Kvalita elektrické energie - Průvodce



Podobné dokumenty
Harmonické. Harmonické. Kvalita elektrické energie - průvodce. Dimenzování středního vodiče v elektroinstalacích s hojným vyskytem harmonických 3.5.

Kvalita elektrické energie - průvodce. Harmonické pochopení pojmu kompatibilní úroveň. Harmonické HUNGARIAN COPPER PROMOTION CENTRE

Rozptýlená výroba a obnovitelné zdroje

Kvalita elektrické energie - průvodce. Poruchy napûtí Měření flikru. Poklesy napûtí HUNGARIAN COPPER PROMOTION CENTRE

Účinky měničů na elektrickou síť

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole

Kvalita elektrické energie-průvodce

Kvalita elektrické energie-průvodce

Kvalita elektrické energie - průvodce. Harmonické Volba a dimenzování transformátorů. Harmonické HUNGARIAN COPPER PROMOTION CENTRE

Vazební mechanismy přenosu rušivých signálů. Jiří Dřínovský UREL, FEKT, VUT v Brně

shody výrobků podle nařízení vlády č. 616/2006 Sb. ve smyslu 12 odst. 1 zákona č. 22/1997 Sb. o technických požadavcích na výrobky,

Kvalita elektrické energie-průvodce

EMC. Úvod do měření elektromagnetické kompatibility. cvičení VZ1. (ElektroMagnetic Compatibility) ing. Pavel Hrzina

Rozptýlená výroba a obnovitelné zdroje

1. ZÁKLADNÍ POJMY A NORMALIZACE V EMC. 1.1 Úvod do problematiky

Kvalita elektrické energie - průvodce

Elektromagnetický oscilátor

Zkušenosti z testování a zkoušení v EMC a KLIMA laboratořích EUROSIGNAL

Sada 1 - Elektrotechnika

Poklesy napûtí

Hlavní parametry rádiových přijímačů

PSK1-15. Metalické vedení. Úvod

5. RUŠENÍ, ELEKTROMAGNETICKÁ KOMPATIBILITA (EMC) a NORMY EMC

Elektrický signál - základní elektrické veličiny

VŠB-Technická univerzita Ostrava ZPĚTNÉ VLIVY POLOVODIČOVÝCH MĚNIČŮ NA NAPÁJECÍ SÍŤ

Institut pro testování a certifikaci, a. s. Zkušební laboratoř Sokolovská 573, Uherské Hradiště

Strana 1 z celkového počtu 14 stran

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer

Přehled veličin elektrických obvodů

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).

Kvalita elektrické energie-průvodce 5.1.3

6. ÚČINKY A MEZE HARMONICKÝCH

Proudové převodníky AC proudů

Interakce ve výuce základů elektrotechniky

Audio/Video po Cat5 kabelech

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektroenergetiky. Energetická rušení v distribučních a průmyslových sítích

NÁVOD K OBSLUZE REPEATER PICO NEW (XA6742, XA6742_V2)

Uzemňování&EMC. Uzemňování&EMC. Kvalita elektrické energie - průvodce. Uzemňovací systémy - Základy výpočtu a návrh 6.3.1

NESTACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ZDROJ 230V AC/DC DVPWR1

digitální proudová smyčka - hodnoty log. 0 je vyjádří proudem 4mA a log. 1 proudem 20mA

BEZPEČNOST V ELEKTROTECHNICE 2.

Poklesy napûtí Poklesy napûtí. Kvalita elektrické energie - průvodce. Doporučení pro výběr vhodného zařízení zmírňujícího poklesy napětí

Bezkontaktní spínací prvky: kombinace spojitého a impulsního rušení: strmý napěťový impuls a tlumené vf oscilace výkonové polovodičové měniče

REVO M-2PH. Dvoufázová tyristorová spínací jednotka jmenovitý proud 280 A až 700 A. PMA a Company of WEST Control Solutions

24 V min., 480 V max. a 600 V na vyžádání 50 Hz nebo 60 Hz; v rozsahu Hz není nutné žádné nastavení

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektroenergetiky. Komunikace po silových vedeních Úvod do problematiky

REVO M-2PH. Dvoufázová tyristorová spínací jednotka jmenovitý proud 60 A až 210 A. PMA a Company of WEST Control Solutions

ZÁKLADY ELEKTROTECHNIKY pro OPT

ZÁKLADY DATOVÝCH KOMUNIKACÍ

Rovinná harmonická elektromagnetická vlna

Cvičení č.7. Zásady projektování výkonových zařízení, systémů a instalací z hlediska EMC Rozdělení zařízení vzhledem k citlivosti na rušení

Vysoké frekvence a mikrovlny

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Indukční senzor s analogovým výstupem BI8-M18-LI-EXI

TECOMAT TC700 ZÁKLADNÍ DOKUMENTACE K MODULU UC vydání - červen 2004

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

ZÁKLADY DATOVÝCH KOMUNIKACÍ

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Poznámky k montáži a připojování EP TRIDONIC

Do 40 C bez omezení výkonu, nad 40 C viz obrázek: Teplota pro skladování: Nad 1000 m snižte výkon o 2% na každých 100 m

ednášky Osnova přednp Základní pojmy Kvalifikace osob Bezpečná činnost na EZ 10. OBSLUHA A PRÁCE NA EZ Doc. Ing. Stanislav Kocman, Ph.D.

