Oxid uhličitý. Základní charakteristika. Použití. suchý led, kyselina uhličitá
|
|
- Monika Vacková
- před 9 lety
- Počet zobrazení:
Transkript
1 Oxid uhličitý další názvy číslo CAS chemický vzorec CO 2 ohlašovací práh pro emise a přenosy suchý led, kyselina uhličitá do ovzduší (kg/rok) do vody (kg/rok) - do půdy (kg/rok) - ohlašovací práh mimo provozovnu (kg/rok) - rizikové složky životního prostředí věty R - věty S S9 ovzduší Uchovávejte obal na dobře větraném místě. Základní charakteristika Oxid uhličitý je bezbarvý plyn bez zápachu. Při nadýchání ve větším množství působí štiplavě na sliznicích a vytváří kyselou chuť. To je způsobeno jeho rozpouštěním na vlhkých sliznicích a ve slinách za vzniku slabého roztoku kyseliny uhličité. Při ochlazení na -78 C oxid uhličitý přechází do tuhého skupenství a vzniká bílá tuhá látka, tzv. suchý led. Kapalný může existovat jen za tlaku vyššího než přibližně 500 kpa (~5-ti násobek atmosférického tlaku). Jedná se o látku nepříliš reaktivní a nehořlavou. Je konečným stupněm oxidace uhlíku (organických látek) a výsledkem hoření za dostatečného přístupu kyslíku. Hustotou 1,98 kg.m -3 je plynný oxid uhličitý zhruba 1,5 x těžší než vzduch. Použití Kapalný nebo tuhý oxid uhličitý je využíván v potravinářském průmyslu jako chladivo zejména při přepravě mražených výrobků. Dále je využíván pro výrobu šumivých nápojů a sodové vody. Oxid uhličitý je některými výrobci přidáván do piva a šumivých vín, přestože je zde obsažen díky přirozeným fermentačním pochodům. Další oblastí použití je kypření těst, kterého se dosahuje buď využitím kvasnic vytvářejících oxid uhličitý biologicky, nebo kypřícími přísadami, které oxid uhličitý uvolňují buď zahřátím, nebo působením kyseliny. Rovněž je využíván jako ochranná atmosféra. Oxid uhličitý je rovněž používán jako levný a nehořlavý stlačený plyn pro nafukování záchranných vest či člunů. Malé bombičky slouží jako zdroj hnacího plynu pro vzduchové pušky či zbraně na paintball i k domácí výrobě sifonu. Nehořlavost oxidu uhličitého je využívána v podobě hasicích přístrojů plněných kapalným oxidem uhličitým. Z důvodu své velmi nízké ceny se využívá i jako ochranná atmosféra pro svařování kovů, přestože sváry vytvořené v ochranné atmosféře vzácných plynů helia či argonu jsou prokazatelně kvalitnější. Kapalný oxid uhličitý je dobré rozpouštědlo pro řadu organických látek a je využíván například k extrakci kofeinu z kávy. Začal rovněž přitahovat pozornost farmaceutického i chemického průmyslu jako méně toxická alternativa pro tradičně používaná rozpouštědla na bázi chlorovaných organických látek.
2 Oxid uhličitý je někdy přidáván na omezenou dobu (několik hodin) do atmosféry skleníků s cílem podpořit růst rostlin a především vyhubit škůdce jako moly, svilušky a další, jimž zvýšená koncentrace oxidu uhličitého v ovzduší škodí. Suchý led (tuhý oxid uhličitý) je využíván v divadlech a při hudebních představeních ke tvorbě zvláštních efektů. Po vložení do vody suchý led sublimuje a vznikající směs oxidu uhličitého a kondenzované vodní páry vytváří efekt mlhy těžší než vzduch. Další uplatnění lze nalézt v medicíně (stabilizace rovnováhy kyslík/oxid uhličitý v krvi) a v průmyslových laserech. Může být rovněž využit při těžbě ropy, kdy je injektován buď přímo do vrtu nebo do jeho blízkého okolí, kde jednak působí zvýšení tlaku a jednak se v surové ropě rozpouští a snižuje tak její viskozitu. Zdroje emisí Přirozeným zdrojem emisí oxidu uhličitého je dýchání aerobních organismů, zatímco procesem vedoucím k jeho přirozenému úbytku je fotosyntéza zelených rostlin a absorpce oceány. Tyto přírodní pochody působí protichůdně a výsledkem by byl v podstatě vyvážený stav. Mezi další přírodní pochody emitující oxid uhličitý patří požáry a vulkanická činnost. Do koncentrace oxidu uhličitého v atmosféře zásadním způsobem promlouvá člověk, konkrétně spalování fosilních uhlíkatých paliv, které představuje velmi významný zdroj emisí. Ostatní antropogenní emise ve srovnání se spalováním zaslouží označení jako málo důležité. Oxid uhličitý je emitován všude tam, kde dochází ke spalovacím procesům uhlíkatých fosilních paliv zemního plynu, ropných produktů, uhlí, koksu. Zdrojem