormony brasinosteroidy a jejich úloha ve vývoji a růstu rostlin Hayat S, Ahmad A (2011) Brassinosteroids: a class of plant hormone. Springer, Berlin 2 Vývoj organismu regulují signály
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
Auxin - nejdéle a nejlépe známý fytohormon
Auxin - nejdéle a nejlépe známý fytohormon Auxin je nejdéle známým fytohormonem s mnoha popsanými fyziologickými účinky Darwin 1880, Went 1928 pokusy s koleoptilemi trav a obilovin prokázali existenci
TRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
1 Biochemické animace na internetu
1 Biochemické animace na internetu V dnešní době patří internet mezi nejužívanější zdroje informací. Velmi často lze pomocí internetu legálně stáhnout řadu již vytvořených výukových materiálů sloužících
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
Nukleové kyseliny Replikace Transkripce, RNA processing Translace Figure 6-2 Molecular Biology of the Cell ( Garland Science 2008) replikace Figure 4-8 Molecular Biology of the Cell ( Garland Science
4) Interakce auxinů a světla ve vývoji a růstu rostlin
SFR 1 2018 4) Interakce auxinů a světla ve vývoji a růstu rostlin Martin Fellner Laboratoř růstových regulátorů PřF UP v Olomouci a ÚEB AVČR 2 Vývoj organismu regulují signály (faktory) Vnitřní Vnější
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Využití živých organismů pro uskutečňování definovaných chemických procesů pro průmyslové nebo komerční aplikace Organismus je geneticky upraven metodami genetického
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Molekulární diagnostika pletencové svalové dystrofie typu 2A
Molekulární diagnostika pletencové svalové dystrofie typu 2A Lenka Fajkusová Centrum molekulární biologie a genové terapie Fakultní nemocnice Brno Pletencové svalové dystrofie (Limb Girdle Muscular Dystrophy
6) Interakce auxinů a světla ve vývoji a růstu rostlin
SFZR 1 2015 6) Interakce auxinů a světla ve vývoji a růstu rostlin Martin Fellner Laboratoř růstových regulátorů PřF UP v Olomouci a ÚEB AVČR SFZR 2 Vývoj organismu regulují signály (faktory) Vnitřní Vnější
Růst a vývoj rostlin - praktikum MB130C78
Růst a vývoj rostlin - praktikum MB130C78 Blok 3 Role aktinového cytoskeletu v morfogenezi rostlinných buněk - analýza fenotypu Úlohy: 1. Kvantifikace počtu zkroucených a správně tvarovaných trichomů u
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Dědičnost pohlaví Genetické principy základních způsobů rozmnožování
Dědičnost pohlaví Vznik pohlaví (pohlavnost), tj. komplexu znaků, vlastností a funkcí, které vymezují exteriérové i funkční diference mezi příslušníky téhož druhu, je výsledkem velmi komplikované série
Modifikace dědičné informace rostlin II
Modifikace dědičné informace rostlin II Lukáš Fischer, KFR PřF UK Obsah přednášky Jak zlepšit vlastnosti rostlin Principy přípravy GMR Příprava genových konstruktů Genový přenos do jaderného a plastidového
Modifikace dědičné informace rostlin I. modifikace
Modifikace dědičné informace rostlin I Klasická genetická modifikace Lukáš Fischer, KEBR Legislativa: Genetická modifikace (GM) = vnesení genetické informace (úseku DNA) či změna > 20 nt způsobem, který
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Termín biotechnologie byl poprvé použit v roce 1917 Procesy, při kterých se na tvorbě výsledného produktu podílejí živé organismy Širší definice: biotechnologie
ISOLATION OF PHOSPHOPROTEOM AND ITS APPLICATION IN STUDY OF THE EFFECT OF CYTOKININ ON PLANTS
ISOLATION OF PHOSPHOPROTEOM AND ITS APPLICATION IN STUDY OF THE EFFECT OF CYTOKININ ON PLANTS IZOLACE FOSFOPROTEOMU A JEHO VYUŽITÍ PŘI STUDIU ÚČINKU CYTOKININŮ NA ROSTLINU Černý M., Brzobohatý B. Department
Existence trade-offs záleží na proximátních mechanismech ovlivňujících znaky
Evoluce fenotypu V Existence trade-offs záleží na proximátních mechanismech ovlivňujících znaky Parameters of body size and developmental time: the growth rate the initial weight the ICG Celkový vztah
Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková
Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00
(molekulární) biologie buňky
(molekulární) biologie buňky Buňka základní principy Molecules of life Centrální dogma membrány Metody GI a MB Interakce Struktura a funkce buňky - principy proteiny, nukleové kyseliny struktura, funkce
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Růst a vývoj rostlin - praktikum MB130C78
Růst a vývoj rostlin - praktikum MB130C78 Blok I Hormonální regulace vývoje rostlin Cvičení MB130C78: Růst a vývoj rostlin. Katedra experimentální biologie rostlin, PřF UK, Jan Petrášek Úlohy: 1. Pozitivní
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.
Výskyt MHC molekul. RNDr. Ivana Fellnerová, Ph.D. ajor istocompatibility omplex. Funkce MHC glykoproteinů
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc = ajor istocompatibility omplex Skupina genů na 6. chromozomu (u člověka) Kódují membránové glykoproteiny, tzv. MHC molekuly, MHC molekuly
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním
Regulace metabolických drah na úrovni buňky
Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace
Uspořádání genomu v jádře buňky a jeho možná funkce. Stanislav Kozubek Biofyzikální ústav AV ČR, v.v.i.
Uspořádání genomu v jádře buňky a jeho možná funkce Stanislav Kozubek Biofyzikální ústav AV ČR, v.v.i. DNA, nukleosomy, chromatin, chromosom a genom Chromosom Genom v jádře Buňka Chromatinové vlákno Nukleosomy
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc Studijní materiály na: http://www.zoologie.upol.cz/zam.htm Prezentace navazuje na základní znalosti Biochemie a cytologie. Bezprostředně navazuje
Genetické mapování. v přírodních populacích i v laboratoři
Genetické mapování v přírodních populacích i v laboratoři Funkční genetika Cílem je propojit konkrétní mutace/geny s fenotypem Vzniklý v laboratoři pomocí mutageneze či vyskytující se v přírodě. Forward