Charakteristiky optoelektronických součástek

teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech

Zásady návrhu a aplikace A/Č obvodů

Osnova kurzu. Rozvod elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

4.7 Planární širokopásmové antény

TECOMAT TC700 ZÁKLADNÍ DOKUMENTACE K MODULU SX vydání - červen 2004

Kvalita elektrické energie - průvodce. Harmonické Aktivní harmonické kondicionéry. Harmonické. Proud (A) Stupně

Základní informace o nabídce společnosti. Ing. Vladimír Kampík

ELT1 - Přednáška č. 6

Alarm topného proudu. 24 V min., 480 V max. a 600 V na vyžádání 50 Hz nebo 60 Hz; v rozsahu Hz není nutné žádné nastavení

5. POLOVODIČOVÉ MĚNIČE

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Magnetický ovládací lineární senzor WIM160-Q25L-Li-Exi-H1141

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)

EGU-HV Laboratory a.s Praha 9 - Běchovice

Měření ve stíněné komoře

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Detektory kovů řady Vistus

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

Příloha je nedílnou součástí osvědčení o akreditaci č.: 290/2015 ze dne:

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

PB169 Operační systémy a sítě

Řada ODIN Stručný přehled výrobků

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23

Účinky elektrického proudu. vzorová úloha (SŠ)

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT PRÁCE S POČÍTAČEM

Pracovní list žáka (ZŠ)

LC oscilátory s transformátorovou vazbou

Magnetický ovládací lineární senzor WIM125-Q25L-Li-Exi-H1141

Příklady: 31. Elektromagnetická indukce

DIGITÁLNÍ SERVOZESILOVAČ TGA-24-9/20

TEORIE ELEKTRICKÝCH OBVODŮ

Radiokomunikační technika

C L ~ 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH. 5.1 Vznik neharmonického napětí. Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu:

Míra vjemu flikru: flikr (blikání): pocit nestálého zrakového vnímání vyvolaný světelným podnětem, jehož jas nebo spektrální rozložení kolísá v čase

rozdělení napětí značka napětí napěťové hladiny v ČR

Harmonické. Kvalita elektrické energie - průvodce. Degrees

Transkript:

Kvalita elektrické energie - Průvodce Uzemnění a EMC Základy elektromagnetické kompatibility (EMC) 6.1.2 Uzemnění a EMC

Uzemnění a EMC Část 6.1.2 Základy elektromagnetické kompatibility (EMC) Autor: Prof Dr rer nat Wolfgang Langguth, Hochschule für Technik und Wirtschaft May 2006 Autoři překladu: Josef Gavlas, Pavel Santarius, Petr Krejčí FEI Technická univerzita Ostrava, Listopad 2006 Tento Průvodce byl vytvořen v rámci programu Leonardo Power Quality Initiative (LPQI), což je evropský vzdělávací program podporovaný Evropskou komisí(v rámci programu Leonardo da Vinci) a Mezinárodní asociací mědi (International Copper Assotiation). Více informací naleznete na www.lpqi.org. Hungarian Copper Promotion Centre (HCPC) HCPC je nezisková organizace financovaná producenty mědi a výrobci zpracovávajícími měď. Jejím cílem je podporovat používání mědi a měděných slitin a napomáhat jejich správné a účinné aplikaci. Služby HCPC, mezi něž patří i poskytování informací a technického poradenství, jsou dostupné zájemcům o využití mědi ve všech oborech. Sdružení rovněž slouží jako prostředník mezi výzkumnými organizacemi a průmyslovými uživateli a udržuje těsné styky s obdobnými středisky mědi ve světě. Fakulta elektrotechniky a informatiky VŠB Technická univerzita Ostrava (FEI - TUO) Fakulta elektrotechniky a informatiky zahájila svou činnost na VŠB Technické univerzitě v Ostravě od 1. ledna 1991. Fakulta zajišťuje všechny formy vysokoškolského studia (tj. bakalářské, magisterské a doktorské) ve studijním programu Elektrotechnika a informatika s ucelenou strukturou elektrotechnických oborů a inženýrské informatiky. Nedílnou součástí činností pedagogů na fakultě je i vědecko-výzkumná činnost, kde jedním z nosných programů je kvalita elektrické energie s hlavním zaměřením na problematiku monitorování parametrů kvality a na problematiku harmonických v elektrických sítích. European Copper Institute (ECI) European Copper Institute je joint Venture společnost mezi ICA (International Copper Association) a evropským zpracovatelským průmyslem. ECI zastupuje největší světové producenty mědi a přední evropské výrobce při propagaci mědi v Evropě. ECI, který byl založen v roce 1996, se opírá o síť deseti národních organizací mědi (Copper Development Associations - 'CDAs') v Beneluxu, Francii, Německu, Řecku, Maďarsku, Itálii, Polsku, Skandinávii, Španělsku a Spojeném království. Upozornění Obsah tohoto materiálu nemusí nutně vyjadřovat názor Evropského společenství a není pro něj ani závazný. European Copper Institute a Hungarian Copper Promotion Centre odmítají odpovědnost za jakékoliv přímé, nepřímé či vedlejší škody, které mohou být způsobeny nesprávným využitím informací v této publikaci. Copyright European Copper Institute a Copper Development Association. Česká verze byla připravena ve spolupráci HCPC a Fakulty elektrotechniky a informatiky VŠB Technické Univerzity Ostrava. Reprodukce je možná za předpokladu, že materiál bude otištěn v nezkrácené podobě a s uvedením zdroje.

Uzemnění a EMC Uzemnění a EMC Základy elektromagnetické kompatibility (EMC) Úvod V minulosti tvořily většinu zařízení používaných v elektroinstalacích běžných budov lineární zátěže (jako například AC/DC motory, odporové zátěže, žárovky, atd.), které nevytvářely nebo vytvářely jen velmi málo rušení mezi různými částmi zařízení. Nyní je mnoho z používaných zátěží nelineárních (měničem napájené střídavé motory, výbojky, energeticky úsporná svítidla atd.). Tyto zátěže vytvářejí úzké pásmo šumu (následkem spínacích prvků s pevnou frekvencí nad 9 khz), který se může šířit po celé síti. Typický příkladem jsou spínané energetické zdroje, které vytvářejí tento typ rušivého signálu (v rozsahu 10 khz až 100 khz). Současně můžeme sledovat nárůst v používání digitálních systémů, jako například IT zařízení jakožto technický nástroj řízení a pro průmyslové automatické systémy, multimediální aplikace a obchodní využití. Na jedné straně jsou stále výkonnější energetické napájecí systémy, které mohou vést k elektromagnetické interferenci (EMI), na druhé straně se rozšiřují digitální sítě, které se stávají citlivějšími, protože zajišťují přenos vyššího objemu dat a stále více jsou využívány pro práce týkající se bezpečnosti. Tento rozvoj požadavků vyšší kvality elektroinstalací ve všech elektromagneticky nekompatibilních budovách vede také k vyšším nákladům nebo k nepřijatelnému poklesu ukazatelů bezpečnosti. Základem je, že všechny elektricky vodivé části budov a jejich vybavení se podílejí na elektromagnetické interferenci buď jako zdroje rušení (EMI transmitter) nebo jako přijímače rušení (EMI receiver). Kromě instalovaných elektrických vodičů, jsou zde ještě kovová potrubí, armaturové tyče v betonu, kovové fasády a stavební ocelové objekty, které rovněž mohou ovlivňovat EMC příslušné instalace a přenášet EMI. To se často projevuje, když některá instalace může být zdrojem i přijímačem rušení současně. Typickými systémy jsou: energetická napájecí vedení měřící a řídící zařízení výstražná zařízení počítačové instalace včetně sítí Zastaralé instalace, společně se soustavou TN-C, umožňují šířit rušivý signál kolem celé budovy a dokonce zasáhnout zařízení sousedních budov. Vzrůstající význam EMC vyvolala Evropská unie, kde v souladu s EMC směrnicí EU 89/336/EEC (doplněnou směrnicemi 91/263/EEC, 92/31/EEC, 93/68/EEC a 93/97/EEC) musí také každá elektroinstalace budov respektovat mezinárodní normy pro citlivost a emise EMC. Osobou nebo osobami zodpovědnými za návrh, technickou úpravu a konstrukci (sestavení a montáž) se ve smyslu směrnice stává výrobce a přebírá plnou zodpovědnost za provedení instalací dle všech příslušných směrnic od uvedení do provozu. Pro realizace spolehlivé a cenově dostupné elektroinstalace vyhovující EMC je zcela nezbytné provést analýzu EMC a vytvořit EMC plán již v počáteční fázi projektu. Elektroinstalace by měly být dozorovány a realizovány osobami školenými na EMC. Cílem této části je podat přehled a základní principy