emisí je samozřejmě i spalování paliv biologického původu biomasy, dřeva, bionafty a bioplynu. Zdrojem emisí oxidu uhličitého jsou průmyslové provozy, kde se buď využívá spalování či termických procesů, nebo je surovinou například vápenec a dochází k emisím oxidu uhličitého: spalovací procesy (uhlíkatá paliva); koksárenství; rafinerie olejů a plynu; hutnictví a kovoprůmysl; cementárny; sklárny, výroba keramiky; tavení nerostných materiálů; zpracování celulózy a dřeva; předúprava vláken a textilií, vydělávání kůží a kožešin; zařízení na zneškodňování uhynulých zvířat; Protože oxid uhličitý jako takový nachází použití v celé řadě odvětví a je využíván k nejrůznějším účelům, existuje rovněž široká možnost jeho emisí do atmosféry. Shrneme-li oblasti, kde se oxid uhličitý přímo využívá a může tudíž unikat do životního prostředí, vychází následující výčet: potravinářský průmysl; využití v podobě stlačeného plynu; hašení hasicími přístroji s náplní kapalného oxidu uhličitého;
3 svařování v ochranné atmosféře oxidu uhličitého; farmaceutický a chemický průmysl (alternativní rozpouštědlo); zemědělská činnost (úprava složení atmosfér skleníků); Dopady na životní prostředí Oxid uhličitý v atmosféře absorbuje infračervené záření zemského povrchu, které by jinak uniklo do vesmírného prostoru, a přispívá tak ke vzniku tzv. skleníkového efektu a následně ke globálnímu oteplování planety. Někdy je oxid uhličitý označován jako jediná příčina vzniku skleníkového efektu, to však není přesné, protože k jeho vzniku přispívají i jiné látky. Oxid uhličitý však ve vzniku skleníkového efektu hraje hlavní roli. Koncentrace oxidu uhličitého v atmosféře se neustále zvyšuje. Dopady na zdraví člověka, rizika Koncentrace oxidu uhličitého v atmosféře je velice nízká a nepředstavuje proto pro zdraví přímé riziko. Ve vyšších koncentracích (například v nedostatečně větraných prostorách) však toxické působení vykazovat může. Krátkodobá expozice oxidu uhličitému může ihned nebo jen s krátkou časovou prodlevou způsobit bolest hlavy, závratě, dýchací potíže, třes, zmatenost a zvonění v uších. Vyšší expozice pak může způsobit křeče, kóma a smrt. Některé vážnější případy otrav mohou zanechat následky na mozku, způsobit změny osobnosti a poškození zraku. V České republice platí pro koncentrace oxidu uhličitého následující limity v ovzduší pracovišť: PEL mg.m -3, NPK - P mg.m -3. Rizikem při nakládání se suchým ledem nebo kapalným oxidem uhličitým jsou v případě přímého kontaktu omrzliny. Celkové zhodnocení nebezpečnosti z hlediska životního prostředí Oxid uhličitý je hlavním plynem připívajícím k intenzifikaci skleníkového efektu a následně k oteplování planety. Nelze ho sice považovat za přímo nebezpečnou jedovatou látku (vyjma přímého nadýchání), avšak jeho dopady na globální klima jsou skrze skleníkový efekt velmi závažné. Důvody zařazení do registru nařízení o E-PRTR rozhodnutí o EPER UNFCCC Kyóto Způsoby zjišťování a měření Z daleka největším zdrojem emisí jsou spalovací procesy uhlíkatých paliv. Ohlašovací práh kg, tedy tun ročně, je tak velké množství, že pravděpodobně nebude mnoho jiných procesů než spalování, u kterých by mohl být práh překročen. K odhadu produkce oxidu uhličitého spalováním lze použít jednoduchý bilanční výpočet ze známého spotřebovaného množství paliva. Jako krajní možnost můžeme zvolit palivo zemní plyn (methan, nejmenší poměr C:H) a koks (prakticky čistý uhlík). Z bilančního výpočtu plyne, že úplným spálením 1 kg methanu (přibližně 2 m 3 za tlaku
4 101,325 kpa a teploty 20 C), resp. 1 kg koksu vznikne 2,74 kg, resp. 3,66 kg oxidu uhličitého. Zejména případ koksu je velice důležitý, protože se jedná o maximální množství oxidu uhličitého, které může z jakéhokoli uhlíkatého paliva vzniknout. Jiné složení paliva (např. uhlovodíky), obsah popelovin a dalších příměsí tento poměr jen snižují. Pro bezpečně nadhodnocený odhad produkce oxidu uhličitého proto postačuje vynásobit hmotnost spotřebovaného paliva 3,66. Odhad lze zpřesnit výpočtem ze složení konkrétního paliva, kdy je cílem vypočítat, kolik obsahuje 1 kg paliva uhlíku. Poté stačí opět tuto hmotnost vynásobit 3,66 a získáváme hmotnost oxidu uhličitého. Tam, kde je