zlepšování rušivých jevů. Výsledkem by měla být snadno pochopitelná měření nutná pro vytvoření instalací, které vyhovují EMC. Pole jako základní zdroj elektromagnetické interference Elektromagnetická kompatibilita (EMC) popisuje schopnost každého elektrického nebo elektronického systému, stroje, přístroje, atd. pracovat bez poruchy v rušivém elektromagnetickém prostředí, pokud sám neruší činnost ostatních prvků systému. Základními zdroji každé elektromagnetické interference (EMI) jsou pole a proudy na základní frekvenci. Při nízkých frekvencích se elektrická a magnetická pole chovají nezávisle, při vysokých frekvencích má význam pouze šíření elektromagnetického pole. Všechna pole nízkých, středních i vysokých frekvencí jsou generovány elektrickými náboji a proudy. Při nízkých frekvencích mají elektrická i magnetická pole relativně malý dosah, klesající intenzitu s rostoucí vzdáleností od zdroje, a jsou tedy soustředěny v okolí vodičů, které mohou přenášet proudy a napětí. Protože je elektrické pole úměrné napětí elektroinstalací, způsobí jev EMI na velké vzdálenosti pouze dostatečná intenzita v okolí vysokonapěťových zařízení. Ve většině instalací však elektrické pole nehraje podstatnou roli. Na krátkých vzdálenostech jako je tomu v případě kabelů, které vedou společně v kabelových kanálech, může být elektrické pole považováno za možný zdroj EMI. Magnetické pole je úměrné velikosti elektrického proudu. V mnoha energetických systémech mohou proudy dosahovat značně vysokých hodnot, tedy i vyvolat silné magnetické pole, a je tedy velké nebezpečí účinků EMI. Toto je především pravděpodobné v instalacích typu TN-C. V důsledku sloučení nulového vodiče (N) a ochranného vodiče (PE) do vodiče PEN a následného připojení ostatních vodivých částí budovy mohou proudy zasáhnout značnou oblast budovy a výsledná magnetická pole mohou způsobit EMI téměř všude. Protože část nulového zpětného proudu protéká ve vnějších kovových částech, celkový proud v sítí TN-C samotné je nesymetrický a magnetické pole sítě TN-C je zvyšováno úměrně velikosti jeho amplitudy. Obrazovky počítačových monitorů jsou snadno rušeny (blikání na obrazovce) pomocí magnetického pole řádově 1,5 μt. Takové pole může být generováno jednoduchým vodičem, kterým se přenáší proud 10 A, 50 Hz ve vzdálenosti 1,3 m. Větší monitory (> 17 palců) jsou dokonce mnohem citlivější na vnější magnetická pole. Jestliže proudy silových vedení obsahují složky vyšších frekvencí, potom mohou mít magnetická pole i větší průvodní jevy. Při vyšších frekvencích se elektrická a magnetická pole spojují do formy elektromagnetického pole, které se šíří prostorem rychlostí světla. V důsledku toho je možné rušení na mnohem větší vzdálenosti. Typickými zdroji novodobých elektromagnetických polí jsou radary, rádiové a televizní vysílače, mobilní telefony, bezdrátové telefony, bezdrátové sítě (WLAN), Bluetooth spojení a průmyslové instalace v pásmu mikrovlnných frekvencí. Silové kabely mohou působit jako antény a šířit libovolné vysokofrekvenční signály, které jsou záměrně (např. komunikace po silnoproudých vedeních) nebo nezáměrně (např. rychlé přechodné děje) přítomny v síti. Pro zvyšování odolnosti elektrických instalací proti elektromagnetickým polím by měl být proveden pečlivý návrh a instalace stínících opatření.