surovinou vápenec, může jako vodítko posloužit příklad: z 1 kg čistého vápence (CaCO 3 ) vznikne například pražením či jinou reakcí přibližně 0,44 kg oxidu uhličitého (v případě teoretického 100% výtěžku). Obsah oxidu uhličitého ve spalinách či emitovaných vzdušinách lze přímo měřit s využitím mobilních přístrojů založených na infračervené spektrometrii, případně na refraktometrii. Další možností jsou termické analyzátory a metody spektrofotometrie a nefelometrie. Měření mohou zajistit komerční laboratoře. Produkce oxidu uhličitého je potom součinem jeho koncentrace a objemu vypuštěného plynu. Další informace, zajímavosti Navzdory tomu, že jeho koncentrace v atmosféře je velice nízká, je oxid uhličitý velice důležitou složkou, protože přispívá k intenzifikaci skleníkového efektu a oteplování planety. Na tomto místě je vhodné zdůraznit, že přítomnost oxidu uhličitého v atmosféře je pro život nezbytná jednak představuje zdroj uhlíku pro zelené rostliny (fotosyntéza) a jednak udržuje díky skleníkovému efektu stabilní a příznivé atmosférické podmínky pro život. V počátcích vývoje Země byl oxid uhličitý emitovaný vulkanicky nezbytnou podmínkou pro vývoj příznivého klimatu na Zemi, což vůbec umožnilo vznik a vývoj života. Současný problém spočívá v tom, že spalování fosilních paliv člověkem emituje do atmosféry ohromné množství oxidu uhličitého, množství větší, než jsou schopny přirozené pochody zpětně odstranit. Proto koncentrace oxidu uhličitého v atmosféře od průmyslové revoluce neustále stoupá. V roce 2004 obsahovala atmosféra planety Země 0,038 % obj. oxidu uhličitého, což představuje hmotnost 2, tun. Pro dokreslení objemu dopadů lidské činnosti na životní prostředí může sloužit tento příklad: vulkanická aktivita v současné době emituje do atmosféry přibližně 200 mil. tun oxidu uhličitého ročně, což je však jen asi 1 % ve srovnání s emisemi způsobenými lidskou činností (hlavně spalováním fosilních paliv uložených pod povrchem obsahujících obrovské množství uhlíku, který se však před jeho spálením neúčastnil globálního uhlíkového cyklu). Za posledních 50 let se průměrná koncentrace oxidu uhličitého v atmosféře zvýšila z hodnoty 0,0316 % obj. na uvedenou hodnotu 0,0380 % obj. v roce Nárůst naměřené koncentrace je znázorněn na Obr. 1. Prudký nárůst emisí oxidu uhličitého s rozdělením podle jeho původu během posledních 200 let je evidentní z Obr. 2. Do vývoje obsahu oxidu uhličitého v atmosféře nepříznivě promlouvá i mýcení deštných pralesů, které mají obrovskou schopnost absorbovat oxid uhličitý z atmosféry fotosyntézou. Právě fotosyntéza zelených rostlin, při které se působením slunečního záření tvoří z jednoduchého oxidu uhličitého a vody složité organické látky, je hlavním přirozeným procesem spotřebovávajícím oxid uhličitý z atmosféry. Dalším takovým procesem je jeho absorpce v oceánech, kde je poté zabudováván do vápenatých schránek živočichů (například korálů). Existují návrhy projektů, které berou uvedené skutečnosti vážně v úvahu a navrhují například systém, ve kterém cílené probublávání speciálních nádrží spalinami (tzn. oxidem uhličitým) podporuje intenzivní růst řas (tím je odstraňován oxid uhličitý), ze kterých by byla
5 následně vyráběna bionafta. Spalování paliv biologického původu, zejména biomasy a bionafty, by potom z hlediska emisí oxidu uhličitého bylo vyváženo tím, že k jejich vzniku by byl nejprve oxid uhličitý z atmosféry spotřebován a fotosyntézou přeměněn na spalovanou biomasu, což v podstatě kopíruje uzavřený přírodní cyklus. Obr. 1. Vývoj koncentrace oxidu uhličitého v ovzduší. Obr. 2. Emise oxidu uhličitého podle původu Informační zdroje Encyklopedie Wikipedia, Hazardous Substance Fact Sheet, New Jersey Department of Health and Senior Sevices, Milan Popl, Jan Fähnrich: Analytická chemie životního prostředí, VŠCHT Praha, 1999 Ivan Víden: Chemie ovzduší, VŠCHT Praha, 2005 VanLoon G.W., Duffy S.J.: Environmental Chemistry a Global Perspective, Oxford University Press, 2005
Oxid uhličitý (CO 2 )
Oxid uhličitý (CO 2 ) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Methan (CH 4 ) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví
Perfluorouhlovodíky (PFC)