Typy elektromagnetických vazeb Základní vazební model EMI K popisu mechanismu elektromagnetické interference je nejlepší začít s velmi jednoduchým modelem. Je sestaven ze zdroje, který způsobuje interferenci, vazebního mechanismu nebo vazebního prostředku a rušeného zařízení. Obrázek 1 Základní vazební model EMI Příkladem zdrojů mohou být, jak bylo uvedeno dříve, vedení elektroenergetických systémů, antény bezdrátových LAN systémů, apod. Vazba je vytvořena prostřednictvím proudu, jestliže vodiče různých obvodů sdílí společně elektrická, magnetická nebo elektromagnetická pole. Rušený přijímač může být jakýkoliv druh přístroje nebo části elektroinstalace. Samozřejmě úplná elektromagnetická interakce celé instalace budovy nebo zařízení je celkový souhrn těchto elementárních interakcí. Navíc kterýkoliv přijímač může také působit jako zdroj EMI a naopak. V průběhu fáze projektování nových nebo renovovaných instalací by měla být vytvořena matice všech možných zdrojů, vazebních cest a možných rušených objektů. Pomocí této matice musí být stanovena případná intenzita vzájemné interference pro posouzení, která EMI rušení se mohou vyskytnout, a která jsou asi důležitá. Pouze na základě EMI matice interakcí mohou být naplánovány již od počátku ochranné prostředky, zajišťující rychlé a cenově efektivní uvedení zařízení do provozu. Můžeme rozlišit čtyři různé základní typy EMI: impedanční vazba induktivní vazba kapacitní vazba vazba elektromagnetickým polem Základní fyzikální vlastnosti různých vazeb EMI jsou shrnuty v následující tabulce: Zdroj Elektrické pole Magnetické pole Elektromagnetické pole Frekvenční oblast Nízká frekvence Nízká frekvence Vysoká frekvence Vazba Dosah Přijímač Kapacitní Krátký NN a VN kabely Induktivní Krátký NN a VN kabely Elmag. Dlouhý NN a VN polem kabely Hlavní rušivé jevy v budovách jsou způsobeny induktivní vazbou, následuje kapacitní a impedanční vazba. Vazba elektromagnetickým polem obvykle nebyla až dosud dominantní, protože intenzity polí

jsou obvykle zcela pod vyžadovanými limitními hodnotami citlivostních testů směrnice EU pro EMC. Vzrůstající používání bezdrátových aplikací však může v budoucnosti vést ke zvýšení jevů EMI z těchto zařízení. Impedanční vazba Galvanická vazba se vyskytuje, když různé obvody používají společné vodiče a/nebo vazební impedance. Toto se může stát například, když různé obvody využívají pro svůj obvod tentýž napěťový zdroj. Základní princip impedanční vazby můžeme vidět na Obrázku 2. Obrázek 2 Impedanční vazba Obvod I může představovat část energetické sítě a obvod II část datové přenosové sítě. Napětí, které je superponováno na signál u 2 následkem společné vazební impedance Z C = R C + jωl C je pro malé Z C << Z i + Z L roven: u u 1 C = ZC i1 ZC (1) Zi + Z L Jestliže proud i 1 a/nebo vazební impedance Z C jsou dostatečně velké, potom superponované napětí u k může být dostatečně velké ve srovnání se signálem u 2 pro rušení datového obvodu. Impedance společného vedení se skládá z odporových a induktivních prvků, Z C (ω) = R C + jωl C. Pokud odporová část vazby zůstává pro všechny frekvence konstantní (zanedbáme-li skinefekt), vzrůstá při vysokých frekvencích podíl induktivní části, jak je vidět na následujícím modelu.

Obrázek 3 impedanční vazba, jednoduchý model Rušivé napětí u dist, které se objeví na Z C je superponováno na signál bloku 2 a závisí na proudu i(t) a také na jeho časové změně di(t)/dt. Na zjednodušeném modelu může být rušivé napětí stanoveno: u dist di( t) = ur, dist + ul, dist = RC i( t) + LC (2) dt Jestliže provedeme dosazení reálných parametrů pro náš model (délka vedení l=2m, vlastní indukčnost L C =1μH/m, odpor R C =1Ω, proud i=1a a rychlost změny proudu di/dt=1a/100ns), získáme následující příspěvky pro galvanickou vazbu: u u u R, dist L, dist dist = R = L C C = 21V i( t) = 1V di( t) = 20V dt (3) Při vysokých frekvencích hraje vlastní indukčnost dominantní roli. Toto platí dokonce i v případě, když vezme do úvahy nárůst zdánlivého odporu vedení vlivem skinefektu, který není zanedbatelný, rychlé přechodné děje a digitální signály. Podle Kirchhoffových zákonů se může rušivý signál šířit instalací celého objektu a dokonce může ovlivňovat i instalace sousedních objektů. Pro minimalizaci galvanické vazby je nezbytné vyvarovat se spojením mezi nezávislými systémy a v případech, kde je spojení nutné, udržet jejich vlastní indukčnosti co nejnižší. Obvykle může být přerušení galvanické vazby elektroenergetických obvodů dosaženo mnohem snadněji, když je místo systému TN-C používán systém TN-S. Induktivní vazba Časově proměnný externí proud i 1 (t) vytváří magnetické pole B(t), které indukuje rušivé napětí u dist (t) v sousedícím obvodu. V odpovídajícím modelu obvodu toto může být popsáno pomocí vazby obou obvodů prostřednictvím vazební indukčnosti M. Napětí u dist (t) vyvolává soufázový proud i 2 (t), který sám vyvolává magnetické pole oslabující externí pole. Proud i 2 (t) je superponován na proudy rušeného systému a může vést k poruše systému. Vazba magnetických polí rozdílných systémů může být modelována pomocí náhradních obvodových modelů prostřednictvím vzájemných indukčností spřažených obvodů (Obrázek 4).

Obrázek 4 Induktivní vazba a) model pole b) ekvivalentní obvod Intenzita vazby závisí především na třech parametrech: intenzitě rušivého proudu vzdálenosti zdroje a přijímače frekvenci rušivého pole Rušivý signál se stává velký a významný když: proudy externích obvodů jsou velké proudy přívodního a zpětného vedení jsou nesymetrické (jako v síti TN-C) obvody jsou vzájemně vázány a pokrývají velkou oblast signály externích obvodů se rychle mění v čase a tedy obsahují vysokofrekvenční složku Induktivní vazba může také být využita k omezení rušení. Jestliže je instalace kabelových lávek a koaxiálních kabelů správně zakončena (tj. jsou spolehlivě spojeny nakrátko přes nízkou impedanci i při vysokých frekvencích) vytváří stínění kabelů (prostřednictvím induktivní vazby) proti externím magnetickým polím, především vyšších frekvencí. Geometrická závislost induktivní vazby Citlivost induktivní vazby na typ elektrické sítě a geometrii instalace může být znázorněna na následujícím příkladu. Závěry jsou důležité pro elektromagnetickou kompatibilitu instalací. Budeme uvažovat dva obvody, jednoduché vedení a smyčkové vedení, a stanovíme vliv obou systémů na obvod, tvořený obdélníkovou smyčkou ve vzdálenosti r. Magnetické pole pro každé uspořádání může být přesně vypočteno: μ0. i( t) μ0. 2a i( t) B1 ( r) =, B2 ( r) =, kdeμ0 = 4π 10 2π r 2π ( r a) ( r + a) 7 Vs Am (4) Magnetické pole je úměrné proudu i(t). Pokud pole jednoduchého vedení klesá pouze nepřímo úměrně vzdálenosti, potom při velkých vzdálenostech pole smyčkového vedení klesá nepřímo úměrně čtverci vzdálenosti. Tato závislost na vzdálenosti vede k dramatickým rozdílům induktivní vazby pro jednotli-

vé modely sítí. Průběh magnetického pole pro induktivní vazbu na jednotku délky je ukázán na následujícím obrázku. Proud i(t) je zvolen 1A a vzdálenost a=1,5mm. Obrázek 5 a) jednoduché a smyčkové vedení jako zdroj magnetického pole b) elektrický obvod jako přijímač Obrázek 6 a) magnetické pole jednouchého vodiče a smyčkového vedení b) vazební indukčnost na jednotku délky smyčky vůči jednoduchému vodiči a smyčkovému vedení Magnetické pole symetrického smyčkového vedení je velikostí o dva řády nižší a klesá rychleji než u jednoduché vedení. Totéž platí pro vazební indukčnost. Závislost vazební indukčnosti na ploše smyčky je zcela podobná dle Obrázku 6b). Tento příklad vytváří nejzákladnější znalosti jakožto základní pravidla pro elektrické instalace vyhovující EMC: vytvářet plochu elektrické instalace co nejmenší maximalizovat vzdálenost k vedení s velkými proudy

oddělovat silová a datová vedení používat pouze sítě TN-S. Pouze sítě TN-S jsou přívětivější z pohledu EMC. V sítích TN-C se mohou objevit nesymetrické proudy a tedy síť TN-C vytváří magnetické pole jednoduchého vodiče způsobené nesymetrickým proudem. Pro totéž uspořádání instalace nesymetrický proud vytváří magnetické pole nejméně o dva řády vyšší než v síti TN-S. Frekvenční závislost induktivní vazby Indukční vazba jako funkce frekvence poskytuje cenné informace o tom, jak může být provedena elektroinstalace tak, aby bylo dosaženo optimální ochrany proti externím vysokofrekvenčním rušením. Opět uvažujeme idealizované pokusné uspořádání podobné jako na Obrázku 5b. Obrázek 7 ukazuje náhradní obvod závitu nakrátko tvořený vlastní indukčností L 2 a odporem R 2, který je ovlivňován externím vodičem protékaný proudem i 1 (t) s vazební indukčností M. Obrázek 7 Ekvivalentní obvod pro induktivní vazbu Jestliže uvažujeme proudy definované frekvence ω, i 1,2 (t) = i 1,2 (ω)e jωt, potom může být pro jednoduchý model přesně stanovena přenosová funkce rušivého proudu i 1 (ω) a indukovaného proudu i 2 (ω) viz rovnice (5). sm 2 i2 = i1, s = jω, j = 1 (5) R + sl 2 2 Pro pochopení co tato rovnice znamená pro reálné instalace, uvažujeme smyčku délky l=0,3m a šířky w=0,1m, která je ve vzdálenosti d=2mm mimo vedení rušivého proudu. Vnitřní odpor volíme R 2 =50Ω. Vlastní indukčnost a vzájemná indukčnost může být vypočtena pro tento příklad L 2 =0,9μH a M=0,2μH. Velikost rušivého proudu na jednotku externího proudu i 2 (ω)/i 1 (ω) je ukázána na následujícím obrázku:

Obrázek 8 Případová studie přenosové funkce proudu Rušivý proud i 2 narůstá s externím proudem i 1 a jeho frekvencí. Při nízkých frekvencích narůstá úměrně s ω, zatímco při vysokých frekvencích dosahuje i 2 jeho saturační hodnotu. Tato saturace je limitována poměrem M/L 2. pro minimalizaci jevů EMI musí instalace vyhovující EMC minimalizovat vzájemnou indukčnost M a maximalizovat vlastní indukčnost L 2 spřaženého obvodu. Protože rychlé změny obsahují další a vyšší vysokofrekvenční složky, generují větší rušení. Toto můžeme vidět na Obrázku 9, kde je ukázán vypočítaný rušivý proud vyplývající z lichoběžníkového průběhu proudu, který reprezentuje digitální signál. Obrázek 9 Induktivní vazba pomalých a rychlých lichoběžníkových proudů Na Obrázku 9 můžeme vidět rušivý proud, který dosahuje více něž 10% amplitudy pro pomalé a více než 15% amplitudy pro rychlé externí proudy. Tyto vysoké hodnoty vyplývají z krátké doby náběhu

digitálních signálů. Podobně vysoké hodnoty se dají očekávat u elektronicky spínaných procesů jako například fázově řízené stmívače. Provoz stmívače může být modelován pomocí náběhu lichoběžníkového signálu. Zbývající část 50Hz signálu způsobuje pouze zanedbatelné rušení. Dosud jsme se zabývali pouze závitem nakrátko jakožto přijímače EMI. V tomto případě by měly být elektrické vlastnosti optimalizovány tak, aby byl rušivý proud i 2 (t) minimální. Vlastnost indukovaného proudu i 2 (t) vyvolávajícího magnetické pole, které oslabuje externí pole, může být také využit ke stínění citlivých elektrických a elektronických systémů. Pro tento případ by měly být elektrické parametry závitu nakrátko voleny pro optimalizaci opačného pole generující proud i 2 (t) a pro minimalizaci síťového magnetického toku prostřednictvím smyčky. Praktickými příklady těchto aplikací jsou stínění stíněných kabelů, kabelových lávek, nevyužitých jader kabelů apod. Síťový magnetický tok v závitu nakrátko může být vypočítán takto: MR2 2 Φ loop ( i2 ) = i1, s = jω, j = 1 (6) R + sl 2 2 Můžeme vidět, že síťový magnetický tok je pro malé hodnoty R 2 minimalizován. Stínící vlastnosti našeho modelu závitu nakrátko pro různé hodnoty R 2 je ukázána na Obrázku 10. Stínící účinek rapidně vzrůstá s poklesem odporu závitu nakrátko, zde je ukázán pro hodnoty R 2 =, 500, 50, 5 Ω. Z těchto výsledků vyplývají důležitá pravidla pro instalace budov. Všechny spoje stínících zařízení jako kabelové lávky, kabelové kanály, skříně, atd. by měly mít při vysokých frekvencích malý odpor. Následkem skinefektu odpor elektrických vodičů s frekvencí signálu roste. Proto geometrie vodičů musí být zvolena tak, aby se minimalizoval zdánlivý odpor při vysokých frekvencích. Optimální geometrie vodiče je plochý pás, buď jednoduchý nebo splétaný, kde povrchová plocha je velká a tloušťka je malá. Standardní kruhový průřez vodičů není ideální. Samozřejmě závit nakrátko pracuje efektivně jako stínící zařízení pouze tehdy, když jím může protékat ochranný proud bez přerušení smyčky. Stínění musí být připojeno k zemi na obou koncích, aby se neomezil tok stínícího proudu. Obrázek 10 Stínící účinek závitu nakrátko pro různé hodnoty jejího odporu R 2