Perfluorouhlovodíky (PFC) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Fluorid sírový (SF 6 ) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka,
Oxidy síry. Základní charakteristika. oxid sírový, oxid siřičitý (anhydrid kyseliny siřičité), číslo CAS 7446-09-5 (oxid siřičitý - SO 2 ) další názvy
Oxidy síry další názvy oxid sírový, oxid siřičitý (anhydrid kyseliny siřičité), číslo CAS 7446-09-5 (oxid siřičitý - SO 2 ) chemický vzorec SO x,,so 2, SO 3 ohlašovací práh pro emise a přenosy 7446-11-9
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - ovzduší V této kapitole se dozvíte: Co je to ovzduší. Jaké plyny jsou v atmosféře. Jaké složky znečišťují
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E PRTR
Benzo(g,h,i)pe rylen Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E PRTR H a P věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Oxid uhelnatý (CO) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Fluoranthen Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka,
Oxidy dusíku (NOx/NO2)
Oxidy dusíku (NOx/NO2) další názvy číslo CAS chemický vzorec ohlašovací práh pro emise a přenosy noxy, oxid dusnatý, oxid dusičitý 10102-44-0 (NO 2, oxid dusičitý) NO x do ovzduší (kg/rok) 100 000 do vody
Fluorované uhlovodíky (HFC) Základní informace. 4 Fluorované uhlovodíky (HFC)
Fluorované uhlovodíky (HFC) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady
Bromované difenylethery
Bromované difenylethery další názvy číslo CAS* chemický vzorec* ohlašovací práh pro emise a přenosy do ovzduší (kg/rok) - do vody (kg/rok) 1 do půdy (kg/rok) 1 ohlašovací práh mimo provozovnu (kg/rok)
Hydrochlorofluorouhlovodíky (HCFC) Základní informace. 14 Hydrochlorofluorouhlovodíky (HCFC)
Hydrochlorofluorouhlovodíky (HCFC) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Oxid dusný (N 2 O) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví
Tetrachlormethan. Základní charakteristika
Tetrachlormethan další názvy perchlomethan, chlorid uhličitý, benziform, benzinoform, necatorina, freon 10, halon 10, R10, CCL, TCM číslo CAS 56-23-5 chemický vzorec CCl 4 prahová hodnota pro úniky do
FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB
FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
Oxidy síry (SO x /SO 2 )
Oxidy síry (SO x /SO 2 ) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Dichlormethan (DCM) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Celkový dusík Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka, rizika
Paliva. nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování
Paliva Paliva nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování Dělení paliv podle skupenství pevná uhlí, dřevo kapalná benzín,
Chlorofluorouhlovodíky (CFC) Základní informace. 15 Chlorofluorouhlovodíky (CFC)
Chlorofluorouhlovodíky (CFC) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
1,1,1-trichlorethan Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na
Halony. Základní informace. 16 Halony
Halony Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka,
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
1,1,2,2-tetrachlorethan Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Endrin Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka,
STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková
VÝZNAMNÉ OXIDY. Základní škola Kladno, Vašatova 1438 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiřina Borovičková
VY_32_INOVACE_CHE_278 VÝZNAMNÉ OXIDY Autor: Jiřina Borovičková Ing. Použití: 8. ročník Datum vypracování: 15.3.2013 Datum pilotáže: 21. 3. 2013 Metodika: : seznámit žáky s důležitými oxidy, vysvětlit jejich
Fluoridy (jako celkové F)
Fluoridy (jako celkové F) další názvy číslo CAS* chemický vzorec* prahová hodnota pro úniky fluoridový iont, fluorid sodný, fluorid draselný, fluorid vápenatý 16984-48-8 (fluoridový aniont) 7681-49-4 (fluorid
Halogenované organické sloučeniny (jako AOX) Základní charakteristika. Použití. Zdroje emisí
Halogenované organické sloučeniny (jako AOX) další názvy AOX ( Adsorbable Organically bound Halogens ) číslo CAS* - chemický vzorec* - ohlašovací práh pro emise a přenosy do ovzduší (kg/rok) - do vody
Autor: Tomáš Galbička Téma: Alkany a cykloalkany Ročník: 2.