Kapacitní vazba Časově proměnné elektrické pole externího systému způsobuje časově proměnné náboje v rušeném systému. Tok posuvných proudů může být modelován na náhradním obvodu pomocí rozptylových kapacit, které propojují oba systémy a způsobují rušivá napětí. Obrázek 11 Kapacitní vazba a) model pole b) náhradní obvod Podobně jako u induktivní vazby je velká kapacitní vazba, když: obvody jsou vzájemně vázány rozdíl napětí obou obvodů je velký signály v externím obvodu se rychle mění v čase a mají tedy velký obsah vysokých frekvencí. Jako příklad můžeme uvažovat obvod kabelů energetického napájení a obvod místní počítačové sítě, která může ležet blízko a paralelně při vzdálenosti 10m v kabelové lávce. Jestliže proud v silovém kabelu má čistě sinusový průběh 50Hz, 230V, potom rušivý signál v datovém kabelu dosahuje amplitudy 10V, který může být přijatelný. Jestliže proud v silovém kabelu má vysokofrekvenční složky generované nelineární zátěží, potom rušivý signál v datovém kabelu může dosahovat amplitudy více než 90V, který může vést ke špatnému chodu nebo poruchám LAN sítí. Jestliže kabeláž a stínící opatření jsou řádně plánovány a instalace je pečlivě provedena, potom se můžeme těmto typům rušení vyhnout nebo mohou být minimalizovány na únosnou úroveň. Pro vysvětlení nejdůležitějších aspektů kapacitní vazby uvažujeme opět základní model, který může být řešen analyticky. Model je složen ze dvou obvodů, které využívají, pro zjednodušení, společný zpětný vodič. Náhradní obvod systému je vidět na následujícím obrázku.

Obrázek 12 Trojvodičový model pro kapacitní vazbu Vedení a a c jsou části externího sytému, vedení b a c části rušeného systému. Jestliže uvažujeme napětí definované frekvence ω, u 1,2 (t)=u 1,2 (ω)e jωt, potom vztah mezi rušivým napětím u 1ω a vazebním napětí u 2ω pro jednoduchý model může být přesně určen: u = sr2cab 2 u1, s = jω, = 1 1+ sr ( C + C ) j (7) 2 2 ab bc Pro model volíme parametry R 2 =1kΩ, C ab =C cb =100pF, což je přijatelné pro paralelní kabely tloušťky 1mm ve vzdálenosti 5mm při délce 10m a externí napětí u 1 =220V. Průběh frekvenční závislosti napětí kapacitní vazby u 2 je ukázán na Obrázku 13. Obrázek 13 Frekvenční závislost kapacitní vazby

Chování kapacitní vazby je velmi podobné induktivní vazbě. Rušivé napětí u 2 roste při nízkých frekvencích lineárně s frekvencí rušivého signálu a při vysokých frekvencích dosahuje saturační hodnotu. Opět rychlé rušivé signály, které obsahují velké vysokofrekvenční složky, budou značně ovlivňovat rušené obvody. Obrázek 14 ukazuje vazební napětí běžného 220V sinusového průběhu 50Hz a fázově řízeného stmívače. Sinusovka vyvolává sinusový rušivý signál s amplitudou okolo 7mV, který v mnoha případech může být zanedbatelný. V protikladu spínací proces stmívače vede k napěťovým špičkám 110V. Obrázek 14 Signály kapacitní vazby a) sinusovka 50 Hz b) fázově řízený stmívač Kapacitní vazba může být redukována použitím stíněných kabelů. Model dvojice stíněných kabelů je ukázán na následujícím obrázku.

Obrázek 15 Kapacitní vazba dvou stíněných kabelů Vodivá stínění S 1 a S 2 jsou spojena v jediném bodě systému. Frekvenční závislost rušeného napětí u 2 je stejná jako ve vztahu 7, kde: C13C24 C ab musí být nahrazeno C1 = a C bc musí být nahrazeno C 34. C + C 13 24 1 Maximální napětí, které by mohlo být připojeno se rovná u = 2 u1 1+ C34 / C13 + C34 / C, což ukazuje, že 24 dobré kapacitní spojení C 34 mezi vodičem a stíněním zlepšuje účinnost stínění. Na následujícím obrázku je zobrazena účinnost stínění kabelů proti rychlým přechodovým pulzům pro různé kapacitní vazby. Obrázek 16 Odstínění rázových pulzů stíněním různých vnitřních kapacitních vazeb Vazba elektromagnetickým polem Elektromagnetická pole se šíří prostorem rychlostí světla c = 2,988 x 10 8 m/s a mohou ovlivňovat elektroinstalace v blízkém i dalekém okolí zdrojů. Typickými zdroji elektromagnetických polí jsou rádiové

a televizní vysílače, mobilní telefony nebo jakékoliv jiné druhy bezdrátových aplikací. Vysokofrekvenční složky rychlých signálů nebo rychlých přechodných dějů (elektrostatické rušení, vlny, bleskové pulsy) mohou také vést k vyzařování elektromagnetického pole prostřednictvím kabelů nebo vodivých částí elektroinstalací a mohou způsobit rušení elektrických systémů v jiných částech budovy. Jestliže rušení v energetických nebo datových sítích obsahuje vysokofrekvenční složky, potom ostatní části instalací mohou působit jako antény a vyzařovat elektromagnetické pole. Hertzův dipól může sloužit jako základní model k určování velikosti vyzařovaných polí. Všechny vodivé části elektroinstalací mohou plnit úlohu antény, včetně: kabelů otvorů a štěrbin pouzder, skříní, atd. pásů plošných spojů F λ [m] [MHz] 0,1 3000 1 300 10 30 100 3 1000 0,3 Tabulka 2 Některé hodnoty frekvencí a odpovídajících vlnových délek Otvory a štěrbiny zařízení vyzařují rušení do okolních oblastí nebo do krytů, tedy ruší ostatní objekty v okolí a/nebo přenášejí elektromagnetická pole z vnějšku do systémů. Jako příklad se můžeme podívat na elektrostatický výboj lidského těla na kovovou desku. Oblouk elektrostatického výboje není pouhý přenos proudu, ale také vznik elektromagnetického pole, které může snadno dosáhnout intenzitu pole 0,5-4kV ve vzdálenosti menší než 1m. Tato elektromagnetická pole mohou rušit elektrické systémy uvnitř nevhodných skříní přes štěrbiny, které fungují jako anténa. Vodivé prvky, jako jsou kabely a štěrbiny začínají vyzařovat, když jejich podélný rozměr přesáhne polovinu vlnové délky. Vlnová délka elektromagnetické vlny a její frekvence f jsou svázány přes rychlost světla vztahem λ=c/f. Některé typické dvojice hodnot jsou uvedeny v Tabulce 2. V praxi nemohou být kryty zcela uzavřeny. Otvory jako jsou vstupy pro kabely, ventilační štěrbiny a spáry mezi dvířky jsou nezbytné. Tyto otvory snižují účinnost stínění každého krytu. Pomocí inteligentní konstrukce krytu může být dosažena přijatelná úroveň stínění. Rozsah netěsností z nespojitostí stínění závisí především na těchto faktorech: maximální podélný rozměr otvorů vlnová impedance frekvence zdroje Pro štěrbiny délky l=λ/2 je účinnost stínění je dána: λ S = 20log 2l (8)

Snížení délky štěrbiny na polovinu zvýší účinnost stínění o 6dB. Obrázek 17 ukazuje účinnost stínění pro různé frekvence podle délky štěrbiny. Obrázek 17 Účinnost stínění štěrbin různých délek jako funkce frekvence V praktických instalacích by měla být maximální délka štěrbin menší než 1/20 vlnové délky, aby byla zajištěna účinnost stínění alespoň 20dB. Odpovídající maximální délka štěrbiny pro požadovanou účinnost stínění musí být odvozena podle rovnice (8) nebo podle Obrázku 17. Komplexní elektromagnetická interference (EMI) v praxi Ve skutečné situaci pro EMI místo všech základních vazeb popsaných výše existuje komplex vzájemných kombinací. Jednoduchý případ automatického systému (Obrázek 18) ukazuje, že se jediného systému v kontaktu s jeho okolím ve stejném čase týkají všechny vazby. Kterýkoli samostatný systém je vestavěný do sítě ostatních systémů a společně formují komplexní systém vzájemných vztahů EMI. Pro garanci řádného fungování celého systému, musí být vytvořena tak zvaná EMC matice a musí být vyhodnocena již při procesu plánovaní nových i renovovaných budov. Směrnice EU pro EMC a jejich vztah k instalacím v budovách Směrnice EU jsou určeny k zajištění toho, že se všechny výrobky vyráběné nebo prodávané v EU řídí společnými normami a mohou být prodávány ve všech členských státech bez dalších úprav. V případě EMC směrnice EU 91/263/EEC, doplněná směrnicemi EU 92/31/EEC, 93/68/EEC a 93/97/EEC přizpůsobuje hlavní normy pro libovolný výrobek pro garanci elektromagnetické kompatibility omezením maximální úrovně vyzařování výrobku a jeho stanovením jeho minimální odolnosti proti externí EMI. Výrobce kteréhokoliv přenosného výrobku musí prohlásit shodu výrobku s normami EU. Výrobek musí být označen značkou CE k potvrzení jeho souladu s EMC a ostatními směrnicemi pro odběratele.

Obrázek 18 Různé vazební cesty automatického systému Pokud jde o elektroinstalace, prohlášení o shodě a značka CE nejsou nutné, nicméně plnění norem směrnic EU by mělo být zajištěno. Je to úkol těch, kdo zodpovídají za návrh, techniku a provedení elektroinstalace. Jsou zde cesty ke garantování a prokázání shody. První je použití modulů přizpůsobených EMC, které jsou instalovány obsluhou vyškolenou pro EMC. Druhá je použití jakýchkoliv vhodných modulů a prověření dodržení EMC instalace pomocí měření v EMC laboratoři nebo pověřenou osobou. V každém případě projektant musí prohlásit shodu s normami EMC a směrnicemi EU podle odpovídajících dokumentů. Navíc výrobce instalace musí dodat jasné pokyny pro provoz a údržbu v souladu s Dodatkem 3 směrnice EU. Tyto pokyny musí podávat informace o stanovených podmínkách použití, instalaci, montáži, nastavení, uvedení do provozu, použití a údržbě. Kde je to nutné, musí být také obsaženo upozornění na omezení použití. Nejbezpečnější cesta k zajištění shody elektroinstalace budovy může být, když se budeme řídit následujícími pravidly: uvažovat s EMC již od počátku, je-li to nutné využít služeb odborníka na EMC používat pouze moduly a materiály, které jsou ověřeny z hlediska EMC používat k provádění instalačních prací personál znalý problematiky EMC inženýři (technici) znalí EMC by měli dohlížet na instalační práce Protože předmět EMC byl uveden do školících kurzů poměrně nedávno, je zde potřeba dalšího vzdělávání na toto téma.