Alkany uhlovodíky s otevřeným řetězcem a pouze jednoduchými vazbami vazby sigma, největší výskyt elektronů na spojnici jader v názvu mají koncovku an Cykloalkany uhlovodíky s uzavřeným řetězcem a pouze
NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ
NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ Provoz automobilových PSM je provázen produkcí škodlivin, které jsou emitovány do okolí: škodliviny chemické (výfuk.škodliviny, kontaminace),
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY PROSTŘEDÍ doc. Ing. Josef ŠTETINA, Ph.D. Předmět 3. ročníku BS http://ottp.fme.vutbr.cz/sat/
DUM VY_52_INOVACE_12CH26
Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH26 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 9. vzdělávací oblast: vzdělávací obor:
Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH)
Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) Datum vydání: 14.10. 2008 Datum revize: 06.02. 2004 Název výrobku: LUBRICANT TRANSMISSION K04874464 1. Identifikace přípravku, výrobce,
Kyanidy (jako celkové CN)
Kyanidy (jako celkové CN) další názvy číslo CAS* cyankáli ( 57-12-5 (kyanidový anoin) 143-33-9 (kyanid sodný) 25909-68-6 ( chemický vzorec* CN - (kyanidový aniont) ohlašovací práh pro emise a přenosy NaCN
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I. (06) Biogeochemické cykly
Centre of Excellence CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I Environmentální procesy (06) Biogeochemické cykly Ivan Holoubek RECETOX, Masaryk University, Brno, CR holoubek@recetox. recetox.muni.cz; http://recetox.muni
Polétavý prach (PM 10 )
Polétavý prach (PM 10 ) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka,
Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) 1. Identifikace přípravku, výrobce, dovozce, prvního distributora nebo distributora
BEZPEČNOSTNÍ LIST Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) Datum vydání: 14.10. 2008 Datum revize: 06.08. 2003 Název výrobku: OIL SAE 5W-20 K04761872AC 1. Identifikace přípravku,
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Celkový org. uhlík (TOC) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví
Nemethanové těkavé organické sloučeniny (NMVOC)
Nemethanové těkavé organické Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví
Environmentální problémy. Znečišťování ovzduší a vod
GLOBÁLNÍ PROBLÉMY LIDSTVA Environmentální problémy Znečišťování ovzduší a vod Bc. Hana KUTÁ, Brno, 2010 OSNOVA Klíčové pojmy 1. ZNEČIŠŤOVÁNÍ OVZDUŠÍ Definice problému Přírodní zdroje znečištění Antropogenní
Do baňky s několika mililitry 15% kyseliny chlorovodíkové vložíme hořící třísku. Pozorujeme, že tříska v baňce hoří. Hořící třísku z baňky vyndáme a
Do baňky s několika mililitry 15% kyseliny chlorovodíkové vložíme hořící třísku. Pozorujeme, že tříska v baňce hoří. Hořící třísku z baňky vyndáme a vložíme kousek minerálu vápence Do baňky s několika
Úvod do teorie spalování tuhých paliv. Ing. Jirka Horák, Ph.D. jirka.horak@vsb.cz http://vec.vsb.cz/cz/
Úvod do teorie spalování tuhých paliv Ing. Jirka Horák, Ph.D. jirka.horak@vsb.cz http://vec.vsb.cz/cz/ Zkušebna Výzkumného energetického centra Web: http://vec.vsb.cz/zkusebna Základy spalování tuhých
Superkritická fluidní extrakce (SFE) Superkritická fluidní extrakce
Superkritická fluidní extrakce (zkráceně SFE, z angl. Supercritical Fluid Extraction) = extrakce, kde extrakčním činidlem je tekutina v superkritickém stavu, tzv. superkritická (nadkritická) tekutina (zkráceně
PALIVA. Bc. Petra Váňová 2014
PALIVA Bc. Petra Váňová 2014 Znáte odpověď? Která průmyslová paliva znáte? koks benzín líh svítiplyn nafta Znáte odpověď? Jaké jsou výhody plynných paliv oproti pevným? snadný transport nízká teplota vzplanutí
Modul 02 Přírodovědné předměty
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty hmota i energie nevznikají,
SPOTŘEBA ENERGIE ODKUD BEREME ENERGII VÝROBA ELEKTŘINY
SPOTŘEBA ENERGIE okamžitý příkon člověka = přibližně 100 W, tímto energetickým potenciálem nás pro přežití vybavila příroda (100Wx24hod = 2400Wh = spálení 8640 kj = 1,5 kg chleba nebo 300 g jedlého oleje)
Emise ve výfukových plynech PSM
KATEDRA VZIDEL A MTRŮ Emise ve výfukových plynech PSM #11/14 Karel Páv Působení emisí PSM na člověka a na životní prostředí xid uhličitý C : Bez zápachu Při nadýchání způsobuje zvýšení krevního tlaku Při
Drobné prachové částice, polétavý prach
Drobné prachové částice, polétavý prach Jsme velmi drobné prachové částice. Jsme malé a lehké, proto se snadno zvíříme a trvá dlouho, než se zase usadíme. Lidé nám proto začali říkat polétavý prach. Čím
Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.