Literatura G Durcansky: EMC Correct Design of Apparatus (in German), Francis, 1995 Electromagnetic Compatibility (EMC), Guide to the Application of Directive 89/336/EEC, European Communities 1997 S Fassbinder: Disturbances of the Power Supply Network by Active and Passive Components (in German), VDE Verlag 2002 J Goedbloed: Electromagnetic Compatibility (in German), Pflaum Verlag, 1990 M Grapentin: EMC for the Installation of Buildings (in German), Verlag Technik, 2000 E Habiger: Electromagnetic Compatibility (in German), Hüthig, 1998 B Keiser: Principles of EMC, Artech House, 1987 VP Kodali: Engineering Electromagnetic Compatibility, IEEE Press, 1996 A Kohling: EMC of Buildings, Facilities and Apparatus (in German), VDE-Verlag, 1998 G Lehner: Theory of Electromagnetic Fields (in German), Springer, 1994 H W Ott: Noise Reduction Techniques in Electronic Systems, A Wiley, 1988 C R Paul: Introduction to Electromagnetic Compatibility, John Wiley, 1992 D Peier: Electromagnetic Compatibility (in German), Hüthig, 1990 A Rodewald: Electromagnetic Compatibility (in German), Vieweg, 1995 W Rudolph, O Winter: EMC according VDE 0100 (in German), VDE-Verlag, 2000 W Rudolph: An EMC Primer for Electricians (in German), VDE-Verlag, 2001 Guideline Electromagnetic Compatibility (in German), EMC-Guideline ZX62920D, 1998, Groupe Schneider A Schwab: Electromagnetic Compatibility (in German), Springer, 1996 DIN/VDE 0848 : Safety in Electrical, Magnetic and Electromagnetic Fields (in German)

Reference & Founding* Partners European Copper Institute* (ECI) www.eurocopper.org ETSII - Universidad Politécnica de Madrid www.etsii.upm.es LEM Instruments www.lem.com Akademia Gorniczo-Hutnicza (AGH) www.agh.edu.pl Fluke Europe www.fluke.com MGE UPS Systems www.mgeups.com Centre d'innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC) www.citcea.upc.edu Comitato Elettrotecnico Italiano (CEI) www.ceiuni.it Copper Benelux* www.copperbenelux.org Copper Development Association* (CDA UK) www.cda.org.uk Hochschule für Technik und Wirtschaft* (HTW) www.htw-saarland.de Hogeschool West-Vlaanderen Departement PIH www.pih.be International Union for Electricity Applications (UIE) www.uie.org ISR - Universidade de Coimbra www.isr.uc.pt Otto-von-Guericke-Universität Magdeburg www.uni-magdeburg.de Polish Copper Promotion Centre* (PCPC) www.miedz.org.pl Università di Bergamo* www.unibg.it University of Bath www.bath.ac.uk Deutsches Kupferinstitut* (DKI) www.kupferinstitut.de Istituto Italiano del Rame* (IIR) www.iir.it The University of Manchester www.manchester.ac.uk Engineering Consulting & Design* (ECD) www.ecd.it EPRI Solutions Inc www.epri.com/eprisolutions Katholieke Universiteit Leuven* (KU Leuven) www.kuleuven.ac.be Laborelec www.laborelec.com Wroclaw University of Technology* www.pwr.wroc.pl Editorial Board David Chapman (Chief Editor) CDA UK david.chapman@copperdev.co.uk Prof Angelo Baggini Università di Bergamo angelo.baggini@unibg.it Dr Araceli Hernández Bayo ETSII - Universidad Politécnica de Madrid ahernandez@etsii.upm.es Prof Ronnie Belmans UIE ronnie.belmans@esat.kuleuven.ac.be Dr Franco Bua ECD franco.bua@ecd.it Jean-Francois Christin MGE UPS Systems jean-francois.christin@mgeups.com Prof Anibal de Almeida ISR - Universidade de Coimbra adealmeida@isr.uc.pt Hans De Keulenaer ECI hdk@eurocopper.org Prof Jan Desmet Hogeschool West-Vlaanderen jan.desmet@howest.be Dr ir Marcel Didden Laborelec marcel.didden@laborelec.com Dr Johan Driesen KU Leuven johan.driesen@esat.kuleuven.ac.be Stefan Fassbinder DKI sfassbinder@kupferinstitut.de Prof Zbigniew Hanzelka Akademia Gorniczo-Hutnicza hanzel@uci.agh.edu.pl Stephanie Horton ERA Technology stephanie.horton@era.co.uk Dr Antoni Klajn Wroclaw University of Technology antoni.klajn@pwr.wroc.pl Kees Kokee Fluke Europe BV kees.kokee@fluke.nl Prof Dr rer nat Wolfgang Langguth HTW wlang@htw-saarland.de Prof Henryk Markiewicz Wroclaw University of Technology henryk.markiewicz@pwr.wroc.pl Carlo Masetti CEI masetti@ceiuni.it Mark McGranaghan EPRI Solutions mmcgranaghan@eprisolutions.com Dr Jovica Milanovic The University of Manchester jovica.milanovic@manchester.ac.uk Dr Miles Redfern University of Bath eesmar@bath.ac.uk Dr ir Tom Sels KU Leuven tom.sels@esat.kuleuven.ac.be Prof Dr-Ing Zbigniew Styczynski Universität Magdeburg Sty@E-Technik.Uni-Magdeburg.de Andreas Sumper CITCEA-UPC sumper@citcea.upc.edu Roman Targosz PCPC cem@miedz.org.pl Dr Ahmed Zobaa Cairo University azmailinglist@link.net

Hochschule für Technik und Wirtschaft des Saarlandes University of Applied Sciences EMC-Laboratory Hochschule für Technik und Wirtschaft University of Applied Sciences Goebenstrasse. 40 D66 117 Saarbrücken Germany Tel: 0049 681 5867279 Fax: 0049 681 5867302 Website: www.htw-saarland.de Prof Dr rer nat Wolfgang Langguth HUNGARIAN COPPER PROMOTION CENTRE Hungarian Copper Promotion Centre Képíró u. 9 H - 1053 Budapest Maďarsko Tel.: 00 361 266 4810 Tel.: 00 361 266 4804 E-mail: hcpc@euroweb.hu Website: www.hcpcinfo.org VŠB-TU Ostrava Fakulta elektrotechniky a informatiky 17. listopadu 15 CZ 708 33 Ostrava-Poruba Tel.: +420 59 732 4279 Tel.: +420 596 919 597 E-mail: pavel.santarius@vsb.cz Website: homen.vsb.cz/~san50/ European Copper Institute 168 Avenue de Tervueren B - 1150 Brussels Belgium Tel.: 00 32 2 777 70 70 Fax: 00 32 2 777 70 79 Email: eci@eurocopper.org Website: www.eurocopper.org