očekávané výstupy RVP témata / učivo Chemie - 3. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 1.4., 2.1. 1. Látky přírodní nebo syntetické
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
STAVEBNÍ MATERIÁLY, JAKO ZDROJ TOXICKÝCH LÁTEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu
MOHOU NÁS OCEÁNY ZACHRÁNIT PŘED ZMĚNAMI KLIMATU?
MOHOU NÁS OCEÁNY ZACHRÁNIT PŘED ZMĚNAMI KLIMATU? V atmosféře se neustále zvyšuje množství oxidu uhličitého. Výpočty se přišlo na to, že až 30 % CO, který člověk vyprodukoval, se rozpustilo do mořské vody.
Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) 1. Identifikace přípravku, výrobce, dovozce, prvního distributora nebo distributora
BEZPEČNOSTNÍ LIST Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) Datum vydání: 14.10. 2008 Datum revize: 06.08. 2003 Název výrobku: OIL/SAE - 10 W30 GF-3 QUART K04761839AC 1. Identifikace
Halogenované organické sloučeniny (jako AOX)
Halogenované organické sloučeniny Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na
Měď a sloučeniny (jako Cu)
Měď a sloučeniny (jako Cu) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Ethylbenzen Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka,
Datum vydání: 23. listopadu 2001 Strana: 1 Datum revize: 18. března 2011 Název výrobku: METPROCOR VCI
Datum vydání: 23. listopadu 2001 Strana: 1 1. Identifikace látky nebo přípravku a výrobce nebo dovozce 1.1 Obchodní název výrobku: Metprocor VCI plastová fólie 1.2 Identifikace výrobce VÝROBCE: MetPro,
Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 11.10.2012
Označení materiálu: VY_32_INOVACE_ZMAJA_VYTAPENI_11 Název materiálu: Paliva, spalování paliv Tematická oblast: Vytápění 1. ročník Instalatér Anotace: Prezentace uvádí a popisuje význam, druhy a použití
Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH)
Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) Datum vydání: 14.10. 2008 Datum revize: 06.08. 2003 Název výrobku: Mopar Max Pro SAE 15W-40 K04798232AE 1. Identifikace přípravku, výrobce,
Oxidy dusíku (NO x /NO 2 )
Oxidy dusíku (NO x /NO 2 ) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady
Odhady růstu spotřeby energie v historii. Historické období Časové zařazení Denní spotřeba/osoba. 8 000 kj (množství v potravě)
Logo Mezinárodního roku udržitelné energie pro všechny Rok 2012 vyhlásilo Valné shromáždění Organizace Spojených Národů za Mezinárodní rok udržitelné energie pro všechny. Důvodem bylo upozornit na význam
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty 1 2 chemického složení
VYHLÁŠKA č. 337/2010 Sb. ze dne 22. listopadu 2010
VYHLÁŠKA č. 337/2010 Sb. ze dne 22. listopadu 2010 o emisních limitech a dalších podmínkách provozu ostatních stacionárních zdrojů znečišťování ovzduší emitujících a užívajících těkavé organické látky
provozovna ZV Leskovec nad Moravicí Leskovec nad M oravicí Bruntál Moravskoslezský
Krajský úřad Moravskoslezského kraje k rukám ing. Hybnerové 28. října 117 702 18 Ostrava KUMSP88P9PG2 Datum: 31.10.2013 Žádost o vydání rozhodnutí k povolení provozu stacionárního zdroie dle 5 11 odst.
Oxid uhličitý v průmyslu a životním prostředí
Oxid uhličitý v průmyslu a životním prostředí ČATP Česká asociace technických plynů (ČATP) Člen European Industrial Gases Association (EIGA) U Technoplynu 1324 198 00 Praha 9-Kyje Tel.: 272100143 Fax:
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ PŮDA
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ PŮDA 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - půda V této kapitole se dozvíte: Jak vznikla půda. Nejvýznamnější škodliviny znečištění půd. Co je to
Chlor a anorganické sloučeniny (jako HCl)
Chlor a anorganické sloučeniny (jako HCl) další názvy číslo CAS* chemický vzorec* prahová hodnota pro úniky kyselina chlorovodíková, kyselina solná, solnice, chlorovodík 7782-50-5 (chlor) 7647-01-0 (chlorovodík)
PEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety
PEVNÁ PALIVA Základní dělení: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety Biomasa obnovitelný zdroj energie u našich výrobků se týká dřeva a dřevních briket Složení
www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748 Gymnázium Jana Pivečky a Střední odborná škola Slavičín Mgr.
NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU - PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Hexachlorbutadien (HCBD) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady
TABULKA Kolik zařízení spadá do níže uvedených kategorií? Poznámka: Kategorie podle Přílohy č. 1 zákona o integrované prevenci
TABULKA.1 - Kolik zařízení spadá do níže uvedených kategorií? Poznámka: K odpovědi na tuto otázku je třeba poznamenat, že stejné zařízení může provádět činnosti, které spadají pod různé položky. Je třeba
Oxid uhličitý, biopaliva, společnost
Oxid uhličitý, biopaliva, společnost Oxid uhličitý Oxid uhličitý v atmosféře před průmyslovou revolucí cca 0,028 % Vlivem skleníkového efektu se lidstvo dlouhodobě a všestranně rozvíjelo v situaci, kdy
Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH)
Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) Datum vydání: 28.11. 2005 Datum revize: 06.02. 2004 Název výrobku: OIL/SAE-5W30 GF-3 QUART K04761838AB 1. Identifikace přípravku, výrobce,
BEZPEČNOSTNÍ LIST Dle ES 1907/2006(REACH) Datum vydání: 2004-04 Datum revize: 2011-11-11
Bilirubin přímý, Jendassik Grof 11.2.2013/9:23:52 BEZPEČNOSTNÍ LIST Dle ES 1907/2006(REACH) Datum vydání: 2004-04 Datum revize: 2011-11-11 1. IDENTIFIKACE LÁTKY / PŘÍPRAVKU A SPOLEČNOSTI / PODNIKU Identifikace
Koloběh látek v přírodě - koloběh dusíku
Koloběh látek v přírodě - koloběh dusíku Globální oběh látek v přírodě se žádná látka nevyskytuje stále na jednom místě díky různým činitelům (voda, vítr..) se látky dostávají do pohybu oběhu - cyklu N
Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) 1. Identifikace přípravku, výrobce, dovozce, prvního distributora nebo distributora
BEZPEČNOSTNÍ LIST Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) Datum vydání: 06.04.2009 Datum revize: 19.03.2007 Název výrobku: SAE G75W90 Gear Lubricant K05103529EA 1. Identifikace
Předmět: Chemie Ročník: 9.
Předmět: Chemie Ročník: 9. Očekávané výstupy Školní výstupy Učivo Průřezová témata 1. ANORGANICKÉ SLOUČENINY Uvede příklady uplatňování Popíše princip neutralizace Neutralizace neutralizace v praxi Vysvětlí
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Přírodní zdroje Neobnovitelné zdroje,
BEZPEČNOSTNÍ LIST. (podle nařízení Evropského parlamentu a Rady ES č.1907/2006) Datum vydání: 3/2001 Strana: 1 / 5
Datum vydání: 3/2001 Strana: 1 / 5 1. IDENTIFIKACE LÁTKY NEBO PŘÍPRAVKU A VÝROBCE, DOVOZCE, PRVNÍHO DISTRIBUTORA NEBO DISTRIBUTORA 1.1 Identifikace látky nebo přípravku: Obchodní název: Agip 7004 Chemický
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
EMISNÍ VÝSTUPY NO X Z PECÍ MAERZ
EMISNÍ VÝSTUPY NO X Z PECÍ MAERZ Ing. Jiří Jungmann Výzkumný ústav maltovin Praha, s.r.o. Podstata procesu výpal uhličitanu vápenatého při teplotách mezi 900 a 1300 o C reaktivita vápna závisí zejména
ANORGANICKÁ ORGANICKÁ
EMIE ANORGANIKÁ ORGANIKÁ 1 EMIE ANORGANIKÁ Anorganické látky Oxidy: O, O 2.. V neživé přírodě.. alogenidy: Nal.. ydroxidy: NaO Uhličitany: ao 3... Kyseliny: l. ydrogenuhličitany: NaO 3. 2 EMIE ORGANIKÁ
Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) 1. Identifikace přípravku, výrobce, dovozce, prvního distributora nebo distributora
BEZPEČNOSTNÍ LIST Bezpečnostní list zpracovaný podle směrnice EU 1907/2006 (REACH) Datum vydání: 06.04. 2009 Datum revize: 20.03. 2007 Název výrobku: Automatic Transmission Fluid ATF+4 K05103527EA 1. Identifikace
Šablona III/2 číslo materiálu 382. Datum vytvoření 22.8.2013
Šablona III/2 číslo materiálu 382 Jméno autora Mgr. Alena Krejčíková Třída/ ročník 1. ročník Datum vytvoření 22.8.2013 Vzdělávací oblast: Tematická oblast: Předmět: Anotace: Klíčová slova: Druh učebního
ALFA farm s r.o. Obchodní název látky nebo přípravku (totožný s označením na obale) Číslo CAS: 5949-29-1. Číslo ES (EINECS): 201-069-1
1. IDENTIFIKACE LÁTKY PŘÍPRAVKU 1.1. IDENTIFIKACE LÁTKY NEBO PŘÍPRAVKU Obchodní název látky nebo přípravku (totožný s označením na obale) ATAK Číslo CAS: 5949-29-1 Číslo ES (EINECS): 201-069-1 Další název
Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace
Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace VY_52_INOVACE_737 8. Chemie notebook Směsi Materiál slouží k vyvození a objasnění pojmů (klíčová slova - chemická látka, směs,
Trichlorethylen. Základní charakteristika
Trichlorethylen další názvy číslo CAS 79-01-6 chemický vzorec C 2 HCl 3 prahová hodnota pro úniky do ovzduší (kg/rok) 2000 do vody (kg/rok) 10 do půdy (kg/rok) - prahová hodnota pro přenosy v odpadních
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Benzen Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka,
Ústřední komise Chemické olympiády. 55. ročník 2018/2019 OKRESNÍ KOLO. Kategorie D. Teoretická část Řešení
Ústřední komise Chemické olympiády 55. ročník 2018/2019 OKRESNÍ KOLO Kategorie D Teoretická část Řešení Úloha 1 Bezpečnostní předpisy MarsCity II 16 bodů 1) Vybrané činnosti: a) Zvracení na mramorovou
Kyanovodík. Základní charakteristika. kyselina kyanovodíková, formonitril. další názvy číslo CAS 74-90-8 chemický vzorec
Kyanovodík další názvy číslo CAS 74-90-8 chemický vzorec kyselina kyanovodíková, formonitril HCN ohlašovací práh pro emise a přenosy do ovzduší (kg/rok) 200 do vody (kg/rok) - do půdy (kg/rok) - ohlašovací
Kyslík a vodík. Bezbarvý plyn, bez chuti a zápachu, asi 14krát lehčí než vzduch. Běžně tvoří molekuly H2. hydridy (např.
1 Kyslík a vodík Kyslík Vlastnosti Bezbarvý reaktivní plyn, bez zápachu, nejčastěji tvoří molekuly O2. Kapalný kyslík je modrý. S jinými prvky tvoří sloučeniny oxidy (např. CO, CO2, SO2...) Výskyt Nejrozšířenější
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Fluor a anorganické sloučeniny Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí
Vliv chemické aktivace na sorpční charakteristiky uhlíkatých materiálů
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA HORNICKO GEOLOGICKÁ FAKULTA Institut čistých technologií těžby a užití energetických surovin Vliv chemické aktivace na sorpční charakteristiky uhlíkatých
BEZPEČNOSTNÍ LIST (podle Nařízení vlády k (ES) 1907/2006 (REACH) ) Datum vydání: Strana: 1 ze 5 Datum revize: Název výrobku:
Datum vydání:7.6.2011 Strana: 1 ze 5 1. IDENTIFIKACE LÁTKY / PŘÍPRAVKU A VÝROBCE A DOVOZCE 1.1 Chemický název látky / obchodní název přípravku Název: Další názvy látky: Číslo výrobku: 1.2 Použití látky
Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace
Chemie - 8. ročník pozorování, pokus a bezpečnost práce Určí společné a rozdílné vlastnosti látek vlastnosti látek hustota, rozpustnost, tepelná a elektrická vodivost, vliv atmosféry na vlastnosti a stav
Bezpečnostní list. podle nařízení (ES) č. 1907/2006. Coltosol F
podle nařízení (ES) č. 107/2006 Datum vydání: 13.08.2012 Strana 1 z 5 ODDÍL 1: Identifikace látky/směsi a společnosti/podniku Identifikátor výrobku Příslušná určená použití látky nebo směsi a nedoporučená
ZEMNÍ PLYN. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý
Autor: Mgr. Stanislava Bubíková ZEMNÍ PLYN Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny; chemie a společnost 1 Anotace: Žáci se
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Chloridy (jako celkové Cl) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR H- a P-věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady